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Abstract

Breast cancer is the most common cause of death in women worldwide. Approximately 5%–10% of instances are attributed 

to mutations acquired from the parents. Therefore, it is highly recommended to design more potential drugs and drug targets 

to eradicate such complex diseases. Network-based gene expression proiling is a suggested tool for discovering drug targets 

by incorporating various factors such as disease states, intensities based on gene expression as well as protein–protein inter-

actions. To ind prospective biomarkers in breast cancer, we irst identiied diferentially expressed genes (DEGs) statistical 

methods p-value and false discovery rate were initially used. Of the total 82 DEGs, 67 were upregulated while the remaining 

17 were downregulated. Sub-modules and hub genes include VEGFA with the highest degree, followed by 15 CCND1 and 

CXCL8 with 12-degree score was found. The survival analysis revealed that all the hub genes have important role in the 

development and progression of breast cancer. Enrichment analysis revealed that most of these genes are involved in signal-

ing pathways and in the extracellular spaces. We also identiied transcription factors and kinases, which regulate proteins in 

the DEGs PPI. Finally, drugs for each hub genes were identiied. These results further expanded the knowledge regarding 

important biomarkers in breast cancer.

Keywords Breast cancer · Hub genes · PPI · Cytohubba · Diferentially expressed genes (DEGs)

1 Introduction

Breast cancer (BC) is the most common cause of death in 

women worldwide. The symptoms of this heterogeneous dis-

ease ranges from a bump in the breast, a shift in the form 

of the breast, skin dimpling, liquid from the nipple, a newly 

inverted nipple to a yellow or scaly hair patch. The outcomes 

of breast cancer greatly depend on the form of cancer, the 

magnitude of the disorder and the age of the person [1]. The 

survival rates against breast cancer are higher in the developed 
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nation (80–90%) whereas in developing the survival chances 

are lower. Risk factors for breast disease are depression, 

absence of physical activity, smoking, liquor, hormone sub-

stitution treatment during menopause, ionizing radiation, and 

premature death at irst menstruation, having kids late or not 

at all, elderly era, and family history. Approximately 5%–10% 

of instances are attributed to mutations acquired from the 

parents. Therefore, it is highly recommended to design more 

potential drugs and drug targets to eradicate such complex 

diseases [2]. In this regard, in silico methods to predict struc-

tural implications of mutations will be extremely useful in 

understanding mechanisms of drug resistance for quantitative 

estimation of the phenotypic resistance outcomes.

On the other hand, network-based gene expression proil-

ing is a suggested tool for discovering drug targets by incor-

porating various factors such as disease states, intensities 

based on gene expression as well as protein–protein inter-

actions [3]. Systems biology is one of those methods that 

depend on a worldwide strategy by evaluating the entire net-

work that interacts rather than studying a particular protein, 

gene or enzyme. Systems biology has revealed that cellular 

protein does not work alone, but these genes/proteins are 

linked together to build an interconnected molecular network 

to execute a particular role.

To ind prospective biomarkers in breast cancer, proteom-

ics and transcriptomic modelling of molecular networks 

from microarray information have not yet been established 

for some datasets. Therefore, we used gene expression 

information to deine potential therapeutic gene/protein 

biomarkers for the treatment of breast cancer using system-

atic system biology strategy centered on microarray study. 

To identify diferentially expressed genes (DEGs) statisti-

cal methods p-value and false discovery rate (FDR) were 

initially used. Also, the subnetwork modules were built, and 

the DEGs acquired were evaluated for biological processes, 

molecular components, KEGG pathways and interpretation 

of cellular components. Addition of hub genes identiication 

and their drugs interactions predicted enormous information 

in the understanding of disease mechanism and potential 

therapeutic targets.

2  Materials and Methods

2.1  Data Retrieval for Meta-Analysis

Breast cancer dataset search was performed in the GEO 

database of NCBI [4]. Breast cancer dataset with acces-

sion number GSE14335 [5] was downloaded, which has a 

total of 24 samples, including wild and mutants. This data 

is based on GPL96 Afymetrix Human Genome U133A 

Array [HG-U133A] and is based on mutations in the ER-

alpha gene, which is the most important parameter in breast 

cancer measurement. Diferential expression analysis, prin-

cipal component analysis (PCA) for clustering of the sam-

ples, heat map analysis of the DEGs, construction of the 

DEGsPPI, sub-networks identiication, hub genes identiica-

tion, protein-drug interaction network and inally molecular 

docking was performed in this study.

2.2  Preprocessing and Diferential Expression 
Analysis of the Dataset

An online webserver NetworkAnalyst tool (https ://www.

netwo rkana lyst.ca/Netwo rkAna lyst/faces /home.xhtml ) has 

been used to screen the dataset for diferential expression 

genes based on the statistically signiicant parameters [6]. 

The dataset was deined as rows and columns where the 

rows represent each gene entry, and the columns represent 

the samples. An even distribution of the samples, 12 wild 

type and 12 mutants, based on experimental data was car-

ried out, and all gene probe IDs were transformed to Entrez 

IDs [7]. The meta-analysis of the microarray was carried out 

using Network Analyst, an integrative meta-analysis web 

tool [6]. Each dataset was normalized with log2, VSN and 

quantile normalization methods and normality were further 

assured through box plots and PCA-plots inspection. The 

diferential expression testing for all individual datasets was 

performed using p < 0.05, FDR (false discovery rate)  ≥ 2(by 

Benjamin–Hochberg method) and a Limma algorithm-based 

t-test (LAT) [8].

