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Abstract. In this work, some new oscillation criteria are established for a
third order nonlinear mixed neutral dynamic equation. Our results improve
and extend some known results in the literature. Several examples are given
to illustrate the importance of the results.

1. Intrduction. First, we give a short review of the time scales calculus.
A time scale T is an arbitrary nonempty closed subset of the real numbers R. For
any t ∈ T, we define the forward and backward jump operators by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

respectively. The graininess function µ : T→ [0,∞) is defined by µ(t) := σ(t)−t.
A point t ∈ T is said to be right dense if

t < supT and σ(t) = t,
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and a point t ∈ T is said to be left dense if

t > inf T and ρ(t) = t.

Also, t is said to be right scattered if σ(t) > t, left scattered if t > ρ(t).
A function f : T → R is called rd-continuous if it is continuous at right dense
points in T and its left-sided limit exists (finite) at left dense points in T.

For a function f : T→ R, if there exists a number α ∈ R such that for all
ε > 0 there exists a neighborhood U of t with

|f(σ(t))− f(s)− α(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ U,

then f is ∆-differentiable at t, and we call α the derivative of f at t and denote
it by f∆(t),

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
if t is right scattered. When t is a right dense point, then the derivative is defined
by

f∆(t) = lim
t→∞

f(t)− f(s)

t− s
provided this limit exists.

If f : T → R is ∆-differentiable at t ∈ T, then f is continuous at t.
Furthermore, we assume that g : T → R is ∆-differentiable. The following
formulas are useful:

f(σ(t)) = f(t) + µ(t)f∆(t),

(fg)∆ = f∆g + fσg∆,(
f

g

)∆

=
f∆g + fg∆

ggσ
.

Note that if T = R, we have

σt) = t, µ(t) = 0, f∆(t) = f ′(t),

∫ b

a
f(t)∆t =

∫ b

a
f(t)dt.

When T = Z, we have

σ(t) = t+ 1, µ(t) = 1, f∆(t) = ∆f(t),

∫ b

a
f(t)∆t =

b−1∑
t=a

f(t).
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To more details about theory of time scales we refer to the books [3, 4]
and the references cited therein.

By a Riccati transformation technique, we present some new oscillation
criteria for the nonlinear dynamic equation of the form

(1.1)
(
a(t)

(
b(t)(x(t) + p1(t)x(t− τ1) + p2(t)x(t+ τ2))∆

)∆)∆

+ q1(t)x(t− τ3) + q2(t)x(t+ τ4) = 0, t ≥ t0.

Throughout this paper, we will assume the following hypotheses:
(A1) a and b are rd-continuous positive functions on T.
(A2) pi(t) is rd-continuous positive functions on T, such that, 0 ≤ pi(t) ≤ pi,

where pi are constants for i = 1, 2.
(A3) qi ∈ Crd([0,∞)T, [0,∞)) for i = 1, 2.
(A4) τi ≥ 0 are constants for i = 1, 2, 3, 4.

If T = N, then (1.1) becomes the third order nonlinear mixed neutral
difference equation

(1.2) ∆ (a(n)∆ (b(n)∆ (x(n) + p1(n)x(n− τ1) + p2(n)x(n+ τ2))))

+ q1(n)x(n− τ3) + q2(n)x(n+ τ4) = 0, n ≥ n0.

If T = R, then (1.1) becomes the third order nonlinear mixed neutral
differential equation

(1.3)
(
a(t)

(
b(t) (x(t) + p1(t)x(t− τ1) + p2(t)x(t+ τ2))′

)′)′
+ q1(t)x(t− τ3) + q2(t)x(t+ τ4) = 0, t ≥ t0.

We set z(t) := x(t) +p1(t)x(t− τ1) +p2(t)x(t+ τ2). By a solution of (1.1)
we mean a nontrivial real-valued function x ∈ C1

rd[Tx,∞),Tx ≥ t0 which satisfies
equation (1.1) on [Tx,∞), where Crd is the space of rd-continuous functions. A
solution x of equation (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative and non-oscillatory otherwise. Equation (1.1)
is called oscillatory if all its solutions are oscillatory. In recent years, there has
been an increasing interest in the study of the oscillatory behavior of solutions
of dynamic equations we refer to the book [1] and the papers [2, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19] and the references cited therein.

In this paper, the details of the proofs of results for nonoscillatory solu-
tions will be carried out only for eventually positive solutions, since the arguments
are similar for eventually negative solutions. The paper is organized as follows.
In Section 2, we will state and prove the main oscillation theorems and we provide
some examples to illustrate the main results.
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2. Main results. In this section, we establish some new oscillation
criteria for the equation (1.1) under the following condition

(2.1)

∫ ∞
t0

a−1(s)∆s =∞,
∫ ∞
t0

b−1(s)∆s =∞.

In the following results, we shall use the following notations:

Q1(t) := min{q1(t), q1(t− τ1), q1(t+ τ2)},

Q2(t) := min{q2(t), q2(t− τ1), q2(t+ τ2)},

Q(t) = Q1(t) +Q2(t), δ(t) :=

∫ ∞
t

a
− 1
α2 (v)∆v,

ϕ1(t) :=
β(t)

(βσ(t))2b(t− τ3)

∫ t−τ3

t2

a−1(v)∆v,

ϕ2(t) :=
β(t)

(βσ(t))2b(t− τ1)

∫ t−τ1

t2

a−1(v)∆v,

ϑ(t, s) :=

(
β∆(t)

βσ(t)
− h(t, s)√

H(t, s)

)
.

