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Abstract—Classifying Internet traffic is critical to many network
management tasks, including malicious attack detection, usage
monitoring, load balancing, etc. As current traffic packets are often
transmitted with encryption, at randomized port numbers, and
under highly dynamic network conditions, traditional approaches
such as port mapping, deep packet inspection, and statistical
analysis are no longer effective. In this paper, we first collect
extensive traffic flows at the exit router of a university and label
them into various source applications. After extracting the message
(consisting of multiple consecutive TCP packets) sequence for all
collected traffic flows, we find that each application type has distinct
sequential message features. By leveraging the message sequential
feature, we develop a system, named SMC (Sequential Message
Characterization), which can perform online traffic classification
with the sequential size information of a few message segments. In
SMC, after confirming the long-term dependency among message
segments, we create a Long Short-Term Memory (LSTM) neu-
ral network to conduct deep learning on message size sequence,
and then build a multi-classifier to classify traffic types based on
the probability profiles output by deep LSTM models. Extensive
experiments are conducted and results demonstrate that the pro-
posed SMC can achieve 97% of classification accuracy on average.
Meanwhile, with as few as 6 pieces of message size information as
input, SMC enables early online traffic classification especially for
heavy-traffic flows with over 35 message segments in median.

Index Terms—Deep LSTM, early online classification, internet
traffic, sequential message characterization, traffic analytics.

I. INTRODUCTION

ACCURATE identification and categorization of Internet
traffic is a source of intelligence for many network man-

agement tasks such as diagnostic monitoring, flow prioritization,
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and traffic shaping/policing [1]–[6]. For instance, with the traffic
classification, the network administrator is able to identify the
problem of internal network, e.g., whether a certain type of mul-
timedia traffics occupy the most network bandwidth and block
the channel. The network service provider can analyze the traffic
composition by categorizing them into classes, to benefit load
balance strategies. Besides, with the aid of traffic classification,
the firewall can detect malicious attacks proactively [7].

However, the current challenges to accurately classify real-
time Internet traffic are as follows: First, detection time and clas-
sification accuracy are competing objectives. To finish the clas-
sification rapidly, only limited input features of the traffic flow
can be extracted, which can hardly guarantee the classification
accuracy. In addition, to improve accurate traffic classification,
extracting multi-dimensional features including flow duration,
arriving times of packets, etc., is essential, inevitably prolonging
the finish time for detection. Second, Internet traffic flows can be
very complex and are normally untraceable as there are so many
source applications and network conditions are dramatically
dynamic and uncertain [8]–[12]. Different source applications
show interlaced transmission features while dynamic network
conditions further render these features labile. Hence, the robust-
ness of classification algorithm is as important as the accurate
performance, which has to be efficacious under all kinds of net-
work conditions. Third, to verify the efficiency of classification
algorithm, adequate labeled Internet traffic flows which cover
different source applications with sufficiently enough samples,
are essential. Existing accessible data sets were collected many
years ago (more then ten years), which may be obsolete and hard
to represent hodiernal network behaviors.

Many traffic classification approaches have been proposed,
which however may be no longer effective due the revolution
of modern Internet applications. Particularly, Karagiannis et
al. [13] proposed a port matching-based approach, which was
efficient in early Internet days when there is a one-to-one match
between the transport layer port number and source application.
However, with the emergence of P2P technology, there is a
rapid increase in the Internet application number, and then port
numbers are misused by various applications to avoid detection,
which significantly degrades the performance of port-based
methods. Therefore, some researchers then proposed methods
that rely on key characteristics of traffic flows as alternatives.
Such methods are termed as deep packet inspection (DPI) [14]–
[16], in which the first few TCP packets of the flow are investi-
gated by searching the keywords or specific pattern in the packet
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payload. Mostly, the DPI-based techniques can be accurate and
fine-grained. However, as data privacy becomes an increasing
concern for Internet users, the transmitted Internet contents are
usually encrypted by Transport Layer Security (TLS) or Secure
Sockets Layer (SSL) protocol, restraining the applicability of
DPI-techniques. On the one hand, the huge overhead and the
cumbersome packet processing for keyword extraction degrade
its prevalence. To this end, statistics-based algorithms [17]–[19]
are then proposed, which try to extract multi-dimensional ap-
plication features with the objective of generating a classifier.
Those features include the flow duration, packet inter-arrival
time, throughput, etc. However, the above time-related metrics
may not be consistent and stable enough to serve as classifiers
when the network dynamics, which has been verified in many
previous works [20]. Another disadvantage of statistics-based
methods is that it cannot support early classification, because
features such as the mean packet size can only be obtained after
the end of the process. Therefore, design a new effective traffic
classification method that can accurately and timely classify var-
ious source applications even under dynamic Internet conditions,
which is essential for the network management of perception
applications.

In this paper, from the exit router of a university, we first
collect extensive traffics (TCP-level) flows, and then label them
into several source applications, i.e., Video, WeChat, SSH,
HTTP, SMTP, etc., where most of network application types
are covered. In addition, we discover that each traffic flow can
be divided into consecutive message segments (i.e., message
sequence), each representing a relatively independent piece of
content transmitted between the server and client. For instance,
for a large-size content, the server would deliver it by multiple
message segments (containing multiple TCP packets) due to
the limitation of Maximum Transmission Unit (MTU), and
at the end of each message segment, the server could push
advertisements expediently. After receiving a message segment,
the receiver sends an ACK message segment, which acts as a
heartbeat in response to the received message segment. For all
traffic flows, after extracting the message sequence from un-
derlying TCP packets, we then conduct extensive data analytics
on message sequences and surprisingly find that there are very
distinct “sequential features” from different source applications.
For instance, large-size messages from the server interacting
with small-size messages from the client (and vice versa) are
frequently observed in video or P2P traffic flows whereas rarely
appear in HTTP and other types of traffic flows.