2.3  Enrichment Analysis of Gene Set

Both DEGs and modules function and pathway enrichment 

analysis was done with the DAVID server (https ://david 

.ncifc rf.gov/). The modules DEGs and hub genes were 

uploaded, and various parameters; mode-function, Entrez 

gene ID, species-Homo sapiens, molecular function, cel-

lular component, ontology/pathways-biological process, 

and evidence from the respective gene ontology and KEGG 

database were set to analyze the function and pathway 

enrichment. The two-sided hypergeometric test (Benja-

min-Hochberg method) with kappa score 0.96 and cutof 

-value > 0.005 was performed for enrichment calculation.

2.4  Protein–Protein Interaction (PPI) Network 
Generation

The STRING database was used for PPI networking of all 

DEGs [9, 10]. The database currently includes total 18,838 

human proteins, with 25,914,693 interactions. The inter-

actions in the Cytoscape v3. 4 have been illed and ana-

lyzed using various integral attributes. Protein interactions 

were initially uploaded into the Cytoscape v 3.4 and were 

assessed using integrated functions [11]. The highest score 
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of conidence interaction was 0.9 in this analysis [12]. A 

search was made to recognize the direct involvement of each 

DEG with the irst-order interactors. The search resulted in 

a large subnetwork (continent) and several small (islands).

In subnetwork, a minimum of three nodes, edges, and seed 

genes were found. A complete information list of both DEGs 

was uploaded, and the network design was limited to origi-

nal DEGs, i.e. zero-order interactions selection was made 

to allow precise visualization of PPI and to exclude hairball 

efect. Diferent topological variables are present too for 

analysis and comparing the network. Although Cytoscape 

is freely accessible, that brings an integrated "Network Ana-

lyzer" function for analyzing the network of genes/proteins. 

In this stud, we used Network Analyzer, and main variables 

that are analyzed involves clustering coeicient, node dis-

tribution power law, node degree distribution, network cen-

tralization, and density to distinguish the three developed 

networks [13].

2.5  Molecular Complex Detection Analysis (MCODE)

MCODE an automated algorithm can be utilized in a 

Cytoscape-integrated plug-in to identify strongly linked 

complex subnetwork in a PPI/gene subnetworks [14] and 

was used to cluster the total DEGs subnetworks. For further 

evaluation, the interconnected nodes in the subgraphs were 

chosen based on the node number. We also used more than 

ten parameters for strongly interconnected sub-networks.

2.6  Identiication of Hub Genes

Cytohubba is a prominent integrated Cytoscape that basi-

cally analyze the features and ranks the nodes accordingly 

[15]. It uses 11 diferent approaches for analyzing the net-

work functions including along with the network hub genes/

nodes identiication. We, therefore, used Cytohubba to igure 

out the hub genes that might be the possible new drug targets 

for breast cancer treatment.

2.7  Transcription Factor and Regulatory Network 
Association

X2K (Expression2Kinases) web tool (https ://amp.pharm 

.mssm.edu/X2K/) was utilized to find the association 

between the transcription factor(s) and linked target 

genes. The DEGs full list with speciied gene symbols was 

uploaded into X2K web server [16]. Based on Fischer test 

p-value the ten most signiicant TFs and kinases enrichment 

scores have been determined using TF and kinase module, 

which build the exploited chip-x from the ChEA69 database. 

A regulatory network was established, and the "graphml" ile 

visualized in the Cytoscape [17]. The regulatory network 

ensures that the acquired network must have suiciently 

associated edge nodes during the development of the net-

work. If TFs and kinases are not linked, it automatically 

increases the length of the path to allow the TFs to be linked 

with enough transitional proteins.

2.8  Survival Analysis

Median quartiles were calculated in Kaplan–Meier web 

plotter tool, with 54,675 survival nodes and 10,188 tumor 

samples to determine the importance of hub nodes [18]. 

The patients were separated into two groups according to 

their gene expression level. The patient sex, grade, histol-

ogy, stage and smoking status were used in multivariate 

Cox analysis. The total cases of lung cancer were 2437, 

the data on gene expression and survival of these samples 

were collected from GEO, Cancer Biomedical Informatics 

Grid (caBIG), and The Cancer Genome Atlas (TCGA). The 

hazard ratios (HRs) (with conidence intervals of 95% and 

log-rank p-value) were quantiied in R using the Bioconduc-

tor Survival Analysis Package [19]. We analyzed the breast 

cancer survival outcomes in diverse expression levels of hub 

genes and downloaded survival curves from the website.

2.9  Construction of PDI Network

To evaluate gene interactions with drugs, the ten best hub 

genes were used. The information on drug and their tar-

gets was extracted from the Drug Bank database (Version 

5.0) that was embedded with Network Analyzer. The drug 

database has 11,091 drugs; approved small molecule drugs 

(2550), approved protein/peptide-based drugs (960), and 

approved nutraceuticals (112), and more than 5117 medi-

cines currently pass through experimental stages. The data 

entry of each drug contains suicient information (about 200 

in each case) on drug chemical nature and their target [20].