We assume that there exist functions H,h ∈ Crd(D,R), where D =
{(t, s) | t ≥ s ≥ 0} such that

(i) H(t, t) = 0 for t ≥ 0,
(ii) H(t, s) > 0 for t > s > 0,
(iii) H has a nonpositive continuous ∆-partial derivative H∆s(t, s) with

respect to the second variable, and satisfies

h(t, s) = −H
∆s(t, s)√
H(t, s)

.

We begin with these Lemmas, which will be used in obtaining our main
results.

Lemma 2.1. Let x(t) be an eventually positive solution of (1.1) and

suppose that z(t) satisfies z∆(t) > 0,
(
b(t)z∆(t)

)∆
> 0,

(
a(t)

(
b(t)z∆(t)

)∆)∆
≤

0, for all t ≥ t1. Then there exists t ≥ t1 ≥ t2 such that

(2.2) z∆(t) ≥ b−1(t)
(
a(t)

(
b(t)z∆(t)

)∆)∫ t

t2

a
− 1
α2 (s)∆s.
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P r o o f. Since
(
a(t)

(
b(t)z∆(t)

)∆)∆
≤ 0, we have a(t)

(
b(t)z∆(t)

)∆
is

non-increasing. Then we obtain,

b(t)z∆(t) = b (t1) ∆z(t1) +

∫ t

t1

a−1(s)a(s)
(
b(s)z∆(s)

)∆
∆s

≥ a(t)
(
b(t)z∆(t)

)∆ ∫ t

t1

a−1(s)∆s.

It follows that

z∆(t) ≥ b−1(t)a(t)
(
b(t)z∆(t)

)∆ ∫ t

t1

a−1(s)∆s.

The proof is complete. 2

Lemma 2.2. Assume that (2.1) holds. Let x(t) be an eventually positive
solution of equation (1.1). Then for sufficiently large t, there are only two possible
cases:

(I): z∆(t) > 0,
(
b(t)

(
z∆(t)

))∆
> 0,

or
(II): z∆(t) < 0,

(
b(t)

(
z∆(t)

))∆
> 0.

P r o o f. Let x(t) be an eventually positive solution of equation (1.1).

From equation (1.1) it follows that
(
a(t)

(
b(t)z∆(t)

)∆)∆
≤ 0, for all t ≥ t1. Then,

a(t)
(
b(t)z∆(t)

)∆
is non-increasing function and thus z∆(t) and

(
b(t)z∆(t)

)∆
are

eventually of one sign. There are the following four possibilities to consider

Case (I): z∆(t) > 0,
(
b(t)z∆(t)

)∆
> 0 for all large t,

Case (II): z∆(t) < 0,
(
b(t)z∆(t)

)∆
> 0 for all large t,

Case (III): z∆(t) > 0,
(
b(t)z∆(t)

)∆
< 0 for all large t, and

Case (IV): z∆(t) < 0,
(
b(t)z∆(t)

)∆
< 0 for all large t.

We claim that
(
b(t)z∆(t)

)∆
> 0. If not, then, we have two cases: Case

(III) and Case (IV).
Assume that Case (III) holds. We have b(t)

(
z∆(t)

)
is strictly decreasing

and there exists a negative constant M , such that

a(t)
(
b(t)z∆(t)

)∆
< M for all t ≥ t2.

Dividing by a(t) and integrating the above inequality from t2 to t, we obtain

b(t)
(
z∆(t)

)
≤ b(t2)

(
z∆(t2)

)
+M

∫ t

t2

a−1(s)∆s.
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Letting t → ∞, and using (2.1) then b(t)
(
z∆(t)

)
→ −∞, which contra-

dicts that z∆(t) > 0.
Assume that Case (IV) holds. Then

b(t)z∆(t) ≤ b(t2)z∆(t2) = K < 0.

Dividing by b(t) and integrating the above inequality from t2 to t, we obtain

z(t) ≤ z(t2) +K

∫ t

t2

b−1(s)∆s.

Letting t→∞, and using (2.1), then z(t)→ −∞, which contradicts the fact that
z(t) > 0. The proof is complete. 2

Lemma 2.3. Assume that (2.1) holds. Let x(t) be an eventually positive
solution of equation (1.1) and suppose that (II) of Lemma 2.2 holds. If

(2.3)

∫ ∞
t=t0

(
b−1(v)

(∫ v

u=t0

a−1(u)

(∫ u

s=t2

(q1(s) + q2(s))∆s

)
∆u

))
∆v =∞,

then x(t)→ 0 as t→∞.

P r o o f. Pick t1 ≥ t0 such that x(t) > 0, x(t − τ) > 0, for t ≥ t1. Since
x(t) is a positive decreasing solution of equation (1.1), then lim

t→∞
x(t) = A ≥ 0.

Now we claim that A = 0. If A > 0, then x(t − τ3) ≥ A, x(t + τ4) ≥ A for
t ≥ t2 ≥ t1. Therefore from (A1), (2.3) and (1.1), we have(

a(t)
(
b(t)z∆(t)

)∆)∆
+A(q1(t) + q2(t)) ≤ 0, t ≥ t2.