Based on the extracted sequential features, we develop an on-
line traffic classification system, named as SMC (i.e., Sequential
Message Characterization), which aims at classifying traffic
flows in real time by distinguishing massage sequence features.
Specifically, in SMC, at offline training stage, we construct a
Long Short Term Memory (LSTM) neural network [21], [22]
to conduct deep learning on the message size sequence for
all types of traffic flow, based on which unique LSTM-traffic
models corresponding to distinct traffic types are generated,
forming a model forest. Due to the advantages of the LSTM
model in processing and predicting important events, even after
a long time interval, we have disclosed the long-term dependence

among message segments. Compared with the Hidden Markov
Model (HMM), which can only ‘remember’ the states within
fixed time-intervals, the LSTM neural network is more suitable
for training message size sequence as it can ‘remember’ correla-
tions over arbitrary time-intervals. At online traffic classification
stage, given the input of message size sequence, the model
forest can output the probability profiles, indicating the corre-
sponding likelihood of the traffic belonging to different source
applications. It can help filter out the classification result. Based
on the real-world Internet traffic flows that we have collected
and labeled, we conduct extensive experiments to evaluate the
performance of SMC under the cross validation scheme with
varying the training-data size, and experiment results demon-
strate the efficacy of SMC. Particularly, SMC can achieve up to
98.9% accuracy (97% on average) on per-flow classification,
outperforming the HMM-based approach significantly (with
accuracy no more than 60%). In addition, SMC is able to classify
the traffic flow at an early stage when the flow stars, as it requires
as few as 6 successfully extracted message-size information,
which is especially valuable for long-sequence multimedia traf-
fic classification, such as Video and P2P whose median message
sequence length normally reaches over 35 message segments.

We highlight the main contributions as follows.
� We collect extensive Internet traffic flows at a public router,

and have labeled them into source applications via recruit-
ing volunteers which provides a solid ground truth for
traffic analytics and performance evaluation.

� After extracting message segments for each traffic flow, we
conduct data analytics on message sizes, and disclose the
unique message sequential feature for each type of traffic
flow, which can be utilized as a “fingerprint” to distinguish
them from each other.

� After confirming the long-term dependence among mes-
sage segments, we create a LSTM neural network to con-
duct deep learning on the message size sequence. Based
on the model, we develop and implement an online traffic
classification system, named SMC, to classify encrypted
Internet traffic flow at an early stage (long-sequence mul-
timedia traffic) after the traffic flow generates. Extensive
experiments are conducted and results demonstrate the
superior performance of SMC.

The remainder of this paper is organized as follows. In
Section II, we collect and label Internet traffic flows. Then,
we extract message and conduct empirical studies on message
sequences in Section III. Section IV elaborates on the design
of SMC. In Section V, we present the performance evaluation
for the proposed scheme. We review some related works in
Section VI. Finally, we conclude and direct our future work
in Section VII.

II. COLLECTING AND LABELING TRAFFIC FLOWS

A. Collecting Various Types of Traffic Flow

To our best knowledge, most available data sets are collected
more than ten years ago [15], [23]. However, as the Internet
traffic increases rapidly, previous works that work well on such
data sets, cannot guarantee satisfied classification accuracy for
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current traffic flows. To cope with the limitation, it is essential
to collect sufficient Internet traffic flows before delving into the
classification algorithm design. In this paper, we first collect
traffic flows from an exit router of Shanghai Maritime University,
where the traffic rate at peak time can reach over 7 GB/s. As
packets frequently drop, the often-used traffic monitor (i.e.,
Tcpdump and Wireshark), fail to deal with such high-throughput
data traffic. To this end, we have developed Noff [24], which is
an extendible parallel tool for high-performance network traffic
monitoring, to capture all packets from the router. The details
of Noff are beyond the scope of this paper. With the collected
packets, we then recompose them into traffic flows.

The traffic collection lasts for three days, based on which we
extract complete traffic flows of SSH, SMTP, Remote Desktop,
HTTP, and WeChat. Note that, in the university network, there is
a load balancing scheme to balance the traffic load at each router.
For large-size traffic, the chance is enlarged for these packets
to be routed over multiple routers since the unbalanced load
condition can be more likely to be triggered. Note that, for our
data collection, incomplete traffic flows are dropped by checking
the packet serial number in TCP/IP protocol. For multimedia
streaming, as they are usually quite large and their packets
are likely to be routed via different router nodes for satisfied
performance, it can hardly achieve complete streaming from one
router node. Therefore, three volunteers are recruited to collect
P2P and Video traffic flows. Particularly, to collect P2P traffic
flows, each volunteer downloads 10 movies via the BitTorrent
tool, and totally 200 G P2P files are downloaded, where all
packets are catched by Tcpdump. To collect Video traffic, each
volunteer is required to watch videos on popular video websites,
e.g., Iqiyi and Youku, for five hours every day (lasting five
days), where network packets are collected by Tcpdump in the
meantime. For each video, the duration ranges from 5 to 10
minutes, and the total duration adds up to 4000 minutes.

B. Labeling Traffic Flow Samples

With the collected traffic flows, we then ought to label them
according to their source applications. The following two steps
are executed to label each traffic flow type. Particularly, we first
filter traffic flows by well-known ports (e.g., 22, 80, and 443), the
goal of which is to significantly reduce the number of candidate
flows. Then, we compare the first few packets of each flow with
the proper format of source applications, to label each traffic
flow type. For instance, to label the SSH flows, we first extract
and reassemble TCP flows of port 22 from the raw packet trace.
To identify the SSH flow, we investigate whether the message
contains the SSH version following ‘CR LF’. Therefore, we filter
out those TCP flows beginning with ‘SSH-* CR LF,’ and label
them into SSH traffic flows. Notice that, the checking of packet
payload and port information is only used when labeling the
traffic flows. In fact, the payload information can be encrypted,
and customized ports can be used instead of well-known ports.
For these traffic flows, our labeling methods cannot be applied.
However, such omissions in labeling set would not impact the
proposed algorithm evaluation since the pattern and message
composition of those traffic flows will not change. This is the

reason that we do not use the payload and port information in
our model building (detailed in following sections).

By dealing with the three-day traffic flows, we have extracted
the HTTP, SSH, SMTP and WeChat traffic flows, with the total
number of 2649, 4792, 2041 and 2400, respectively. The detail of
the collected samples are shown in Table I, the number of which
are sufficient for in-depth statistic analysis and performance
evaluation. For multimedia traffic flows of P2P and video, the
traffic flows cannot be recognized directly by using the port. For
example, video websites (e.g., Youku and Iqiyi) deliver video
services via the port 443, but the application data forwarded also
via the port 443 is usually encrypted. It means that it is difficult
to identify whether such TCP flows contain video streaming
or not. To overcome the limitation, we consider generate P2P
and video streaming manually by recruiting volunteers. If the
volunteer watches videos or downloads P2P contents, other net-
work services are disabled. In the end, more than 2335 and 1630
multimedia streaming is labeled for P2P and video applications,
respectively, the detailed traffic flow set is shown in Table I.