3  Results

3.1  Quality Control and Principle Component 
Analysis

Genes and their products provide bases for a biological 

system, in which they interact randomly to develop a com-

plicated network. Genes, as well as protein expression, is 

very informative to understand the mechanism of immunity, 

defense, signaling, transport and disease. Normalization of 

variation prone Microarray expression analysis was per-

formed on quantile normalization option. Figure 1 shows 

the Boxplot, density plot and means of the data before and 

after normalization. It can be seen from the igure that 

the means of each sample is uniform and any noise in the 

data is removed during the process of normalization. PCA 
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revealed the distinct clusters in the data. PCA clustered the 

controlled and mutant samples in the dataset according to 

the gene expression intensities. The PCA plot and mean 

expression plot is given in Fig.  S1 in the supplementary 

materials.

3.2  Diferential Expression Analysis and PPI 
Network Analysis

The control and diseased datasets were analyzed with the 

help of various statistical tests such as the Pearson correla-

tion test, Benjamin-Hochberg method, and student’s t-test 

resulted in the identiication of 82 DEGs. In these DEGs, 65 

genes were upregulated and 17 genes were downregulated, 

respectively. The inal DEGs were ranked on the adjusted 

p-value. Protein–protein interaction network is a very impor-

tant approach to highlight the cellular networking mecha-

nism. The changes in protein cellular network in healthy and 

disease condition provide information about the severity of 

the situation. In this analysis, nodes represent protein and 

genes, while edges indicate interactions of these proteins 

and genes. The interaction network for the identiied DEGs 

was constructed by mapping of these DEGs. Cytoscape was 

used to visualize the mapped DEGs. String database was 

accessed with medium conidence of 0.40 to download all 

the interaction of the DEGs. The network constructed of all 

the DEGs is given in Fig. 2.

A total of 81 nodes with 84 edges were constructed. The 

topological network parameters revealed that that average 

node degree was 2.07 while the average local clustering 

coeicient was found to be 0.425, which shows that our net-

work has signiicant interactions. The heat map and volcano 

plot of these DEGs are given in Fig. 3.

3.3  GO Function and KEGG Pathway Enrichment 
Analysis

Functional enrichment analysis, including GO cellular 

components, molecular function, biological processes and 

Fig. 1  Presentation of the samples using a box plot and a density plot. The igure is showing the boxplot and density plots before and after nor-

malization. Quantile normalization was used to correct the means and remove the noise from the data
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Fig. 2  The PPI network of all 

mapped DEGs. String database 

was used to construct the PPI 

network with medium coni-

dence (0.400)

Fig. 3  a Showing the distribution of the intensities of all the genes on 

volcano plot. Based on FDR > 2 upregulated genes are colored as red, 

downregulated are colored as blue while the non-signiicant genes in 

the samples are colored as grey. b Panel B plots the genes in against 

each sample as a heat map based on the expression value. The legend 

represents the distribution of the expression from low (blue) to high 

(red)
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KEGG pathways, was performed using FDR as highly sig-

niicant criteria for the terms. GO cellular components of the 

DEGs revealed that our proteins were signiicantly distrib-

uted in extracellular space, extracellular region part, extra-

cellular region and rule membrane. In the case of molecu-

lar function, 11 signiicant molecular functions in which 

our proteins are involved was found. Among the total 11, 

the top four highly signiicant molecular functions include 

endopeptidase inhibitor activity, enzyme inhibitor activity, 

molecular function regulator and serine-type endopeptidase 

inhibitor activity was found.

On the other hand, signiicant KEGG pathways primar-

ily belong to cancer-related processes. Among the total 

reported pathways complement and coagulation cascades, 

salivary secretion, bladder cancer, cytokine signaling in the 

immune system, interferon-alpha/beta signaling, signaling 

by interleukins and interferon signaling pathways are highly 

enriched.

The enriched biological processes of DEGs were identi-

ied in negative regulation of biological process, response 

to chemical negative regulation of endopeptidase activity, 

negative regulation of cellular process, response to organic 

substance, response to cytokine, negative regulation of 

hydrolase activity, cellular response to organic substance, 

cellular response to cytokine stimulus, response to stimulus, 

cellular response to chemical stimulus, regulation of locali-

zation, regulation of cellular process and negative regulation 

of molecular function.

3.4  Sub-Network Analysis

The highly dense interconnected module for DEGs was iden-

tiied using MCODE method. The K-score, node score cutof 

and maximum depth for seed node were kept 2, 0.2, and 

100, respectively for eiciency. Only one sub-network was 

identiied having node degree value > 10 shown in Fig. 4.

In the subnetwork, 19 proteins from the DEGs were 

involved. Both upregulated and downregulated genes, which 

are also important as found in the hub genes, are frequently 

involved in the subnetwork (Tables 1, 2).

3.5  Hub Genes Identiication

The connectivity between hub genes and nodes were deter-

mined and ranked. The red nodes are highly connected. 

Cytohubba calculated the degree of nodes and the nodes 

with degree value > 10 was considered hub nodes (Table 3). 

VEGFA with the highest degree, followed by 15 CCND1 

and CXCL8 with 12-degree score was found. Among the 

other CCL2, CDKN1A, CDK4, CDK2, IFIT1, OASL and 

DDX58were reported with lower degree scores. The shortest 

path network of these hub genes interactions and color based 

on degree is given in Fig. S2 in the supplementary materials.