Define the function u(t) = a(t)
(
b(t)z∆(t)

)∆
for t ≥ t2. Then u∆(t) ≤

−A (q1(t) + q2(t)). Integrating the above inequality from t2 to t, we obtain

u(t) ≤ u(t2)−A
∫ t

t2

(q1(s) + q2(s))∆s.

From equation (2.3), it is possible to choose an integer t3 sufficiently large such
that

u(t) ≤ −A
2

∫ t

t2

(q1(s) + q2(s))∆s,

for all t ≥ t3. Hence(
b(t)z∆(t)

)∆ ≤ − A

2a(t)

∫ t

t2

(q1(s) + q2(s))∆s.
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Integrating the above inequality from t3 to t, we find

b(t)z∆(t) ≤ b(t3)z∆(t3)− A

2

(∫ t

t3

a−1(u)

(∫ u

t2

(q1(s) + q2(s))∆s

)
∆u

)
.

Since z∆(t) < 0 for t ≥ t0, the last inequality implies that

z∆(t) ≤ − A

2b(t)

(∫ t

t3

a−1(u)

(∫ u

t2

(q1(s) + q2(s))∆s

)
∆u

)
.

Integrating from t4 to t, we find

z(t) ≤ z(t4)− A

2

∫ t

t4

(
b−1(l)

(∫ l

t3

a−1(u)

(∫ u

t2

(q1(s) + q2(s))∆s

)
∆u

))
∆l.

Condition (2.2) implies that z(t)→ −∞ as t→∞ which is contradiction
with the fact that z(t) > 0. Then A = 0. i.e. lim

t→∞
z(t) = 0. Since 0 < x(t) ≤ z(t)

then lim
t→∞

x(t) = 0. The proof is complete. 2

Next, we state and prove the main theorems.

Theorem 2.1. Assume that (2.3) holds. Further, assume that τ1 ≤ τ3

and there exists positive rd-continuous ∆-differentiable function β(t), such that

(2.4)

∫ t

t0

(
ρ(s)Q(s)− (1 + p1 + p2)

4

(
β∆(s)

)2
b(s− τ3)

β(s)
∫ s−τ3
t2

a−1(u)∆u

)
∆s =∞.

Then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

P r o o f. Assume that equation (1.1) has a non-oscillatory solution, say
x(t) > 0, x(t − τ1) > 0, x(t + τ2) > 0, x(t − τ3) > 0 and x(t + τ4) > 0 for all
t ≥ t0. From equation (1.1), we see that z(t) > x(t) > 0 and

(2.5)
(
a(t)

(
b(t)z∆(t)

)∆)∆
= −q1(t)x(t− τ3)− q2(t)x(t+ τ4) ≤ 0.

Then, a(t)
(
b(t)z∆(t)

)∆
is non-increasing function and thus z∆(t) and(

b(t)z∆(t)
)∆

are eventually of one sign. By Lemma 2.2, there exist two possible
cases (I) and (II). Assume that (I) holds. From equation (1.1), and the definition
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of z(t), we have(
a(t)

(
b(t)z∆(t)

)∆)∆
+ q1(t)x(t− t3) + q2(t)x(t+ t4)

+p1

(
a(t− τ1)

(
b(t− τ1)z∆ (t− τ1)

)∆)∆
+ p1q1(t− τ1)x(t− τ1 − τ3)

+p1q2(t− τ1)x(t+ τ4 − τ1) + p2

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆

+p2q1(t+ τ2)x(t+ τ2 − τ3) + p2q2(t+ τ2)x(t+ τ2 + τ4) = 0.

Thus

(2.6)
(
a(t)

(
b(t)z∆(t)

)∆)∆
+ p1

(
a(t− τ1)

(
b(t− τ1)z∆(t− τ1)

)∆)∆

+ p2

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆
+Q1(t)z(t− τ3) +Q2(t)z(t+ τ4) ≤ 0.

It follows from z∆(t) > 0 that z(t + τ4) ≥ z(t − τ3). Thus, by (2.6), we
obtain

(2.7)
(
a(t)

(
b(t)z∆(t)

)∆)∆
+ p1

(
a(t− τ1)

(
b(t− τ1)z∆(t− τ1)

)∆)∆

+ p2

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆
+Q(t)z(t− τ3) ≤ 0.

Define a Riccati substitution

(2.8) ω1(t) := β(t)
a(t)

(
b(t)z∆(t)

)∆
z(t− τ3)

.

Then ω1(t) > 0. From (2.8), we have

(2.9) ω∆
1 (t) = β∆(t)

aσ(t)
(
bσ(t)

(
z∆(t)

)σ)∆
zσ(t− τ3)

+ β(t)

(
a(t)

(
b(t)z∆(t)

)∆)∆

z(t− τ3)

− β(t)
aσ(t)

(
bσ(t)

(
z∆(t)

)σ)∆
(z(t− τ3))∆

z(t− τ3)zσ(t− τ3)
.