III. EMPIRICAL STUDIES ON MESSAGE SEGMENTS

To capture the underlying features of each traffic flow, in this
section, we extract the message sequence for all traffic flows and
conduct extensive data analytics on message sequences.

A. Extracting Message Segments From TCP Packets

In order to mine the deep knowledge of traffic flows, we
divide the traffic flow into multiple message segments, each
of which implicitly indicates sender’s instantaneous transmis-
sion intention. For example, a large-size video content will be
transmitted through multiple message segments for performance
satisfaction and convenient advertisements promotion. A HTTP
flow can divide into multiple message segments to package
the components of HTML, JSON, JavaScript, etc. Thence, it
is reasonable to use the message segment information as input
features to classify traffic flows, as they are capable of indicating
the underlying characteristics of applications. As the message
segments are normally large-size which have to be separated into
many TCP packets to deliver in accordance with the limitation
of maximum segment size (MSS),1 we learn the negotiation
process between the sender and receiver to detect the generation
and end flag of each message, via which message segments are
split out from the underlying TCP packets.

Particularly, in the TCP protocol, there are two major designs
to enhance the transmission reliability. One is the ACK scheme
that after the receiver successfully accepts a packet from the
sender, the receiver will feed back a ACK packet to indicate a re-
ception of the packet. Another one is the retransmission scheme
that once the sender does not receive the ACK for the transmitted
packet, it will transmit the packet again. Therefore, to extract
message segment from raw TCP packets, the following rules
are utilized: 1) retransmission packets and pure acknowledgment
(ACK) are removed; 2) a packet with a MSS size data is accu-
mulated to the current message segment; 3) a packet with a data

1MSS is determined by the MTU of the underlying network.
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TABLE I
LABELED TRAFFIC FLOW SET

Fig. 1. An example of message segment extracting.

size smaller than MSS2 is accumulated to the current message
segment, which also indicates the end of current segment; 4) the
beginning of message transmission from one side indicates the
end of transmission of the other side. For instance, as shown in
Fig. 1, the client is defined as the side that actives the connection,
while the other side is defined as the server, and in this case, the
network MSS is 1460 bytes. For the first two packets transmitted
by the client, as their data sizes reach the MSS limitation, they
are accumulated to the current message segment. Then, the first
ACK sent by the receiver ends this message segment since it
carries data. Therefore, the size of the first message segment is
2920 bytes. Likewise, for the second message, as the transmis-
sion from the client ends the segment initiated by the server, the
segment size becomes−500 bytes. Notice that, we represent the
message size transmitted from the client with a positive value
(from the server with a negative value), the goal of which is
to indicate the message direction, and the directions are not
taken into account when conduct model training. Particularly, we
implement the extracting tool by Python, and Algorithm 1 shows
the pseudocode of the extracting algorithm. In Algorithm 1, the
code line 7 and 15 are with respect to the rules 1) and 2), and
the code line 10 corresponds to rules 3) and 4).

B. Sequential Message Characterization

After extracting message segments for all source applications,
we show empirical studies on such message segments. As shown
in Fig. 2, the message sequence of different types of traffic flow,

2Note that, the input for our developed model, is the size of message segment,
each containing multiple TCP packets. Although the value of MSS affects the
size of TCP packet, it will not affect the size of message segment, which is
determined by the upper-layer application behaviors.

Algorithm 1: Message Segment Extracting Algorithm.
Input: TCP_packets : a TCP packet list of the traffic flow
Output: size_vector : the message segment sequence
1: function MESSAGE_EXTRACTING(TCP_packets)
2: size_vector = {}
3: message_size = 0
4: last_direc = 1
5: for packet in TCP_packets do
6: payload_size, direc← packet.info
7: if payload_size == 0 then
8: Continue
9: end if

10: Iflast_direc != direc or payload_size < MSS
11: size_vector.append(message_size)
12: message_size = 0
13: last_direc = direc
14: end if
15: message_size = message_size+ payload_size
16: end for
17: return size_vector
18: end function

in each of which 100 traffic flows are randomly chosen and
shown. The color denotes the size of each message segment.
Therefore, we have the three major observations. First, by check-
ing each row in all figures, we can see that traffic flows from
the same source application present highly similar sequential
features, i.e., the colors of different rows in the same figure vary
almost with the same pattern. Specifically, a few large-size mes-
sage segments appear after some small-size message segments
(possibly negotiation messages), and after that only small-size
message segments exist for all SSH traffic, as show in Fig. 2(a).
For all video streaming in 2(c), large-size message segments
always interact with small-size message segments. Second, by
comparing columns in different figures, we observe that for
different types of traffic, their message sequential features are
quite different from each other, i.e., columns in different fig-
ures show differential color variations. In Fig. 2(b), large-size
message segments appear at the latter stage in Remote Desktop
message sequences while they appear at the early stage in
SSH message sequences. However, in Video traffic flows, large-
size and small-size message segments appear alternately. More-
over, compare to SSH and Remote Desktop traffic flows, most
of whose message sizes are smaller than 1500 bytes, in Video
traffic flows, large-size message segments can generally reach
up to 1 500 000 bytes. Other types of traffic also have different
sequential message characteristics. Due to limited space, this
paper will not elaborate on them.
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Fig. 2. Message sequences of different types of traffic flows. (a) SSH traffic flows. (b) Remote Desktop traffic flows. (c) Video streaming.

Fig. 3. CDFs of message sizes. (a) Request message sizes. (b) Response message sizes.