Fig. 4  the identiied only sub-

network from the total DEGs 

network using default param-

eters. The blue colored nodes 

are upregulated while red are 

downregulated genes

AQ4

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 12539 Article No : 360 Pages : 14 MS Code : 360 Dispatch : 1-2-2020

Interdisciplinary Sciences: Computational Life Sciences 

1 3

Table 1  Showing the distribution of DEGs in highly signiicant cellular components, molecular functions and KEGG pathways based on FDR 

signiicant value

GO ID Term description False discovery rate Matching proteins in the network (labels)

Cellular components

 GO:0,005,615 Extracellular space 0.0033 C3,CCL2,CST1,CST2,CST4,CXCL8,INHBB,KAL1,KI

SS1,PLAU,SERPINB2,SERPIND1,SPOCK1,TFF1,TI

MP2,VEGFA

 GO:0,044,421 Extracellular region part 0.0033 C3,CCL2,CST1,CST2,CST4,CXCL8,INHBB,KAL1,KIS

S1,NOV,PLAU,SERPINB2,SERPIND1,SERPINF1,SP

OCK1,TFF1,TIMP2,VEGFA

 GO:0,005,576 Extracellular region 0.0418 C3,CCL2,CDA,CST1,CST2,CST4,CXCL8,IL7R,INHBB,

KAL1,KISS1,NOV,PLAU,SCG5,SERPINB2,SERPIND

1,SERPINF1,SPOCK1,TCN1,TFF1,TIMP2,VEGFA

 GO:0,032,587 Rule membrane 0.0418 DDX58,LCP1,MYO6,PLEKHO1

Go molecular function

 GO:0,004,866 Endopeptidase inhibitor activity 1.30E−06 C3,CST1,CST2,CST4,KAL1,SERPINB2,SERPIND1,SE

RPINF1,SPOCK1,TIMP2

 GO:0,004,857 Enzyme inhibitor activity 6.80E−06 C3,CDKN1A,CST1,CST2,CST4,KAL1,SCG5,SERPINB

2,SERPIND1,SERPINF1,SPOCK1,TIMP2

 GO:0,098,772 Molecular function regulator 4.57E−05 ADRB2,C3,CCL2,CDKN1A,CST1,CST2,CST4,CXCL8

,FARP1,INHBB,KAL1,NCF2,NEDD4L,NOV,SCG5,S

ERPINB2,SERPIND1,SERPINF1,SGK1,SPOCK1,TF

F1,TIMP2,VEGFA

 GO:0,004,867 Serine-type endopeptidase inhibitor activity 0.0031 KAL1,SERPINB2,SERPIND1,SERPINF1,SPOCK1

 GO:0,004,869 Cysteine-type endopeptidase inhibitor activity 0.0058 CST1,CST2,CST4,SPOCK1

 GO:0,030,234 Enzyme regulator activity 0.0124 C3,CDKN1A,CST1,CST2,CST4,KAL1,NCF2,SCG5,SE

RPINB2,SERPIND1,SERPINF1,SPOCK1,TIMP2

 GO:0,005,488 Binding 0.0348 ADRB2,AKAP12,ARID5B,C3,CALB2,CCL2,CDA,CD

K5RAP2,CDKN1A,CST1,CST2,CST4,CXCL8,DDIT4

,DDX58,EMR1,FARP1,FHL1,HCLS1,HDAC9,HIST1

H1C,HIST1H2AC,HSPA2,IFIT1,IFIT3,IL1RAPL1,IL7

R,INHBB,INPP5A,ISG20,KAL1,KISS1,KRCC1,LCP

1,LPXN,MYO6,NCF2,NEDD4L,NMRK1,NOV,NUPL

1,OASL,OTUB2,PIR,RAB20,RHOB,SCG5,SERPIND

1,SGK1,SH3BGRL,SOX9,SPOCK1,TCN1,TERT,TFF

1,TIE1,TIMP2,TMEM2,TOB1,TSPYL1,VEGFA,ZMI

Z1,ZNF266

 GO:0,005,515 Protein binding 0.0458 ADRB2,AKAP12,C3,CCL2,CDA,CDK5RAP2,CDKN1

A,CST1,CST2,CST4,CXCL8,DDIT4,DDX58,FARP1,

FHL1,HCLS1,HDAC9,HIST1H2AC,HSPA2,IFIT3,IL1

RAPL1,INHBB,INPP5A,KISS1,KRCC1,LCP1,MYO6

,NCF2,NEDD4L,NOV,OASL,OTUB2,SCG5,SH3BGR

L,SOX9,TERT,TFF1,TIMP2,TOB1,TSPYL1,VEGFA

 GO:0,015,459 Potassium channel regulator activity 0.0458 ADRB2,NEDD4L,SGK1

 GO:0,046,030 Inositol trisphosphate phosphatase activity 0.0458 INPP4B,INPP5A

 GO:0,008,179 Adenylate cyclase binding 0.0482 ADRB2,AKAP12

KEGG Pathways

 hsa04610 Complement and coagulation cascades 0.0452 C3,PLAU,SERPINB2,SERPIND1

 hsa04970 Salivary secretion 0.0452 ADRB2,CST1,CST2,CST4

 hsa05219 Bladder cancer 0.0452 CDKN1A,CXCL8,VEGFA

 HSA-1280215 Cytokine Signaling in Immune system 2.53E−05 CCL2,CDKN1A,CXCL8,DDX58,IFIT1,IFIT2,IFIT3,IL

