Fang-Jie Zhao

Fang-Jie Zhao
  • PhD
  • Professor at Nanjing Agricultural University

About

552
Publications
169,664
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
62,260
Citations
Current institution
Nanjing Agricultural University
Current position
  • Professor

Publications

Publications (552)
Article
Full-text available
Microbial arsenic (As) methylation and demethylation are important components of the As biogeochemical cycle. Arsenic methylation is enhanced under flooded conditions in paddy soils, producing mainly phytotoxic dimethylarsenate (DMAs) that can cause rice straighthead disease, a physiological disorder occurring widely in some rice growing regions. T...
Article
Full-text available
Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice...
Article
Full-text available
Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated...
Article
Full-text available
Iron (Fe) deficiency is common in agricultural crops and affects millions of people worldwide. Translocation of Fe in the xylem is a key step for Fe distribution in plants. The mechanism controlling this process remains largely unknown. Here, we report that two Arabidopsis ferroxidases, LPR1 and LPR2, play a crucial and redundant role in controllin...
Article
Full-text available
Root developmental plasticity is crucial for plants to adapt to a changing soil environment, where nutrients and abiotic stress factors are distributed heterogeneously. How plant roots sense and avoid heterogeneous abiotic stress in soil remains unclear. Here, we show that, in response to asymmetric stress of heavy metals (cadmium, copper, or lead)...
Article
Full-text available
Impact statement Arsenic is the most common toxic metalloid in the environment. Nearly all organisms have genes for arsenic detoxification. Arsenic detoxification genes are frequently organized in chromosomal or plasmid‐encoded arsenic resistance (ars) operons, which are commonly regulated by members of the ArsR transcriptional repressors. To date,...
Article
Full-text available
Calcium (Ca) is an essential mineral nutrient and plays a crucial signaling role in all living organisms. Increasing Ca content in staple foods such as rice is vital for improving Ca nutrition of humans. Here we map a quantitative trait locus that controls Ca concentration in rice grains and identify the causal gene as GCSC1 (Grain Ca and Sr Concen...
Article
Full-text available
Background and aims Microbial arsenic (As) methylation in paddy soil produces dimethylarsinic acid (DMA) as the main product, which can cause rice (Oryza sativa L.) straighthead disease characterized by floret sterility. The mode of DMA toxicity remains unclear. Methods Pot and hydroponic experiments were conducted to investigate the effect of DMA...
Article
Full-text available
Rice grains typically contain relatively high levels of toxic arsenic (As) but low levels of essential micronutrients. Biofortification of essential micronutrients while decreasing As accumulation in rice would benefit human nutrition and health. We generated transgenic rice expressing a gain‐of‐function mutant allele astol1 driven by the OsGPX1 pr...
Article
Full-text available
Purpose of Review Exposure to toxic metals/metalloids, such as arsenic (As), cadmium (Cd), and lead (Pb), through food consumption is a global public health concern. This review examines the contamination status of these metals/metalloids in food, assesses dietary intake across different populations, and proposes strategies to reduce metal/metalloi...
Article
Full-text available
Respiratory Burst Oxidase Homologues (RBOHs) are involved in plant growth, development, and stress adaptation. How OsRBOHs affect root hair formation and consequently nutrient acquisition and drought resistance in rice is not well understood. We knocked out six OsRBOH genes in rice that were expressed in roots and identified OsRBOHE as the only one...
Preprint
Cadmium (Cd) is a toxic metal that poses serious threats to human health. Rice is a major source of dietary Cd but how rice plants transport Cd to the grain is not fully understood. Here, we characterize the function of the ZIP (ZRT, IRT-like protein) family protein, OsZIP2, in the root-to-shoot translocation of Cd and intervascular transfer of Cd...
Article
Full-text available
An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy...
Article
Full-text available
Cadmium (Cd) is a toxic metal that poses serious threats to human health. Rice is a major source of dietary Cd but how rice plants transport Cd to the grain is not fully understood. Here, we characterize the function of the ZIP (ZRT, IRT‐like protein) family protein, OsZIP2, in the root‐to‐shoot translocation of Cd and intervascular transfer of Cd...