From Lemma 2.1,
(
a(t)

(
b(t)z∆(t)

)∆)∆
≤ 0 and t− τ3 < t, we get

(z(t− τ3))∆ ≥ b−1(t− τ3)
(
a(t− τ3)

(
b(t− τ3)z∆(t− τ3)

)∆)∫ t−τ3

t2

a
− 1
α2 (s)∆s
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≥ b−1(t− τ3)
(
a(t)

(
b(t)z∆(t)

)∆)∫ t−τ3

t2

a−1(s)∆s

≥ b−1(t− τ3)
(
aσ(t)

(
bσ(t)(z∆(t))σ

)∆)∫ t−τ3

t2

a−1(s)∆s.(2.10)

From (2.9) and (2.10), we obtain

(2.11) ω∆
1 (t) ≤ β∆(t)

βσ(t)
ωσ1 (t) + β(t)

(
a(t)

(
b(t)z∆(t)

)∆)∆

z(t− τ3)

− β(t)

(βσ(t))2 b(t− τ3)
(ωσ1 (t))2

∫ t−τ3

t2

a−1(s)∆s.

Next, define another function ω2(t) by

(2.12) ω2(t) := β(t)
a(t− τ1)

(
b(t− τ1)z∆ (t− τ1)

)∆
z(t− τ3)

.

Then ω2(t) > 0. From (2.12), we have

(2.13) (ω2(t))∆ =
β∆(t)

βσ(t)
ωσ2 (t) + β(t)

(
a(t− τ1)

(
b(t− τ1)z∆(t− τ1)

)∆)∆

z(t− τ3)

− β(t)
aσ(t− τ1)

(
bσ(t− τ1)

((
z∆(t)

)σ − τ1

))∆
(z(t− τ3))∆

z(t− τ3)zσ(t− τ3)
.

From Lemma 2.1, and τ3 ≥ τ1, we get

(z(t− τ3))∆

≥ b−1(t− τ3)
(
a(t− τ3)

(
b(t− τ3)z∆(t− τ3)

)∆)∫ t−τ3

t2

a
− 1
α2 (s)∆s

≥ (a(t− τ1) (∆ (b(t− τ1)∆z(t− τ1)))) b−1(t− τ3)

∫ t−τ3

t2

a−1(s)∆s

≥
(
a (σ(t)− τ1)

(
b (σ(t)− τ1) z∆ (σ(t)− τ1)

)∆)
b−1(t− τ3)

∫ t−τ3

t2

a−1(s)∆s.

Then from (2.12), (2.13) and the above inequality, we have
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(2.14) (ω2(t))∆ ≤ β(t)

(
a(t− τ1)

(
b(t− τ1)z∆(t− τ1)

)∆)∆

z(t− τ3)
+
β∆(t)

βσ(t)
ωσ2 (t)

− β(t)

(βσ(t))2 b(t− τ3)
(ωσ2 (t))2

∫ t−τ3

t2

a−1(s)∆s.

Similarly, we define another function ω3(t) by

(2.15) ω3(t) := β(t)
a(t+ τ2)

(
b(t+ τ2)z∆ (t+ τ2)

)∆
z(t− τ3)

.

Then ω3(t) > 0. From (2.15), we have

(2.16) (ω3(t))∆ =
β∆(t)

βσ(t)
ωσ3 (t) + β(t)

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆

z(t− τ3)

− β(t)
a (σ(t) + τ2)

(
b (σ(t) + τ2) z∆ (σ(t) + τ2)

)∆
(z(t− τ3))∆

z(t− τ3)z (σ(t)− τ3)
.

From Lemma 2.1 and t− τ3 < t+ τ2 , we get

(z(t− τ3))∆

≥ b−1(t− τ3)
(
a(t− τ3)

(
b(t− τ3)z∆(t− τ3)

)∆)∫ t−τ3

t2

a
− 1
α2 (s)∆s

≥
(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)
b−1(t− τ3)

t−τ3
∫
t2

a−1(s)∆s

≥
(
a (σ(t) + τ2)

(
b (σ(t) + τ2) z∆ (σ(t) + τ2)

)∆)
b−1(t− τ3)

∫ t−τ3

t2

a−1(s)∆s.

Then from (2.15), (2.16) and the above inequality, we have

(2.17) (ω3(t))∆ ≤ β∆(t)

βσ(t)
ωσ3 (t) + β(t)

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆

z(t− τ3)

− β(t)

(βσ(t))2 b(t− τ3)
(ωσ3 (t))2

∫ t−τ3

t2

a−1(s)∆s.
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From (2.7), (2.11), (2.14) and (2.17), we obtain
(2.18)

(ω1(t))∆ + p1 (ω2(t))∆ + p2 (ω3(t))∆

≤ −β(t)Q(t) +
β∆(t)

βσ(t)
ωσ1 (t)− β(t)

(βσ(t))2b(t− τ3)
(ωσ1 (t))2

∫ t−τ3

t2

a−1(s)∆s

+p1
β∆(t)

βσ(t)
ωσ2 (t)− p1

β(t)

(βσ(t))2 b(t− τ3)
(ωσ2 (t))2

∫ t−τ3

t2

a−1(s)∆s

+p2
β∆(t)

βσ(t)
ωσ3 (t)− p2

β(t)

(βσ(t))2 b(t− τ3)
(ωσ3 (t))2

∫ t−τ3

t2

a−1(s)∆s.