To further investigate the features of different traffic flows,
we divide message segments from the same source application
into two groups, i.e., request messages and response messages.
We then plot Cumulative Distribution Functions (CDFs) of their
message sizes for different source applications, which are shown
in Fig. 3 (a) and (b), respectively. We can obtain two major
observations. First, there is an obvious gap among all types
of traffic flows in terms of both request and response message
size. For instance, in Fig. 3(a), given a CDF threshold of 80%,
the respective size of request message is about 100, 180, 290,
480, 850, 1380, and 1600 bytes for P2P, SMTP, SSH, Remote
Desktop, Video, WeChat, and HTTP traffic flows. Second, com-
pared with request messages, most (more than 80%) of whose
sizes are smaller than 1500 bytes for all types of traffic flows,
the differences in response message size are more significant
(shown in Fig. 3 (b)). Specifically, with the CDF value of 80%,
the message size for Remote Desktop, SSH, HTTP, WeChat,
and SMTP traffic flows is about 500, 900, 1400, 3200, and 3200
bytes, respectively. Further, for P2P and Video traffic flows, their
response message size can increase dramatically to 25, 000 and
1 500 000 bytes, respectively.

To this end, we can conclude that for different source ap-
plications, their message characteristics are significantly dif-
ferent from each other in terms of size and sequential feature.

Therefore, it is possible to classify traffic flows according to their
sequential message size information.

IV. DESIGN OF SMC

In order to classify traffic flows accurately, we develop an
online classification system (also applicable to offline classifi-
cation), named as SMC (Sequential Message Characterization),
which can perform traffic classification in real time and output
the classification result at the early stage of traffic generation.

A. System Overview

SMC classifies traffic flows by learning their sequential mes-
sage size feature. Fig. 4 illustrates the work flow of SMC,
which can be divided into offline component-Modeling Traffic
Flows, and online component-Classifying Traffic Flows. In the
offline part, for each type of traffic flows, we extract their
message sequences and apply LSTM neural network to conduct
deep learning on the sequential features, which can generate
according LSTM models. In the online part, for a sample traffic
flow, we first extract its sequential message size information (not
necessary to be complete or from the beginning) and then input
it to the model forest for testing. In the model forest, each LSTM
model can output a probability profile that logs an accumulated
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Fig. 4. System architecture and work flows.

prediction result for the sequential message size information.
Based on the probability profiles, the classification result can
be filtered out. In the following subsections, we will detail the
design of each part.

B. Model Training at Offline Stage

1) Normalizing Message Size: Inspired by the preceding an-
alytics, we adopt the sequential message size vector of each
type of traffic flow as input, to train the classification model.
We first normalize the value of message size so as to maintain
their application semantics. For instance, for two messages with
size of 35 and 135 bytes, for a certain application, they may
have different semantic meanings in the training model, while
for another application, other two messages with size of 20 and
25 KB may have the same semantic meaning. In other words, the
larger the message size is, the less significance in the absolute
size difference. To make messages with the similar semantic
meaning have the same impact on the model, we normalize the
original size of message segments as follows

f(x) =

⎧⎪⎨
⎪⎩

100× (�x/100�+ 1) 0 ≤ x < 1000;

500× (�x/500�+ 1) 1000 ≤ x < 10 000;

10 000 x ≥ 10 000,

(1)

where the symbol �.� is the floor function. After normalization,
the diversity of sample values is significantly narrowed. As more
clustered samples are achieved, it benefits the model learning and
training with computation reduction and accuracy enhancement.
To verify the efficiency of normalization, we examine the entropy
of message sizes under original and normalizing conditions [25].
Specifically, let X be the random variable representing the
message size measures of traffic flows. If there are totally N
observed measures, denoted by a vector U = {u1, u2, . . ., uN},
with ui (1 ≤ i ≤ N ) representing the i-th size measure, the
probability of the measure being j can be calculated as xj/N ,
where xj denotes the number of measures being j. Therefore,
the entropy for X is

H(X) =
∑
j∈U

(xj/N) log2
1

xj/N
. (2)

The CDFs of entropy (each sample calculated by using 10 mes-
sage sequences) of original and normalized message sizes are
shown in Fig. 5, where solid lines are results of original message

Fig. 5. CDFs of entropy of the original and normalized message size.

size while dashed lines are results of normalized message size.
It can be easily seen that, after normalizing the message size,
the entropy gets much smaller in all types of traffic flows.3

Specifically, the median (with CDF value of 0.5) entropy of
original message size is about 5.2, 6, and 7.6 bits in WeChat,
Video and HTTP traffic flows, respectively, while the median
entropy of normalized message size becomes 3.2, 1.1 and 3.8
bits, respectively.

2) Long-Term Correlations Among Message Segments: To
figure out an appropriate model for training message sequence
features, we then investigate the correlations of message seg-
ments via examining the conditional entropy of message size
measures. Particularly, when k = 1 (k means knowing the num-
ber of orders of previous states), let X ′ be the random variable
representing the distribution of the previous measure given the
measure X . In U = {u1, u2, . . ., uN}, when N is large enough,
the distribution ofX andX ′ would be the same, and the vectorU
can be rewritten as U ′ = {(ui, ui+1) : 1 ≤ i ≤ N − 1}. There-
fore, the joint entropy [26] of X and X ′ can be calculated as

H(X,′X) =
∑

(X,′X)∈U ′
P (X,′X) log2

1
P (X,′X)

, (3)

where P (X,′X) is the frequency of (X,′X) appearing in
the vector U ′ divided by the total number of elements in U ′.
According to the chain rule of conditional entropy, with H(X)
(marginal entropy) and H(X,′X), the conditional entropy of
X when given X ′ is

H(X|X ′) = H(X,′X)−H(X ′)

= H(X,′X)−H(X).
(4)

Similarly, when k = 2, let X ′′ be the random variable rep-
resenting the distribution of the previous two measures given
the measure X . The conditional entropy of H(X|X ′′) can be

3Note that, the entropy results of other types of traffic flows are omitted due
to the similar observation.
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Fig. 6. Marginal and conditional entropy for HTTP.