Article
Full-text available
Microbial arsenic (As) methylation in paddy soil produces mainly dimethylarsenate (DMA), which can cause physiological straighthead disease in rice. The disease is often highly patchy in the field, but the reasons remain unknown. We investigated within-field spatial variations in straighthead disease severity, As species in rice husks and in soil p...
Article
Full-text available
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation te...
Article
Full-text available
The Cd uptake efficiency based on total root length was 8e45% lower in a barley root hairless mutant than in its wild-type, indicating an important role of root hairs in Cd acquisition. a b s t r a c t The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) an...
Article
Copper (Cu) is an essential micronutrient for all living organisms but is also highly toxic in excess. Cellular homoeostasis of Cu is maintained by various transporters and metallochaperones. Here, we investigated the biological function of OsCOPT7, a member of the copper transporters (COPT) family, in Cu homoeostasis in rice. OsCOPT7 was mainly ex...
Article
Rice is a dominant source of inorganic arsenic (As) exposure for populations consuming rice as a staple food. Decreasing As accumulation in rice grain is important for improving food safety. Arsenite [As(III)], the main form of As in paddy soil porewater, is taken up inadvertently byOsLsi1 andOsLsi2, the two key transporters for silicon (Si) uptake...
Article
Full-text available
Pathogen genetic diversity varies in response to environmental changes. However, it remains unclear whether plant barriers to invasion could be considered a genetic bottleneck for phytopathogen populations. Here, we implement a barcoding approach to generate a pool of 90 isogenic and individually barcoded Ralstonia solanacearum strains. We used 90...
Article
Full-text available
Cadmium (Cd) exposure in humans primarily occurs through dietary intake, with conventional one-compartment toxicokinetic (TK) models linking dietary Cd intake to urinary Cd (UCd) levels, predominantly in Western populations with low background exposure. However, the applicability of this model to regions with high dietary Cd intake, particularly fr...
Preprint
Full-text available
Calcium (Ca) is an essential mineral nutrient and plays a crucial signaling role in all living organisms. Increasing Ca content in staple foods such as rice is vital for improving Ca nutrition of humans. Here we map a quantitative trait locus that controls Ca concentration in rice grains and identify the causal gene as GCSC1 , which encodes a chlor...
Article
Full-text available
Metabolic cross-feeding is a pervasive microbial interaction type that affects community stability and functioning and directs carbon and energy flows. The mechanisms that underlie these interactions and their association with metal/metalloid biogeochemistry, however, remain poorly understood. Here, we identified two soil bacteria, Bacillus sp. BP-...
Article
Full-text available
Cadmium (Cd) is highly toxic to plants, but the targets and modes of toxicity remain unclear. We isolated a Cd-hypersensitive mutant of Arabidopsis thaliana, Cd-induced short root 2 (cdsr2), in the background of the phytochelatin synthase-defective mutant cad1-3. Both cdsr2 and cdsr2 cad1-3 displayed shorter roots and were more sensitive to Cd than...
Article
It is often expected that Zn decreases Cd accumulation in plants due to competitions for the same transporters. Here, we found that increasing Zn supply markedly increased the root-to-shoot translocation of Cd in rice. RNA sequencing showed that high Zn up-regulated expression of genes involved in glutathione biosynthesis and metabolism and the Zn/...
Article
Full-text available
Microorganisms play a key role in arsenic (As) biogeochemistry, transforming As species between inorganic and organic forms and different oxidation states. Microbial As methylation is enhanced in anoxic paddy soil, producing primarily dimethylarsenic (DMAs), which can cause rice straighthead disease and large yield losses. DMAs can also be demethyl...
Article
The Nobel Prize in Chemistry for 2022 was awarded to the pioneers of Lego-like 'click chemistry': combinatorial chemistry with remarkable modularity and diversity. It has been applied to a wide variety of biological systems, from microorganisms to plants and animals, including humans. Although click chemistry is a powerful chemical biology tool, co...
Article
Rice is a major dietary source of inorganic arsenic (iAs), a highly toxic arsenical that accumulates in rice and poses health risks to rice-based populations. However, the availability of detection methods for iAs in rice grains is limited. In this study, we developed a novel approach utilizing a natural bacterial biosensor, Escherichia coli AW3110...