Using (2.18) and the inequality

(2.19) Bu−Au2 ≤ B2

4A
,A > 0,

we have

(ω1(t))∆ + p1 (ω2(t))∆ + p2 (ω3(t))∆ ≤ −β(t)Q(t) +
1

4

(
β∆(t)

)2
b(t− τ3)

β(t)
∫ t−τ3
t2

a−1(s)∆s

+
p1

4

(
β∆(t)

)2
b(t− τ3)

β(t)
∫ t−τ3
t2

a−1(s)∆s
+
p2

4

(
β∆(t)

)2
b(t− τ3)

β(t)
∫ t−τ3
t2

a−1(s)∆s
.

Integrating the last inequality from t3 to t, we obtain∫ t

t3

(
β(s)Q(s)− (1 + p1 + p2)

4

(
β∆(s)

)2
b (s− τ3)

β(s)
∫ s−τ3
t2

a−1(u)∆u

)
∆s

≤ ω1(t3) + p1ω2(t3) + p2ω3(t3),

which yields∫ t

t3

(
β(s)Q(s)− (1 + p1 + p2)

4

(
β∆(s)

)2
b (s− τ3)

β(s)
∫ s−τ3
t2

a−1(u)∆u

)
∆s ≤ c1,

where c1 > 0 is a finite constant. But, this contradicts (2.4). Next we assume
that (II) holds. We are then back to the proof of Lemma 2.3 to show that
lim
t→∞

x(t) = 0. The proof is complete. 2
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From Theorem 2.1 we can derive some oscillation criteria for equation
(1.1) on different types of time scales.

Corollary 2.1. If T = R, then Theorem 2.1 becomes: Assume that τ1 ≤
τ3 and there exists β ∈ C1([t0,∞), (0,∞]), such that

(2.1)

∫ ∞
t0

a−1(t)dt =∞,
∫ ∞
t0

b−1(t)dt =∞,

(2.3)

∫ ∞
t=t0

(
b−1(v)

(∫ v

u=t0

a−1(u)

(∫ u

s=t2

(q1(s) + q2(s))ds

)
du

))
dv =∞,

(2.4)

∫ t

t0

(
ρ(s)Q(s)− (1 + p1 + p2)

4

(β′)2b(s− τ3)

β(s)
∫ s−τ3
t2

a−1(u)du

)
ds =∞.

Hold for all sufficiently large t1. Then every solution of equation (1.3) is oscilla-
tory or lim

t→∞
x(t) = 0.

Example 2.1. Consider the following third-order differential equation(
a(t)

(
b(t) (x(t) + p1(t)x(t− τ1) + p2(t)x(t+ τ2))′

)′)′
+ q1(t)x(t− τ3) + q2(t)x(t+ τ4) = 0, t ≥ t0.

Let a(t) = b(t) = 1, p1(t) = p2(t) =
1

3
, q1(t) = e−2 +

e−1

3
, q2(t) =

1

3
, τ1 =

τ2 = τ4 = 1, τ3 = 2. We see that (2.1) holds. Take β(t) = 1. Then conditions
(2.3) and (2.4) hold. Then by Corollary 2.1, every solution of this equation is
oscillatory or tends to zero. It is easy to find that x(t) = e−t is a solution of this
equation. However, the results established in [10, 19] do not apply to
this equation.

Corollary 2.2. If T = N, then (2.4) becomes

n−1∑
s=n0

(
ρ(s)Q(s)− (1 + p1 + p2)

4

(∆ρ(s))2b(s− σ3)

ρ(s)
∑σ3(s)−1

u=n2
a−1(u)

)
=∞.

Then every solution of equation (1.2) is oscillatory or lim
t→∞

x(t) = 0.
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Example 2.2. Consider the following nonlinear neutral equation

∆ (n∆ (n∆ (x(n) + p1(n)x(n− σ1) + p2(n)x(n+ σ2))))

+
β

n
x(n− σ3) +

γ

n
x(n+ σ4) = 0,

where σ3 ≥ σ1, p1 + p2 ≤ 3, β and γ are positive constants. We see that (2.1)
holds. If we take n0 = 1, ρ(n) = 1, then by Corollary 2.2, every solution of this
equation is oscillatory or tends to zero provided that β + γ > 1.

Corollary 2.3. Assume that all the assumptions of Theorem 2.1 hold,
except the condition (2.4) is replaced by

lim
t→∞

sup

∫ t

t0

β(s)Q(s)∆s =∞,

lim
t→∞

sup

∫ t

t0

(
β∆(s)

)2
b(s− τ3)

β(s)
∫ s−τ3
t2

a−1(u)∆u
∆s <∞.

Then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

Remark 2.1. Note that from Theorem 2.1, we can obtain different con-
ditions for oscillation of all solutions of equation (1.1) by different choices of β(t).
Let β(t) = 1, β(t) = t and β(t) = tλ, t ≥ t0 and λ > 1 is a constant. By Theorem
2.1, we have the following results.

Corollary 2.4. Assume that all the assumptions of Theorem 2.1 hold,
except the condition (2.4) is replaced by

lim
t→∞

sup

∫ t

t0

Q(s)∆s =∞.

Then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

Corollary 2.5. If T = N, then (2.4) becomes

lim
n→∞

sup

n−1∑
s=n0

Q(s) =∞.