Fig. 7. Conditional entropy vs. k.

calculated as

H(X|X ′′) = H(X,′′X)−H(X ′′)

= H(X,′′X)−H(X,′X).
(5)

Fig. 6 shows CDFs of the marginal entropy and conditional
entropy of k = 1, 2 and 3 for HTTP traffic flows (other types
of traffic flow have the similar observation), in which each
sample is calculated by adopting 20 message sequences. We
can easily observe that when k = 1, the conditional entropy is
much smaller than the marginal entropy, and the conditional
entropy of k = 2 and k = 3 are also much smaller than that of
k = 1 andk = 2, respectively. For instance, the median marginal
entropy is about 3.75 bits, while the median conditional entropy
decreases below to 2.75, 1.6 and 0.6 bits when k equals to
1, 2 and 3, respectively. We can conclude that the message
sequence has strong correlation, which means that with knowing
previous message sizes, the uncertainty about current message
size decreases. Generally, the more history message information
we learn, the less uncertainty about the current measure has.

To understand how long the correlation lasts among message
segments, we plot the average entropy (using all traffic flows)
under the different value ofk, which is shown in Fig. 7. Note that,
for better illustration, only HTTP and Video results are shown,
which is sufficient towards the following statement. It can be
seen that, the correlation among message segments can last for

Fig. 8. Training process in the LSTM neural network.

a long term. Specifically, for HTTP traffic flows, to capture
all correlation knowledge, the previous at least 8 measures
should be well learned. For video traffic flows, even though
learning previous 2 measures can obtain most of the correlation
knowledge, other bits of correlation knowledge would last for
more than 15 orders.

3) Training Traffic Models by LSTM Neural Network.: As
LSTM can capture the long-term dependencies among time se-
ries data [27], we adopt it among traditional recurrent neural net-
works, HMMs or other sequence learning methods, to train our
traffic models. After message size normalization, we can extract
the message size vectors for all traffic flows. In order to obtain
simple and scalable models, we employ one-to-one matching
between model and traffic type, where each traffic type is trained
independently with the LSTM network, generating an according
LSTM model. Fig. 8 shows the LSTM network structure for
model training, consisting of the input layer, multiple LSTM
layers, the SoftMax layer, and the Train loss layer. Particu-
larly, when inputting a message vector S = {s1, s2, . . ., sn}, the
conditional situations of s1 → s2, (s1, s2)→ s3, (s1, s2, s3)→
s4,..., (s1, s2, . . ., sn−1)→ sn, can be sequentially indicated.
These sequential situations are input to the LSTM model for
statistical processing and training, where the size of hidden units
and the depth of LSTM layers are tunable hyper-parameters to
debug performance. To prevent over fitting, the dropout regular-
ization is included into the LSTM hidden layer. LSTM model can
well address the gradient disappearing problem, but the gradient
exploding problem may appear. To cope with it, the gradient
clipping is utilized by setting a threshold as the maximum
gradient value. If the size of sequential inputs is M and the size
of LSTM hidden units is L, there is a full connection between
the LSTM layer and SoftMax layer to resize the 1 ∗ L vector to
the 1 ∗M vector. The cross entropy is constructed as the loss
function to train the LSTM model. With an input vector, the well
trained LSTM model can predict a probability matrix indicating
conditional probabilities that the successional next message size
would be. In addition, the weights of LSTM layer parameters
can be further optimized through the Adam Optimizer [28]. By
conducting deep learning on each type of traffic flows based
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Algorithm 2: The LSTM Neural Network Training Algo-
rithm.

Input: Layer_dept : the depth of the LSTM neural
network
LSTM_size : the size of each LSTM layer Input : the

training data set Max_loss : the maximum allowed loss
value
Input : the training data set Max_loss : the maximum

allowed loss value
Max_loss : the maximum allowed loss value

Output: LSTM_network : the well-trained LSTM-traffic
model

1: function
DO_TRAINING(Layer_dept, LSTM_size, Input,
Max_loss)

2: Observation_space = TO_SET(Input)
3: Space_size = LengthObservation_space
4: LSTM_network =

Build_LSTMLayer_dept, LSTM_size, Space_size
5: Train_loss = Integer.Max
6: Input = One_Hot_EncodeInput
7: while Train_loss > Max_loss do
8: Train_loss = LSTM_network.train(Input)
9: end while

10: return LSTM_network
11: end function
12:
13: function BUILD_LSTM(Layer_dept, LSTM_size,

Output_size)
14: network ← Empty Network
15: while Layer_dept > 0
16: LSTM_layer = LSTM_CELL(LSTM_size)
17: dropout_layer =

DROPOUT_WRAPPER(LSTM_layer)
18: network ← network + dropout_layer
19: Layer_dept = Layer_dept− 1
20: end while
21: SoftMax_layer =

SOFTMAX(LSTM_size,Output_size)
22: network ← network + SoftMax_layer
23: Loss_layer ←

SOFTMAX_CROSS_ENTROPY(SoftMax_layer)
24: network ← network + Loss_layer
25: return network
26: end function

on collected data, the model forest can be generated offline.
Algorithm 2 gives the pseudocode of LSTM neural network
training. During the model training, the parameters of LSTM
network depth and size of each LSTM layer are key factors to
affect the model performance, which have been evaluated in our
experiments section.

C. Classifying Traffic Flow at Online Stage

When conducting online traffic classification, message seg-
ments are extracted in real time to output a message size vector,

Algorithm 3: Online Traffic Classification Algorithm.
Input: Model_forest : all types of LSTM-traffic model
Size_vec : the input message size vector

Output: Traff_type : the classified traffic type
1: function ONLINE_CLASSIFY(Model_forest, Size_vec)
2: Initialize: Traff_type = null, max_prob = −1
3: for λi in Model_forest do
4: p=1
5: for sj in Size_vec do
6: if j < len(Size_vec)− 1 then
7: Pro_profile← λi(s0, . . ., sj)
8: p=p× Pro_profile(sj+1)
9: end if

10: end for
11: if p > max_prob then
12: Traff_type = λi

13: max_prob = p
14: end if
15: end for
16: return Traff_type
17: end function

Fig. 9. Traffic type classification process.

which is then input to the model forest. Note that, the input
message size vector has no necessary to start from the beginning
or cover the complete message sequence of the traffic flow. SMC
can classify the traffic flow at the early stage after the traffic
starts, and the early classifying experiments have been carried
out in the evaluation section. After testing the input message size
vector, each LSTM-traffic model can output a probability profile,
representing the prediction result for each message segment
within the input sequence.