Article
Full-text available
Pathogen detection from biological and environmental samples is important for global disease control. Despite advances in pathogen detection using deep learning, current algorithms have limitations in processing long genomic sequences. Through the deep cross-fusion of cross, residual and deep neural networks, we developed DCiPatho for accurate path...
Article
Full-text available
Arsenic (As) biomethylation is an important component of the As biogeochemical cycle that can influence As toxicity and mobility in the environment. Biomethylation of As is catalyzed by the enzyme arsenite (As[III]) S-adenosylmethionine methyltrans-ferase (ArsM). To date, all identified ArsM orthologs with As(III) methylation activities have four c...
Article
Full-text available
Microbial arsenic (As) methylation and volatiliza-tion are important processes controlling the As biogeochemical cycle in paddy soils. To further understand these processes, we isolated a novel bacterial strain, SM-1, from an As-contaminated paddy soil. SM-1 showed strong As methylation and volatilization abilities, converting almost all arsenite (...
Article
Cadmium (Cd) contamination in food has raised broad concerns in food safety and human health. The toxicity of Cd to animals/humans have been widely reported, yet little is known about the health risk of dietary Cd intake at the epigenetic level. Here, we investigated the effect of a household Cd-contaminated rice (Cd-rice) on genome-wide DNA methyl...
Article
Full-text available
Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a...
Article
Excessive accumulation of cadmium (Cd) in rice grains threatens food safety and human health. Growing low Cd accumulating rice cultivars is an effective approach to produce low-Cd rice. However, field screening of low-Cd rice cultivars is laborious, time-consuming, and subjected to the influence of environment × genotype interactions. In the presen...
Article
Soil contamination with trace metals and metalloids can cause toxicity to plants and threaten food safety and human health. Plants have evolved sophisticated mechanisms to cope with excess trace metals and metalloids in soils, including chelation and vacuolar sequestration. Sulfur-containing compounds, such as glutathione and phytochelatins, play a...
Article
Rice is a major dietary source of the toxic metal cadmium (Cd). Cd concentration in rice grain varies widely at the regional scale, and it is challenging to predict grain Cd concentration using soil properties. The lack of reliable predictive models hampers management of contaminated soils. Here, we conducted a three-year survey of 601 pairs of soi...
Article
Full-text available
Plants take up a wide range of trace metals/metalloids (hereinafter referred to as trace metals) from the soil, some of which are essential but become toxic at high concentrations (e.g., Cu, Zn, Ni, Co), while others are non‐essential and toxic even at relatively low concentrations (e.g., As, Cd, Cr, Pb, and Hg). Soil contamination of trace metals...
Article
Full-text available
Abstract Bacterial pathogens are one of the major threats to biosafety and environmental health, and advanced assessment is a prerequisite to combating bacterial pathogens. Currently, 16S rRNA gene sequencing is efficient in the open‐view detection of bacterial pathogens. However, the taxonomic resolution and applicability of this method are limite...
Article
Accumulation of inorganic arsenic (iAs) and dimethylarsenate (DMA) in rice threatens human health and rice yield, respectively. We studied the yet unclear interactions of soil sulfate amendment and water management for decreasing As accumulation in rice grain in a pot experiment. We show that soil sulfate amendment (+200 mg S/kg soil) decreased gra...
Article
Full-text available
Methylarsenite (MAs(III)), a product of arsenic biomethylation or bioreduction of methylarsenate (MAs(V)), has been proposed as a primitive antibiotic. However, the antibacterial property and the bactericidal mechanism of MAs(III) remain largely unclear. In this study, we found that MAs(III) is highly toxic to 14 strains of bacteria, especially aga...
Article
Dimethylarsenate [DMAs(V)] is a common methylated As species in soils and plants and can cause the physiological disorder straighthead disease in rice. Because DMAs(V) is relatively noncytotoxic, we hypothesize that phytotoxicity of DMAs(V) may arise from trivalent dimethylarsenite [DMAs(III)]. DMAs(III) has been detected in human urine samples but...