Then every solution of equation (1.2) is oscillatory or lim
t→∞

x(t) = 0.
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Example 2.3. Consider the following nonlinear neutral equation

∆ (a(n)∆ (b(n)∆(x(n) + p1(n)x(n− 1) + p2(n)x(n+ σ2))))

+
1

n
x(n− σ3) +

1

n
x(n+ σ4) = 0,

where σ1 = 1, qi(n) =
1

n
for i = 1, 2. Assume that (2.1) holds. If we take,

n0 = 1, ρ(n) = 1, then Corollary 2.5, asserts that every solution of this equation
is oscillatory or tends to zero.

Corollary 2.6. Assume that all the assumptions of Theorem 2.1 hold,
except the condition (2.4) is replaced by

lim
t→∞

sup

∫ t

t0

(
sQ(s)− (1 + p1 + p2)

4

b(s− τ3)

s
∫ s−τ3
t2

a−1(u)∆u

)
∆s =∞.

Then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

Corollary 2.7. Assume that all the assumptions of Theorem 2.1 hold,
except the condition (2.4) is replaced by

lim
t→∞

sup

∫ t

t0

(
lλQ(l)− (1 + p1 + p2)

4

((σ(l))λ − lλ)2b(l − τ3)

(µ(l))2λlλ
∫ l−τ3
t2

a−1(u)∆u

)
∆l =∞.

Then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

Theorem 2.2. Assume that (2.3) holds. Let τ1 ≤ τ3 and β(t) be a positive
function. Furthermore, we assume that there exists a function {H(t, s) | t ≥ s ≥
0}. If

(2.20) lim
t→∞

sup
1

H(t, 0)

∫ t

0

[
H(t, s)β(s)Q(s)− (1 + p1 + p2)

H(t, s)ϑ2(t, s)

4ϕ1(s)

]
∆s

=∞

ϑ(t, s) :=

(
H∆s(t, s) +H(t, s)

(β∆(s))+

βσ(s)

)
then every solution of equation (1.1) is oscillatory or lim

t→∞
x(t) = 0.
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P r o o f. Proceeding as in the proof of Theorem 2.1, we assume that
equation (1.1) has a non- oscillatory solution, say x(t) > 0, x(t − τ1) > 0, x(t +
τ2) > 0, x(t − τ3) > 0 and x(t + τ4) > 0 for all t ≥ t0. By Lemma 2.2, there
are two possible cases. If (I) holds, from the proof of Theorem 2.1, we find that
(2.18) holds for all t ≥ t1. From (2.18), we have

β(t)Q(t) ≤ −(ω1(t))∆ − p1(ω2(t))∆ − p2(ω3(t))∆ +
β∆(t)

βσ(t)
ωσ1 (t)(2.21)

−ϕ1(t)(ωσ1 (t))2 + p1
β∆(t)

βσ(t)
ωσ2 (t)− p1ϕ1(t)(ωσ2 (t))2

+p2
β∆(t)

βσ(t)
ωσ3 (t)− p2ϕ1(t)(ωσ3 (t))2.

Therefore, we have∫ t

t2

H(t, s)β(s)Q(s)∆s ≤ −
∫ t

t2

H(t, s)(ω1(s))∆∆s

−p1

∫ t

t2

H(t, s)(ω2(s))∆∆s− p2

∫ t

t2

H(t, s)(ω3(s))∆∆s

+

∫ t

t2

H(t, s)

(
β∆(s)

)
+

βσ(s)
ωσ1 (s)∆s−

∫ t

t2

H(t, s)ϕ1(s) (ωσ1 (s))2 ∆s

+p1

∫ t

t2

H(t, s)

(
β∆(s)

)
+

βσ(s)
ωσ2 (s)∆s− p1

∫ t

t2

H(t, s)ϕ1(s) (ωσ2 (s))2 ∆s

+p2

∫ t

t2

H(t, s)

(
β∆(s)

)
+

βσ(s)
ωσ3 (s)∆s− p2

∫ t

t2

H(t, s)ϕ1(s) (ωσ3 (s))2 ∆s,

Integrating by parts and using H (t, t) = 0, we have∫ t

t2

H(t, s)β(s)Q(s)∆s

≤ H (t, t2)ω1(t2) +

∫ t

t2

H∆s(t, s)ωσ1 (s)∆s+

∫ t

t2

H(t, s)

(
β∆(s)

)
+

βσ(s)
ωσ1 (s)∆s

−
∫ t

t2

H(t, s)ϕ1(s) (ωσ1 (s))2 ∆s+ p1H (t, t2)ω2(t2)

+p1

∫ t

t2

H∆s(t, s)ωσ2 (s)∆s+ p1

∫ t

t2

H(t, s)

(
β∆(s)

)
+

βσ(s)
ωσ2 (s)∆s
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−p1

∫ t

t2

H(t, s)ϕ1(s) (ωσ2 (s))2 ∆s+ p2H (t, t2)ω3(t2)

+p2

∫ t

t2

H∆s(t, s)ωσ3 (s)∆s+ p2

∫ t

t2

H(t, s)

(
β∆(s)

)
+

βσ(s)
ωσ3 (s)∆s

−p2

∫ t

t2

H(t, s)ϕ1(s) (ωσ3 (s))2 ∆s

= H (t, t2)ω1(t2) +

∫ t

t2

(
H∆s(t, s) +H(t, s)

(
β∆(s)

)
+

βσ(s)

)
ωσ1 (s)∆s

−
∫ t

t2

H(t, s)ϕ1(s) (ωσ1 (s))2 ∆s+ p1H (t, t2)ω2(t2)