Specifically, we show the model testing process in Fig. 9,
where we denote the model for traffic type i as λi. Given a
message size vector S = {s1, s2, . . ., sn}, the model λi can out-
put a probability vector P = {(p1, p2, . . ., pn−1), λi}, where the
value pj for 1 ≤ j ≤ n− 1 is the probability of the (j + 1)-th
message being predicted with the size of sj+1 when inputting
((s1, s2, . . ., sj), sj+1) to the model λi. More specifically, for
an input of message sequence (s1, s2, . . ., sj), the model λi can
predict its next message size and output a probability matrix
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PLSTM, i.e., {pjsi , pjs2
, . . ., pjsM } meaning the probability of the

next message size going to be s1, s2, . . ., sM , respectively, where
M is the number of all possible size values. Then, with knowing
the size of sj+1, the value pj is filtered out to be pjsj+1

, i.e.,
pj = PLSTM (pjsj+1

|((s1, s2, . . ., sj), sj+1)).
With probability profiles achieved by all types of LSTM-

traffic models, the final classification result can be filtered out.
Particularly, as the probability of the message sequence being
the traffic type i can be calculated as

n−1∏
j=1

PLSTM (pjsj+1
|((s1, s2, . . ., sj), sj+1, λi)), (6)

the model who gets the maximum probability, will be determined
as the true traffic type for the message sequence. Then, the traffic
type t can be represented as

t = arg max
i

n−1∏
j=1

PLSTM (pjsj+1
|((s1, s2, . . ., sj), sj+1, λi)).

(7)
Algorithm 3 shows the pseudocode of the algorithm.

V. PERFORMANCE EVALUATION

A. Methodology

We implement SMC by Python, which includes the offline
LSTM neural network training part (using library tools of Ten-
sorFlow [29]), and online traffic classification part.

Benchmark Approach. To compare with our proposed SMC
with other schemes, we develop a HMM-based method as a
benchmark approach, in which a two-order Markov chain is
adopted to process the same input vector as the LSTM model.
The HMM-based approach is implemented by Python based on
the Viterbi Algorithm [30].

For experiment setup, the traffic flow set (in Table I) is first di-
vided into 10 subsets equally, which can be used to conduct cross
validation experiments and vary the training size. Particularly,
the set of data subsets is denoted by D, and for cross validation
experiments, if the i-th subset is chosen for data training, the data
set ofD − i will be used for performance evaluation. Therefore,
by changing the value of i, the cross validation experiments can
be conducted.

Metrics. The following four metrics are used to evaluate
classification performance, where pij denotes the situation that a
traffic flow type of j in ground truth is identified by the classifier
as the traffic flow type i :

1) Accuracy means the probability that for all K types
of traffic flow, a traffic flow is correctly identified, i.e.,

Accuracy =
∑K

i=1 pii
∑K

j=1

∑K
i=1 pij

.

2) Precision means the probability that the classification for
a traffic flow type A is exactly A in the ground truth, i.e.,
Precisionk = pkk∑K

i=1 pik
.

3) Recall means the probability that an event A in ground
truth is identified as A, i.e., Recallk = pkk∑K

j=1 pkj
.

4) F-Score is a metric that combines precision and recall,
i.e., F-Scorek = 2 ∗ Precision∗Recall

Precision+Recall .

B. Impact of LSTM Parameters

In this subsection, the impact of the depth of the LSTM net-
work and the size of hidden units, on the detection accuracy and
training time are investigated. Particularly, we adopt 9 subsets
data to train the model and use the remaining 1 subset data for
evaluation.

Fig. 10 shows the performance of classification precision
and training complexity by investigating the impact of LSTM
neural network depth. Particularly, from Fig. 10(a), we can see
that a satisfied classification accuracy can be achieved with
the two-layer LSTM neural network. For instance, when the
number of layers increases from 2 to 3, 4, and 5, the overall
accuracy will decrease from 96.9% to 53.8%, 21.4%, and 21.7%,
respectively. It should be noted that, with increasing the depth
of LSTM neural network, the learning capacity will increase
which could result in the overfitting for the learning model.
Therefore, the noise is unexpectedly injected into the model,
which cloud decrease the learning precision. Fig. 10(b) shows
the side impact of the inappropriate depth setting for the neural
network, where much longer training time is required with the
number of layers increasing. The training time means the time
elapsed when finishing the training of deep learning model by a
server. In our experiments, we adopt the server with the GPU of
tesla k20. Taking the SSH traffic as an example, the training time
can increase significantly to more than 4300 s with the five-layer
LSTM model while only 40 s is required with the two-layer
LSTM model. To this end, we adopt a two-layer LSTM neural
network in the following evaluation experiments, to implement
SMC.

Fig. 11 shows the impact of the size of hidden units at each
LSTM layer. In Fig. 11(a), we can observe that the with the
size of 400, most of traffic flow types can achieve the highest
precision. Particularly, when the size is set to 20, 200, 400, and
800, respectively, the overall accuracy increases from 93.3% to
94.9% and 96.9%, and then decreases to 92.3%. For different
sizes of hidden units, the required training time is shown in
Fig. 11(b). It can be observed that when the size is 400, the
increase of training time is negligible, but there is a significant
increasement for the training time when the sized is increased
to 800. To this end, for further performance evaluation, the size
of hidden units of LSTM layer is set to be 400 in SMC.

C. Impact of Training Size

After achieving suitable parameters for the neural network,
we show the impact of the training size. For this experiment, we
use one traffic flow subset as the testing set, and increase the
training size from one subset to ten subsets.

Fig. 12 shows the overall classification accuracy with varying
the training size, and we can have two major observations. First,
regardless of the training size, our classification approach out-
performs the HMM-based approach significantly. For instance,
with the training size of 0.5, SMC can achieve the accuracy about
92.7% while the accuracy is only about 26% in HMM-based
approach, which is a significant gap. The reason is that a n-order
Markov Chain can only ‘remember’ the impact of the latest n
states in the time sequence while our LSTM model does not have
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Fig. 10. Impact of the depth of LSTM neural network. (a) Precision under different depths. (b) Training time under different depths.

Fig. 11. Impact of the LSTM layer size. (a) Precision under different sizes of LSTM layers. (b) Training time under different sizes of LSTM layer.