Article
Full-text available
Background Cadmium (Cd) levels of food crops can be elevated through management activities and geogenic factors. While emphasis is placed on reducing Cd in phosphorus (P) fertilizers, increasing evidence shows that Cd accumulation in plants is markedly influenced by arbuscular mycorrhizal fungi (AMF). Mycorrhizas are highly effective in reducing sh...
Chapter
Trace elements may be either essential or toxic to organisms. The most common trace elements in soils are Cd, As, Cr, Hg, Pb, Ni, Zn, and Cu. Pollution of trace elements in soils may be natural or anthropogenic, with the latter including agricultural and industrial sources. Different trace elements pose variable potential risks to ecosystems, food...
Article
The concentration, chemical speciation, and spatial distribution of essential and toxic mineral elements in cereal seeds have important implications for human health. To identify genes responsible for element uptake, translocation, and storage, high throughput phenotyping methods are needed to visualize element distribution and concentration in see...
Article
Lead (Pb) is one of the most toxic metals affecting human health globally. Food is an important source of chronic Pb exposure in humans. How Pb is taken up by rice, a staple food for over half of the global population, remains unknown. In the present study, we investigated the role of OsNRAMP5, a member of the NRAMP (Natural Resistance-Associated M...
Article
Full-text available
Rice is an important source of calories and mineral nutrients for more than half of the world's population. The accumulation of essential and toxic mineral elements in rice grain affects its nutritional quality and safety. However, the patterns and processes by which different elements progressively accumulate during grain filling remain largely un...
Article
Rice accumulates both inorganic arsenic (iAs) and organic As species such as dimethylarsenate (DMA). Although DMA is less toxic to humans, it has been shown in hydroponic studies to induce rice straighthead disease, a physiological disorder prevalent in some rice growing regions causing large yield losses. We investigated the effects of different a...
Article
Full-text available
Whole-genome duplication generates a tetraploid from a diploid. Newly created tetraploids (neo-tetraploids) of Arabidopsis (Arabidopsis thaliana) have elevated leaf potassium (K), compared to their diploid progenitor. Micro-grafting has previously established that this elevated leaf K is driven by processes within the root. Here, mutational analysi...
Article
Full-text available
Cadmium (Cd) is a toxic and carcinogenic pollutant widely distributed in the environment. Dietary intake is the main source of Cd exposure for the nonsmoking population. Assessment of dietary Cd intake provides a pathway to predict Cd body burden and potential health effects. Kidney has been considered as the most sensitive target of chronic Cd exp...
Article
Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. Howev...
Article
Full-text available
Methylarsenite [MAs(III)] is a highly toxic arsenical produced by some microbes as an antibiotic. In this study, we demonstrate that a PadR family transcriptional regulator, PadRars, from Azospirillum halopraeferens strain Au 4 directly binds to the promoter region of the arsenic resistance (ars) operon (consisting of padRars, arsV, and arsW) and r...
Article
Full-text available
Background and aims Phytoextraction is an eco-friendly approach for remediation of heavy metal contaminated soil. The aim is to screen Noccaea caerulescens lines with higher cadmium (Cd) phytoextraction efficiency and investigate differences in Cd species and distribution in the leaves of high and low Cd accumulating lines. Methods Biomass product...
Article
Some soil microbes can methylate arsenic (As) and produce dimethylarsenate (DMA) as a main product. Excessive accumulation of DMA by rice plants can cause the straighthead disease, a physiological disorder leading to substantial yield losses. DMA can also be demethylated in soil, but the mechanism and the microbes involved are not well understood....
Article
Full-text available
Sulfur (S) is an essential mineral nutrient required for plant growth and development. Plants usually face temporal and spatial variation in sulfur availability, including the heterogeneous sulfate content in soils. As sessile organisms, plants have evolved sophisticated mechanisms to modify their gene expression and physiological processes in orde...
Article
Full-text available
Paddy soils in some areas of southern China are contaminated by arsenic (As) and cadmium (Cd), threatening human health via the consumption of As- and/or Cd-tainted rice. To date, a quantitative understanding of how soil characteristics control As and Cd accumulation in rice grains under field conditions is still deficient. Based on 31 paired soil-...