1RAPL1,IL7R,ISG20,LCP1,OASL,PTPN7,SERPINB

2,VEGFA

 HSA-168256 Immune system 0.0013 C3,CCL2,CDA,CDKN1A,CXCL8,DDX58,IFIT1,IFIT2,I

FIT3,IL1RAPL1,IL7R,ISG20,LCP1,NCF2,NEDD4L,O

ASL,PLAU,PTPN7,SERPINB2,TCN1,TIMP2,VEGFA

 HSA-909733 Interferon alpha/beta signaling 0.0013 IFIT1,IFIT2,IFIT3,ISG20,OASL
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3.6  Transcription Factors Analysis

In this analysis, the most significant TFs and protein 

kinases associated with DEGs were listed depending 

on their relation to regulatory network progression. 

The regulatory network was established between TFs, 

kinases, and their transient proteins implicated in the 

development of the regulatory complex. In the first step, 

integrated target genes for transcription factors as deter-

mined by ChIP-seq experiments (ChEA) to predict the 

top transcription factors (TFs) and then mapped on PPI. 

The TFs predicted here, and the PPI network is shown in 

Fig. 5 panels (A) and (B). Here the top transcription fac-

tors include PPARG, NFE2L2, CEBPB, CEBPD AR and 

GATA2 based on the hypergeometric p-value. Kinases 

that are likely the regulators of the expanded protein–pro-

tein interaction network were also identified and mapped 

on the PPI network. Figure 5c, d shows the tope predicted 

kinases and their PPI network. Based on the hypergeo-

metric p-value CSNK2A1, MAPK14, MAPK1, CDK1, 

MAPK3, GSK3B, ERK2, ERK1, HIPK2 and CDK2were 

found to be the topmost Kinases in these DEGs. All the 

TFs and kinases identified with their scores are given in 

Tables S2 and S3 in the supplementary materials.

3.7  Survival Analysis of the hub genes

Survival analysis of all the hub genes based on p-value 

revealed that all the hub genes predicted has important 

role in the disease prediction and diagnosis. These could 

be experimentally prioritized genes when accessing the 

disease prediction and treatment process. Figure  6 is 

showing the survival profile of each hub gene predicted 

by the KMPlot server.

Furthermore, we also checked the survival status of 

each of this hub gene in Luminal A, Luminal B, HEr2, and 

basal group breast cancer. The following table (Table 4) 

is showing the p-values of each of the hub gene obtained.

3.8  Protein-Drugs Interactions

The identiied top Hub genes were subjected to drugs identi-

ication from drug bank database. In this study, we manually 

searched each target and identiied their respective drugs. 

Drug from different categories such as FDA approved, 

investigational, and nutraceuticals were added to the search 

panel. We searched drugs for each protein identiied as hub 

genes manually to ind the interacting drugs. For all these 

157 drugs were identiied as a sum. For VEGFA 17 drugs, 

for CCND1 and IFIT1 4 drugs each, three drugs for CXCL8 

and CCL2 each, six drugs for CDK4, 117 drugs for CDK2 

while one drug for CDKN1A, OASL andDDX58 each was 

found. The identiied drugs for all these targets are given in 

Tables S4 in the supplementary materials.

4  Discussion

Many computational methods, such as Single Nucleo-

tide Polymorphism (SNPs) assessment, Genome-Wide 

Association Studies (GWAS), diseasomes and microarray 

analysis of gene expression, in particular, are accessible 

to evaluate distinct genomic data and to access vital infor-

mation about the disease, from diagnosis to therapy [21]. 

The proiling of normal, tumor cell activity and Illumina 

systems contribute to the evaluation of mRNA and the 

proiling of gene expression, ofering advantages adapted 

to any layout of the research [22, 23]. All of these methods 

can be used to obtain the various information accessible 

from distinct stages including genomics, proteomics, tran-

scriptomic, metagenomics, epigenetics, and metabolomics 

to frequently assist both predictive and prognostic bio-

markers in their forecast and growth. Analysis of the PPI 

network has been commonly used to assist the method 

of explaining the mechanism of various diseases, inding 

targets for drugs and metabolic processes [24]. In diferent 

biological processes, the structural relationships of dis-

tinct proteins varying from normal to disease phenotypes 

play a signiicant role [25, 26]. Analyzing the data set of 

microarray gene expression and identifying diferentially 

Table 1  (continued)

GO ID Term description False discovery rate Matching proteins in the network (labels)

 HSA-449147 Signaling by Interleukins 0.0072 CCL2,CDKN1A,CXCL8,IL1RAPL1,IL7R,LCP1,PTPN7,

SERPINB2,VEGFA

 HSA-913531 Interferon signaling 0.0094 DDX58,IFIT1,IFIT2,IFIT3,ISG20,OASL

 HSA-8983711 OAS antiviral response 0.0458 DDX58,OASL

 HSA-2262752 Cellular responses to stress 0.0484 CDKN1A,CXCL8,HIST1H1C,HIST1H2AC,HSPA2,NC