+p1

∫ t

t2

(
H∆s(t, s) +H(t, s)

(
β∆(s)

)
+

βσ(s)

)
ωσ2 (s)∆s

−p1

∫ t

t2

H(t, s)ϕ1(s) (ωσ2 (s))2 ∆s+ p2H (t, t2)ω3(t2)

+p2

∫ t

t2

(
H∆s(t, s) +H(t, s)

(
β∆(s)

)
+

βσ(s)

)
ωσ3 (s)∆s

−p2

∫ t

t2

H(t, s)ϕ1(s) (ωσ3 (s))2 ∆s

= H (t, t2)ω1(t2) +

∫ t

t2

H(t, s)v(t, s)ωσ1 (s)∆s−
∫ t

t2

H(t, s)ϕ1(s) (ωσ1 (s))2 ∆s

+p1H (t, t2)ω2(t2) + p1

∫ t

t2

H(t, s)v(t, s)ωσ2 (s)∆s

−p1

∫ t

t2

H(t, s)ϕ1(s) (ωσ2 (s))2 ∆s+ p2H (t, t2)ω3(t2)

+p2

∫ t

t2

H(t, s)v(t, s)ωσ3 (s)∆s− p2

∫ t

t2

H(t, s)ϕ1(s) (ωσ3 (s))2 ∆s.

By completing the square, we have

∫ t

t2

H(t, s)β(s)Q(s)∆s(2.22)

≤ H (t, t2)ω1(t2) +

∫ t

t2

H(t, s)ϑ2(t, s)

4ϕ1(s)
∆s
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−
∫ t

t2

[√
H(t, s)ϕ1(s)ωσ1 (s)− ϑ(t, s)

2

√
H(t, s)

ϕ1(s)

]2

∆s

+p1H (t, t2)ω2(t2) + p1

∫ t

t2

H(t, s)ϑ2(t, s)

4ϕ1(s)
∆s

−p1

∫ t

t2

[√
H(t, s)ϕ1(s)ωσ2 (s)− ϑ(t, s)

2

√
H(t, s)

ϕ1(s)

]2

∆s

+p2H (t, t2)ω3(t2) + p2

∫ t

t2

H(t, s)ϑ2(t, s)

4ϕ1(s)
∆s

−p2

∫ t

t2

[√
H(t, s)ϕ1(s)ωσ2 (s)− ϑ(t, s)

2

√
H(t, s)

ϕ1(s)

]2

∆s.

Then,∫ t

t2

[
H(t, s)β(s)Q(s)− (1 + p1 + p2)

H(t, s)ϑ2(t, s)

4ϕ1(s)

]
∆s

≤ H (t, t2)ω(t2) + p1H (t, t2)ω2(t2) + p2H (t, t2)ω3(t2),

which implies∫ t

t2

[
H(t, s)β(s)Q(s)− (1 + p1 + p2)

H(t, s)ϑ2(t, s)

4ϕ1(s)

]
∆s

≤ H (t, 0) |ω1(t2)|+ p1H (t, 0) |ω2(t2)|+ p2H (t, 0) |ω3(t2)| .

Hence,∫ t

0

[
H(t, s)β(s)Q(s)− (1 + p1 + p2)

H(t, s)ϑ2(t, s)

4ϕ1(s)

]
∆s

≤ H (t, 0)

{∫ t

0
|β(s)Q(s)|∆s+ |ω1(t2)|+ p1 |ω2(t2)|+ p2 |ω3(t2)|

}
.

Hence,

lim
t→∞

sup
1

H (t, 0)

∫ t

0

[
H(t, s)β(s)Q(s)− (1 + p1 + p2)

H(t, s)ϑ2(t, s)

4ϕ1(s)

]
∆s

≤
∫ t

0
|β(s)Q(s)|∆s+ |ω1(t2)|+ p1 |ω2(t2)|+ p2 |ω3(t2)| <∞,
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which is contrary to (2.20). If (II) holds, then we are back to the proof of Lemma
2.3 to show that lim

t→∞
x(t) = 0. This completes the proof of Theorem 2.2. 2

Corollary 2.8. Assume that all the assumptions of Theorem 2.2 hold,
except the condition (2.20) is replaced by

lim
t→∞

sup
1

H (t, 0)

∫ t

0
H(t, s)β(s)Q(s)∆s,

lim
t→∞

sup
1

H (t, 0)

∫ t

0

H(t, s)ϑ2(t, s)

4ϕ1(s)
∆s.

Then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

Corollary 2.9. If T = N, then (2.20) becomes

(2.20) lim
m→∞

sup
1

H (m, 0)

m−1∑
n=0

(
H (m,n)β(n)Q(n)

− (1 + p1 + p2)
ϑ2 (m,n)H (m,n)

4ϕ1(n)

)
=∞.

Then every solution of equation (1.2) is oscillatory or lim
t→∞

x(t) = 0.

Theorem 2.3. Assume that (2.3) holds. Further, assume that τ3 ≤ τ1

and there exists a positive non decreasing function β(t), such that

(2.23) lim
t→∞

sup

∫ t

t0

[
β(s)Q(s)− (1 + p1 + p2)

4

(
β∆(t)

)2
b(t− τ1)

β(t) ∫ t−τ1t2
a−1(s)∆s

]
∆s =∞.