Article
Full-text available
Compost-based organic fertilizers made from animal manures may contain high levels of antibiotic resistance genes (ARGs). However, the factors affecting the abundance and profile of ARGs in organic fertilizers remain unclear. We conducted a national-wide survey in China to investigate the effect of material type and composting process on ARG abunda...
Article
Full-text available
Background Dietary intake and nutritional assessing data from a representative sample of adult population living in an agricultural zone on Tibet Plateau are still lacking nowadays. This study aimed to assess the daily dietary intakes and respective food sources in 552 local residents (≥ 18 years old, 277 men and 275 women) living in 14 agricultura...
Article
Trivalent methylarsenite (MAs(III)) produced by biomethylation is more toxic than inorganic arsenite (As(III)). Hence, MAs(III) has been proposed to be a primordial antibiotic. Other bacteria evolved mechanisms to detoxify MAs(III). In this study, the molecular mechanisms of MAs(III) resistance of Ensifer adhaerens ST2 were investigated. In the chr...
Article
Full-text available
Methylarsenate (MAs(V)) is a product of microbial arsenic (As) biomethylation and has also been widely used as an herbicide. Some microbes are able to reduce nontoxic MAs(V) to highly toxic methylarsenite (MAs(III)) possibly as an antibiotic. The mechanism of MAs(V) reduction in microbes has not been elucidated. Here, we found that the bacterium En...
Article
Full-text available
Molybdenum (Mo) is an essential micronutrient for almost all living organisms. The Mo uptake process in plants has been well investigated. However, the mechanisms controlling Mo translocation and remobilization among different plant tissues are largely unknown, especially the allocation of Mo to rice grains that are the major dietary source of Mo f...
Article
Full-text available
Background and aims Iron (Fe) deficiency in plants is a common problem affecting agricultural production. Cadmium (Cd) is a toxic metal that can be taken up and transported within plants by transporters for divalent metals including Fe(II). The present study aims to investigate the functions of OsNRAMP2 (Natural Resistance-Associated Macrophage Pro...
Article
Full-text available
Anaerobic nitrate-dependent iron(ii) oxidation is a process common to many bacterial species, which promotes the formation of Fe(iii) minerals that can influence the fate of soil and groundwater pollutants, such as arsenic. Herein, we investigated simultaneous nitrate-dependent Fe(ii) and As(iii) oxidation by Acidovorax sp. strain ST3 with the aim...
Preprint
Full-text available
Anaerobic nitrate-dependent iron(II) oxidation is a process common to many bacterial species, which promotes the formation of Fe(III) minerals that can influence the fate of soil and groundwater pollutants, such as arsenic. Herein, we investigated simultaneous nitrate-dependent Fe(II) and As(III) oxidation by Acidovorax sp. strain ST3 with the aim...
Article
Microbial arsenic methylation by arsenite (As(III)) S-adenosylmethionine methyltransferases (ArsMs) can produce the intermediate methylarsenite (MAs(III)), which is highly toxic and is used by some microbes as an antibiotic. Other microbes have evolved mechanisms to detoxify MAs(III). In this study, an arsRM operon was identified in the genome of a...
Article
Some soil microbes can methylate arsenic (As) and produce dimethylarsenate (DMA) as a main product. Excessive accumulation of DMA by rice plants can cause the straighthead disease, a physiological disorder leading to substantial yield losses. DMA can also be demethylated in soil, but the mechanism and the microbes involved are not well understood....
Article
Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. Howev...
Article
Full-text available
Molybdenum (Mo) is an essential element for almost all living organisms. After being taken up into the cells as molybdate, Mo is incorporated into the molybdenum cofactor, which functions as the active site of several molybdenum-requiring enzymes and thus plays crucial roles in multiple biological processes. The uptake and transport of molybdate is...
Article
Cadmium (Cd) contamination in paddy soil often results in elevated Cd concentrations in rice grain, which is a serious concern threatening food safety. Most of the Cd accumulated in rice grain is derived from its remobilization in paddy soil during the grain filling period when paddy water is drained. We have previously shown that the voltaic cell...

Network

Cited By