F2,VEGFA

 HSA-6785807 Interleukin-4 and Interleukin-13 signaling 0.0484 CCL2,CDKN1A,CXCL8,VEGFA
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Table 2  Showing the distribution of DEGs in highly signiicant biological processes based on FDR signiicant value

GO ID Term description False discovery 

rate

Matching proteins in the network (labels)

GO:0048519 Negative regulation of biological process 1.27E−06 ADRB2,AKR1C3,ARID5B,C3,CCL2,CDA,CDK5RAP2,CD

KN1A,CST1,CST2,CST4,CXCL8,DDIT4,DDX58,FARP1,F

HL1,HCLS1,HDAC9,HIST1H1C,HIST1H2AC,HSPA2,IFIT

1,IFIT3,IL1RAPL1,IL7R,INHBB,ISG20,KAL1,KISS1,LPX

N,NEDD4L,NOV,OASL,PLAU,PTPRE,RHOB,SERPINB2,

SERPIND1,SERPINF1,SOX9,SPOCK1,TERT,TFF1,TIE1,T

IMP2,TOB1,VEGFA

GO:0042221 Response to chemical 1.86E−06 ADRB2,AKR1C3,ARID5B,CCL2,CDKN1A,CST1,CST2,CS

T4,CXCL8,DDIT4,DDX58,HCLS1,HDAC9,HSPA2,IFIT1,I

FIT2,IFIT3,IL1RAPL1,IL7R,INHBB,ISG20,KAL1,LCP1,M

YO6,NEDD4L,NOV,OASL,PLAU,PTPN7,RAB20,RHOB,S

ERPINB2,SERPIND1,SERPINF1,SOX9,TCN1,TERT,TFF1

,TIE1,TIMP2,TOB1,VEGFA

GO:0010951 Negative regulation of endopeptidase 

activity

6.16E−06 C3,CST1,CST2,CST4,KAL1,SERPINB2,SERPIND1,SERPIN

F1,SPOCK1,TIMP2,VEGFA

GO:0048523 Negative regulation of cellular process 6.64E−06 ADRB2,AKR1C3,ARID5B,C3,CCL2,CDA,CDK5RAP2,CD

KN1A,CST1,CST2,CST4,CXCL8,DDIT4,FARP1,FHL1,HC

LS1,HDAC9,HIST1H1C,HIST1H2AC,HSPA2,IFIT3,IL1RA

PL1,IL7R,INHBB,KAL1,KISS1,LPXN,NEDD4L,NOV,PTP

RE,RHOB,SERPINB2,SERPIND1,SERPINF1,SOX9,SPOC

K1,TERT,TFF1,TIE1,TIMP2,TOB1,VEGFA

GO:0010033 Response to organic substance 1.28E−05 ADRB2,AKR1C3,ARID5B,CCL2,CDKN1A,CXCL8,DDIT4,

DDX58,HCLS1,HDAC9,HSPA2,IFIT1,IFIT2,IFIT3,IL1RA

PL1,IL7R,INHBB,ISG20,KAL1,LCP1,OASL,PTPN7,RAB

20,SERPINB2,SERPINF1,SOX9,TERT,TFF1,TIE1,TIMP2,

TOB1,VEGFA

GO:0034097 Response to cytokine 1.36E−05 ARID5B,CCL2,CDKN1A,CXCL8,HCLS1,IFIT1,IFIT2,IFIT3

,IL1RAPL1,IL7R,ISG20,LCP1,OASL,PTPN7,RAB20,SER

PINB2,SOX9,TIMP2,VEGFA

GO:0051346 Negative regulation of hydrolase activity 1.36E−05 C3,CST1,CST2,CST4,FARP1,IFIT1,KAL1,SERPINB2,SERP

IND1,SERPINF1,SPOCK1,TIMP2,VEGFA

GO:0071310 Cellular response to organic substance 1.36E−05 ADRB2,AKR1C3,ARID5B,CCL2,CDKN1A,CXCL8,DDIT4,

DDX58,HCLS1,HDAC9,IFIT1,IFIT2,IFIT3,IL1RAPL1,IL7

R,INHBB,ISG20,KAL1,LCP1,OASL,PTPN7,RAB20,SERP

INB2,SERPINF1,SOX9,TERT,TOB1,VEGFA

GO:0071345 Cellular response to cytokine stimulus 1.64E−05 ARID5B,CCL2,CDKN1A,CXCL8,HCLS1,IFIT1,IFIT2,IFIT3

,IL1RAPL1,IL7R,ISG20,LCP1,OASL,PTPN7,RAB20,SER

PINB2,SOX9,VEGFA

GO:0050896 Response to stimulus 2.70E−05 ADRB2,AKAP12,AKR1C3,ARID5B,C3,CCL2,CDA,CD

KN1A,CST1,CST2,CST4,CXCL8,DDIT4,DDX58,EMR

1,HCLS1,HDAC9,HSPA2,IFI44,IFIT1,IFIT2,IFIT3,IL1

RAPL1,IL7R,INHBB,INPP4B,INPP5A,ISG20,KAL1,K

ISS1,KRCC1,LCP1,LPXN,MYO6,NCF2,NEDD4L,NO

V,OASL,PLAU,PTPN7,PTPRE,RAB20,RHOB,SCG5,S

ERPINB2,SERPIND1,SERPINF1,SGK1,SOX9,TCN1,T

ERT,TFF1,TIE1,TIMP2,TOB1,VEGFA

GO:0070887 Cellular response to chemical stimulus 2.86E−05 ADRB2,AKR1C3,ARID5B,CCL2,CDKN1A,CXCL8,DDIT4,