Fig. 12. Classification accuracy with varying training size.

a fixed weight on specific position of the previous states. Second,
SMC just slightly relies on the size of training set. Specifically,
when only one subset is used for training, SMC also achieves the
accuracy above 86%. In addition, with increasing the training
size, the accuracy achieved by SMC gradually increases and
at last reaches the maximum value up to 98.9%. To better
understand the impact of training size for each type of traffic
flow, we calculate the precision results of all traffic flow types
with varying training size, which are shown in Table II. We can
see that only HTTP and WeChat traffic flows heavily rely on the
size of training data. It is reasonable since the HTTP contents
and online chatting contents are more diversified. Even so, with
enough training data, their classification precision can be also

well guaranteed. Specifically, when the training size becomes
large enough, the precision of HTTP traffic classification can rise
from 27.5% to 92.9%, and the precision of WeChat classification
can be also enhanced from 15.6% to 97.4%. However, for other
types of traffic flows, i.e., Remote Desktop, SMTP, SSH, Video
and P2P, even with a small training data size (e.g., 10%), the
classification precision can also reach as high as 99.2%, 91.4%,
95.3%, 88.2% and 96.4%, respectively.

D. Performance Comparison

In this subsection, we carry out the performance comparison
when the hyper-parameters of the LSTM model is well tuned
with enough training data. For cross validation, in each experi-
ment round, we choose a different subset data for test, and the
remaining subsets data are adopted for training.

Fig. 13(a) presents the overall accuracy of SMC and the
HMM-based approach under different test data, where two major
observations should be pointed out. First, under all rounds of
experiments, there is a significant accuracy gap (larger than
30%) between SMC and the HMM-based approach. Second,
in different experiment rounds, SMC is able to achieve a stable
performance with only a slight fluctuation, where all accuracy
scores are above 95% and the maximum accuracy score reaches
as high as 98.9%. However, in the HMM-based approach, the
accuracy score fluctuates dramatically, where the accuracy score
can sometimes reach 62% while can also drop down to 48%,
indicating that the HMM-based appraoch is deeply influenced
by the sample diversity.

Fig. 13(b) shows the average classification results in precision,
recall, and F-score schemes. It can be seen that for all traffic flow
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TABLE II
CLASSIFICATION PRECISION RESULTS OF ALL TRAFFIC FLOW TYPES WITH VARYING TRAINING SIZE

Fig. 13. Overall results under cross validation. (a) Total accuracy. (b) Average classification results for all traffic flow types.

types, the proposed SMC can recognize them well. For instance,
although the HTTP classification has the minimum accuracy
since the HTTP content transmission is the most complex, the
classification performance is still acceptable with the precision
score over 90%. On the other hand, the traffic for multimedia
P2P and Video can be perfectly recognized whose precisions
reach 100%. It is quite valuable since the multimedia traffic
takes up the most traffic bandwidth. Besides, for other traffic
types, they are also well identified with the precision between
95% and 98%. For all traffic types, recall and F-score scores
are also very impressive, both of which have the same variation
trend with the precision score.

E. Classifying Traffic Flow at Early Stage

To further improve the performance, we study how early the
traffic flow can be classified, which is highly important for online
traffic identification. Generally, for online traffic classification,
the earlier the classifier comes to a correct conclusion, the better
the classifier is. In this experiment, we adopt half of subsets
as the training set and the other half of subsets as the testing
set. The overall classification accuracy when varying the input
length of message size vector as show in Fig. 14. As SMC
requires at least two message segments as input, we examine the
performance with the vector length ranging from 2 to 10. It can be
observed that even with the minimal input length, i.e., 2 message
segments, the accuracy score still reaches over 73%. In addition,
the overall classification accuracy increases significantly until
the vector length reaches 6 message segments. After that, the

Fig. 14. Impact of the input length of message size vector.

accuracy score will fluctuate around 98%, which means that
SMC can well classify the traffic flow with only 6 continuous
message segments being extracted as input. The result is quite
impressive, as SMC is capable of recognizing traffic flows at very
early stage, especially for HTTP, Video, and P2P traffic flows,
whose message sequence lengths are normally large with the
median length of 15, 36, and 70 message segments, respectively
(shown in Fig. 15). However, in the HMM-based approach, with
the minimal input length, only 23% accuracy is achieved. When
increasing the input length to 9 message segments, the maximum
accuracy only reaches 58%, which is much smaller than that of
our proposed SMC system.
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TABLE III
CLASSIFICATION PRECISION RESULTS OF ALL TRAFFIC FLOW TYPES WITH VARYING INPUT LENGTH OF MESSAGE SIZE VECTOR

Fig. 15. CDFs of message sequence length of traffic flows.

To further understand how the classification precision of each
traffic flow type is affected by the input length, we calculate
classification precision results (in SMC) of all traffic flow types
with varying input length, which are shown in Table III. We have
the major observations as follows. First, for all traffic flow types,
with larger input length, higher classification precision scores
can be achieved. Second, for most of traffic flow types (except for
Video and P2P traffic flows as they can be perfectly recognized),
when the input length arrives at a certain value, the classification
precision score cannot be further improved and will fluctuate
within a small range (possibly restrained by the upper-bound
caused by intrinsic feature complexity). For instance, for HTTP,
Remote Desktop, SMTP, SSH and WeChat traffic flow types,
the precision score will fluctuate around 94%, 97%, 99%, 99%
and 95%, respectively, when the input length is large enough.
Third, for all traffic flow types, the highest precision score can
be achieved after the input length reaching 6 message segments.

VI. RELATED WORK

In the literature, the major traffic classification approaches,
i.e., deep packet inspection, statistical and behavioral analysis
on packet features, and port matching, which have been widely
studied. In this paper, we review our related work mainly in
the first two categories as current Internet applications normally

adopt customized ports and port matching based methods are no
longer efficient [31].

A. Deep Packet Inspection (DPI)

To cope with the port disguise problem, DPI-based ap-
proaches are proposed. Particularly, as conducting DPI on each
packet payload requires significant CPU and memory resources,
Alcock et al. proposed a lightweight classification approach,
named PACE, which tries to examine the first four bytes of
packet payload observed in each direction [14]. Risso et al.
first summarized a taxonomy for DPI-based classification ap-
proaches with considering their characteristics, strength and
weaknesses, as well as processing and memory requirements,
and then carried out a comparison for the packet-based and
message-based inspection approaches [15]. Normally, Network
Processors (NPs) are essential to perform DPI as they have a
good packet processing performance; to achieve high perfor-
mance DPI, Piyachon et al. exploited NP’s on-chip memory
resource for parallel processing, to facilitate the processing effi-
ciency [23]. In addition, Bujlow et al. organized a comprehensive
comparison of several well-known DPI approaches, by studying
their performance at various classification levels (e.g., protocol
level and application level) [16].