DDX58,HCLS1,HDAC9,IFIT1,IFIT2,IFIT3,IL1RAPL1,IL7

R,INHBB,ISG20,KAL1,LCP1,NOV,OASL,PTPN7,RAB20,

RHOB,SERPINB2,SERPINF1,SOX9,TERT,TOB1,VEGFA

GO:0032879 Regulation of localization 0.0001 ADRB2,C3,CCL2,CDKN1A,CXCL8,DDX58,FHL1,HCLS1,

HDAC9,HSPA2,IL1RAPL1,INHBB,KISS1,LCP1,MYO6,N

EDD4L,NOV,NUPL1,PLAU,RAB20,RHOB,SCG5,SERPIN

F1,SGK1,SOX9,TERT,TIE1,VEGFA
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expressed genes in a diseased situation relative to normal 

ofers a route to target distinct nodes for the development 

of new drugs. Biomarkers linked to disease are revealed 

more precise and robust through molecular network rela-

tionships [27]. Previously such studies are reported to be 

useful in forecasting the hub nodes and their important 

role in diferent diseases [28–31].

Herein, we also used microarray data from breast cancer 

and identiied diferentially expressed genes in it. Following 

the enrichment analysis, we identiied ten hub genes and 

possible therapeutics targets. Vascular endothelial growth 

factor (VEGF) was found to be the top with the highest 

degree. The role of VEGF in breast cancer has been explored 

by diferent studies and reported that in a study of 1788 

samples from breast cancer, 72.5% of cases were positive 

for VEGF. It has been studied that VEGF expression is a 

prognostic but not predictive marker of hormonal response 

in non-metastatic invasive breast cancer [32].CCND1 has 

Table 2  (continued)

GO ID Term description False discovery 

rate

Matching proteins in the network (labels)

GO:0050794 Regulation of cellular process 0.0001 ADRB2,AKAP12,AKR1C3,ARID5B,C3,C9orf40,CCL2,CDA, 

CDK5RAP2,CDKN1A,CST1,CST2,CST4,CXCL8,DDIT4,D

DX58,EMR1,FARP1,FHL1,HCLS1,HDAC9,HIST1H1C, 

HIST1H2AC,HSPA2,IFIT1,IFIT2,IFIT3,IL1RAPL1,IL7R,IN

HBB,INPP4B,INPP5A,ISG20,KAL1,KISS1,KRCC1,LCP1,L

PXN,MYO6,NCF2,NEDD4L,NOV,OASL,PIR,PLAU,PLEK

HO1,PTPRE,RAB20,RHOB,SCG5,SERPINB2,SERPIND1,

SERPINF1,SGK1,SH3BGRL,SOX9,SPOCK1,TERT,TFF1,T

IE1,TIMP2,TOB1,VEGFA,ZMIZ1,ZNF266

GO:0044092 Negative regulation of molecular function 0.00011 ADRB2,C3,CDKN1A,CST1,CST2,CST4,FARP1,IFIT1,IFIT2, 

KAL1,NEDD4L,SCG5,SERPINB2,SERPIND1,SERPINF1,S

POCK1,TIMP2,VEGFA

GO:0050789 Regulation of biological process 0.00011 ADRB2,AKAP12,AKR1C3,ARID5B,C3,C9orf40,CCL2,CDA, 

CDK5RAP2,CDKN1A,CST1,CST2,CST4,CXCL8,DDIT4,D

DX58,EMR1,FARP1,FHL1,HCLS1,HDAC9,HIST1H1C,HIS

T1H2AC,HSPA2,IFIT1,IFIT2,IFIT3,IL1RAPL1,IL7R,INHB

B,INPP4B,INPP5A,ISG20,KAL1,KISS1,KRCC1,LCP1, 

LPXN,MYO6,NCF2,NEDD4L,NOV,NUPL1,OASL,PIR, 

PLAU,PLEKHO1,PTPRE,RAB20,RHOB,SCG5,SERPINB2,

SERPIND1,SERPINF1,SGK1,SH3BGRL,SOX9,SPOCK1, 

TERT,TFF1,TIE1,TIMP2,TMEM2,TOB1,VEGFA,ZMIZ1,

ZNF266

GO:0007165 Signal transduction 0.00012 ADRB2,AKAP12,AKR1C3,ARID5B,C3,CCL2,CDA,CDKN

1A,CXCL8,DDIT4,DDX58,EMR1,HCLS1,IFIT1,IFIT2,IFI

T3,IL1RAPL1,IL7R,INHBB,INPP4B,INPP5A,ISG20,KAL

1,KISS1,KRCC1,LCP1,LPXN,MYO6,NCF2,OASL,PLAU,P

TPRE,RHOB,SCG5,SERPINB2,SGK1,SOX9,TIE1,TOB1,

VEGFA

GO:0065007 Biological regulation 0.00012 ADRB2,AKAP12,AKR1C3,ARID5B,C3,C9orf40,CALB2,CC

L2,CDA,CDK5RAP2,CDKN1A,CST1,CST2,CST4,CXCL8, 

DDIT4,DDX58,EMR1,FARP1,FHL1,HCLS1,HDAC9,HIST

1H1C,HIST1H2AC,HSD11B1,HSPA2,IFIT1,IFIT2,IFIT3,I

L1RAPL1,IL7R,INHBB,INPP4B,INPP5A,ISG20,KAL1,KI

SS1,KRCC1,LCP1,LPXN,MYO6,NCF2,NEDD4L,NOV,NU

PL1,OASL,PIR,PLAU,PLEKHO1,PTPRE,RAB20,RHOB,S

CG5,SERPINB2,SERPIND1,SERPINF1,SGK1,SH3BGRL,

SOX9,SPOCK1,TERT,TFF1,TIE1,TIMP2,TMEM2,TOB1,V

EGFA,ZMIZ1,ZNF266

GO:0043086 Negative regulation of catalytic activity 0.00015 C3,CDKN1A,CST1,CST2,CST4,FARP1,IFIT1,KAL1,SCG

5,SERPINB2,SERPIND1,SERPINF1,SPOCK1,TIMP2,VE

GFA

GO:0065009 Regulation of molecular function 0.00016 ADRB2,ARID5B,C3,CCL2,CDKN1A,CST1,CST2,CST4,CX

CL8,DDX58,FARP1,FHL1,HCLS1,HSPA2,IFIT1,IFIT2,IN

HBB,KAL1,NCF2,NEDD4L,NOV,PLAU,SCG5,SERPINB

2,SERPIND1,SERPINF1,SGK1,SPOCK1,TERT,TFF1,TIM

P2,VEGFA
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been reported to have important implication in breast cancer 

progression. Of the total 63%, samples by a study reported 

having an important role of CCDN1 in breast cancer [33, 

34]. CXCL8 has been reported as a therapeutic target as 

CXCL8 has been reported to play multiple roles in cancer, 

such as increased proliferation, angiogenesis, invasion, and 

metastases and speciically as Cancer stem-like cells (CSC) 

regulator in breast cancer [35]. CCL2 can be profoundly 

expressed in breast carcinomas in both the tumor and the 

surrounding stromal cells [36]. It has been reported that 

CDKN1A/p21 and low TGFBR2 expression was closely 

correlated with adverse pathological parameters and poor 

prognosis in breast cancer [37]. The other targets we identi-

ied are also of extreme signiicance in the progression of 

breast cancer. The enrichment analysis and the construction 

of subnetworks and the availability of all the hub genes in 

the subnetworks clariied that important role of these hub 

genes. KEGG pathway analysis, molecular function, cellular 

components and biological processes explained the role of 

these genes in diferent related pathways. Identiication of 

transcription factors and their role in the expanded network 

helped in the identiication of regulatory function.

Previously it has also been reported that the interferon and 

cytokines pathways are important in breast cancer. Herein, 

our KEGG pathways also involve those pathways. Several 

immune related pathways were up and downregulated in the 

breast cancer patients. Complement and coagulation cas-

cades was also among the reported pathways. Our results 

Table 3  Top 10 in the DEGs network from string protein–protein 

interaction database ranked by Degree method

The fold change and adjusted values of each of these genes are also 

given in the table

Rank Gene name Score logFC Adjusted p-value

1 VEGFA 19 − 2.177 4.72E−08

2 CCND1 15 − 3.143 3.56E−08

3 CXCL8 12 − 3.121 2.17E−07

4 CCL2 11 4.301 1.39E−07

5 CDKN1A 10 2.271 2.64E−07

6 CDK4 8 2.2963 1.25E−07

6 CDK2 8 − 2.1122 2.17E−07

6 IFIT1 8 3.0049 8.41E−08

6 OASL 8 4.4767 3.75E−08

6 DDX58 8 2.9199 3.76E−08

Fig. 5  a showing the predicted transcription factors in the DEGs list. 

The bar is showing the scores, hypergeometric p-value, of each iden-

tiied transcription factors. b A subnetwork of connected transcription 

factors and their interacting proteins is visualized as a ball-and-stick 

diagram. Transcription factors are the pink nodes, while the proteins 

that connect them are in grey. The size of the nodes in the network 

is proportional to their degree. c A ranked list of the top predicted 

kinases is displayed as a bar graph showing the score (hypergeometric 

p-value)
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also suggests that immune related pathways are signiicantly 

altered in breast cancer [38–41].

Furthermore, the drugs identiied for these targets added 

valuable information regarding the inhibition of these targets 

and the discovery of novel FDA approved drugs. Further-

more, survival analysis extensively cleared the role of these 

hub genes in the progression and breast cancer. Because the 

compliance of patients to adjuvant treatment is diferent, this 

may deinitely inluence the treatment result. This bioinfor-

matics model suggested a catalogue of candidate cellular 

proteins that could be the targets for breast cancer therapy 

that are recognized as key genes in breast cancer.

5  Conclusion

In conclusion, this research ofers some views on future 

biomarkers associated with breast cancer patient progno-

sis. This research further emphasizes the signiicance of 

PPI and TF network assessment as a powerful structure for 

gaining understanding into the main hub nodes afecting 

breast cancer’s prognosis and recognizing future breast 

cancer biomarkers.
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