However, to achieve a high-level classification performance,
DPI-based approaches normally suffers two weaknesses: 1) DPI
on each packet payload is computationally-costly and calls for
many CPU and memory resources; 2) DPI on payload is invasive
for network user privacy and might be invalid when meets en-
crypted protocols. In this paper, we focus on encrypted Internet
traffic flows, which may restrain the usage of those DPI-based
approaches.

B. Statistical and Behavioral Analysis on Packet Features

Statistical and behavioral analysis methods are proposed to
characterize measurable properties of traffic flows such as packet
inter-arrival time or packet size, where machine learning algo-
rithms are employed to for traffic classification.

Regarding to supervised learning, Dusi et al. proposed a
statistical classification mechanism, named Tunnel Hunter, to
recognize whether a traffic flow is HTTP or SSH, in which
three properties of IP packets, i.e., packet size, arrival order, and
inter-arrival time, are extracted and trained offline to generate
a “fingerprint” for HTTP and SSH traffic type [17]. To identify
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P2P applications (e.g., Skype and Thunder) from other traffic
flows, Wang et al. proposed an Application Behavior Charac-
terization (ABC) technique, in which for a specific application,
they extract application behavior features from multiple flows
to achieve the correlation among these traffic flows. Based on
these features, they trained a two-layer classification model
based on decision tree to classify P2P application traffic [32]. To
identify Web Real-Time Communication (WebRTC) which nor-
mally adopts dynamic ports and transmits under an encryption
protocol, Mauro et al. devised a classifier, which can partition the
traffic into WebRTC and normal two categories, where features
such as inter-arrival times, the number of packets, and packet
lengths are utilized, and then trained by the random forest
algorithm [33]. In addition to the above algorithms, Support
Vector Machine (SVM)-based algorithms are also popular in
the literature. Specifically, with extracting the payload size of
packets as statistical features, Este et al. devised a multi-class
traffic classification approach based on SVM, which tries to per-
form correctly with as little training as possible [18]. Likewise,
Finamore et al. also leveraged on statistical characterization of
payload, and proposed an Internet classification engine, named
KISS, to classify UDP traffic (mainly stemming from the mo-
mentum of P2P applications) [19]. Besides, neural networks are
also applied to conduct traffic classification. Based on header-
derived statistics (without port or host (IP address) information),
Auld et al. trained a sophisticated Bayesian neural network to
classify traffic flows, which is able to achieve an overall accuracy
of 95% [34]. Using a set of inter-arrival time and packet size
related statistical features to characterize traffic flows, Sun et
al. built a probabilistic neural network to identify Web and P2P
traffics, and confirmed it is an effective technique for traffic
classification [35].

On the other hand, unsupervised learning is also studied
for Internet traffic classification, where clustering algorithms
are dominant approaches. Specifically, Liu et al. adopted the
payload-independent statistical characters and experimented
with unsupervised K-means to evaluate the classification per-
formance, which is able to achieve an overall accuracy of
80% [36]. Using only transport layer statistics, Erman et al.
conducted cluster analysis to identify groups of similar traffic,
where two unsupervised clustering algorithms, i.e., K-Means
and DBSCAN, are adopted and compared; they revealed that
in comparison with K-Means, even though DBSCAN achieves
a lower accuracy, it can produce better clusters [37]. Paramita
et al. first adopted the Fuzzy C-Mean algorithm to conduct the
clustering for data set, then used the k-nearest neighbors (K-NN)
algorithm to classify traffic [38]. With doing so, the disadvan-
tages of K-NN in computation process can be conquered. In ad-
dition, the principal component analysis algorithm is employed
for feature selection, which can further improve the clustering
and classification performance. Although unsupervised learning
is independent of data labeling, its classification accuracy is
usually lower than that of supervised learning [39].

For statistical based approaches, the selection of statistical
features are critical to classification performance. In current
approaches, many selected features are related to measurable
properties in time domain. However, time-related metrics are

normally unstable, which may be affected by network conditions
such as bursty heavy loads and traffic congestion. Therefore,
those algorithms have a robustness weakness, especially under
dynamic network conditions. Differently, in SMC, the model
input only contains the size of TCP packets, the classification
performance of which is independent of port disguise, content
encryption, and network status fluctuation. In addition, to the
best of our knowledge, we are the first to investigate the early
traffic classification, which is rather valuable for online network
management.

In our previous work [40], we have demonstrated the efficacy
of LSTM neural network for traffic classification by learning
sequential message features. In this paper, we further improve it
by conducting more data analytics on message sizes for feature
extraction, elaborating on the design of SMC, and evaluating
the capability of SMC for early online traffic classification.
Moreover, up-to-date research works have been surveyed and
the paper related work has been re-organized to well motivate
our work. At last, we have revised the presentation of the whole
paper to fit this journal version.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have collected extensive traffic flows from
a public router, and labeled them into many application cate-
gories. After extracting the message sequence for all collected
traffic flows, we have identified the unique message sequential
feature for different traffic flow types, based on which we have
developed an online Internet traffic classification system, named
SMC. In SMC, the deep learning of LSTM is leveraged to model
each traffic type as we have confirmed the long-term dependency
among their message segments. Extensive experiments have
been conducted and the results demonstrate the efficacy of SMC.
Generally, SMC is able to achieve 97% of average classification
accuracy, and can reach its approximately maximum efficacy
when more than 6 pieces of message size information are input.
It enables online early-stage traffic classification especially for
heavy-traffic flows with long message sequences. Our designed
SMC can be the basis of extensive intelligent network appli-
cations, including traffic monitoring, efficient load balancing,
etc. For future work, we will collect more types of traffic flow
to evaluate and enhance the robustness of SMC. Besides, we
will exploit SMC to develop upper-layer network management
applications.
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