Then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

P r o o f. Assume that equation (1.1) has a non- oscillatory solution, say
x(t) > 0, x(t − τ1) > 0, x(t + τ2) > 0, x(t − τ3) > 0 and x(t + τ4) > 0 for all
t ≥ t0. Proceeding as in the proof of Theorem 2.1, we get (2.6). By Lemma
2.2, there exist two possible cases (I) and (II). Assume that (I) holds. Then, we
obtain (2.7).

From z∆(t) > 0, τ3 ≤ τ1, we obtain

(2.24)
(
a(t)

(
b(t)z∆(t)

)∆)∆
+ p1

(
a(t− τ1)

(
b(t− τ1)z∆(t− τ1)

)∆)∆

+ p2

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆
+Q(t)z(t− τ1) ≤ 0.
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Using the Riccati transformation

(2.25) ω1(t) := β(t)
a(t)

(
b(t)z∆(t)

)∆
z (t− τ1)

.

Then ω1(t) > 0. From (2.25), we have

(2.26)

(ω1(t))∆ = β∆(t)

(
aσ(t)

(
bσ(t)

(
z∆(t)

)σ)∆)σ
z (σ(t)− τ1)

+ β(t)

(
a(t)

(
b(t)z∆(t)

)∆)∆

z(t− τ1)

− β(t)
aσ(t)

(
bσ(t)

(
z∆(t)

)σ)∆
(z(t− τ1))∆

z(t− τ1)z (σ(t)− τ1)
.

From Lemma 2.1,
(
a(t)

(
b(t)z∆(t)

)∆)∆
≤ 0 and t− τ1 < t, we get

(2.27) (z(t− τ1))∆ ≥ b−1(t− τ1)
(
aσ(t)

(
bσ(t)

(
z∆(t)

)σ))∫ t−τ1

t2

a−1(s)∆s.

From (2.26) and (2.27), we obtain

(2.28) (ω1(t))∆ ≤ β∆(t)

βσ(t)
ωσ1 (t) + β(t)

(
a(t)

(
b(t)z∆(t)

)∆)∆

z(t− τ1)

− β(t) (ωσ1 (t))2

(βσ(t))2 b(t− τ1)

∫ t−τ1

t2

a−1(s)∆s.

Next, define another function ω2(t) by

(2.29) ω2(t) := β(t)
a(t− τ1)

(
b(t− τ1)z∆ (t− τ1)

)∆
z(t− τ1)

.

Then ω2(t) > 0. From (2.29), we have

(2.30) (ω2(t))∆ =
β∆(t)

βσ(t)
ωσ2 (t) + β(t)

(
a(t− τ1)

(
b(t− τ1)z∆(t− τ1)

)∆)∆

z(t− τ1)

− β(t)
a (σ(t)− τ1)

(
b (σ(t)− τ1) z∆ (σ(t)− τ1)

)∆
(z(t− τ1))∆

z(t− τ1)z (σ(t)− τ1)
.
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From Lemma 2.1, we get

(z(t− τ1))∆

≥
(
a (σ(t)− τ1)

(
b (σ(t)− τ1) z∆ (σ(t)− τ1)

)∆)
b−1(t− τ1)

∫ t−τ1

t2

a−1(s)∆s.

Then from (2.29), (2.30) and the above inequality, we have

(2.31) (ω2(t))∆ ≤ β(t)

(
a(t− τ1)

(
b(t− τ1)z∆(t− τ1)

)∆)∆

z(t− τ1)
+
β∆(t)

βσ(t)
ωσ2 (t)

− β(t)

(βσ(t))2 b(t− τ1)
(ωσ2 (t))2

∫ t−τ1

t2

a−1(s)∆s.

Similarly, we define another function ω3(t) by

(2.32) ω3(t) := β(t)
a(t+ τ2)

(
b(t+ τ2)z∆ (t+ τ2)

)∆
z(t− τ1)

.

Then ω3(t) > 0. From (2.32), we have

(2.33) (ω3(t))∆ =
β∆(t)

βσ(t)
ωσ3 (t) + β(t)

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆

z(t− τ1)

− β(t)
a (σ(t) + τ2)

(
b (σ(t) + τ2) z∆ (σ(t) + τ2)

)∆
(z(t− τ1))∆

z(t− τ1)z (σ(t)− τ1)
.

From Lemma 2.1, and t− τ1 < t+ τ2, we get

(z(t− τ1))∆

≥
(
a (σ(t) + τ2)

(
b (σ(t) + τ2) z∆ (σ(t) + τ2)

)∆)
b−1(t− τ1)

∫ t−τ1

t2

a−1(s)∆s.

Then from (2.32), (2.33) and the above inequality, we have

(2.34) (ω3(t))∆ ≤ β∆(t)

βσ(t)
ωσ3 (t) + β(t)

(
a(t+ τ2)

(
b(t+ τ2)z∆(t+ τ2)

)∆)∆

z(t− τ1)

− β(t)

(βσ(t))2 b(t− τ1)
(ωσ3 (t))2

∫ t−τ1

t2

a−1(s)∆s.
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From (2.24), (2.28), (2.31) and (2.34), we obtain

(ω1(t))∆ + p1 (ω2(t))∆ + p2 (ω3(t))∆(2.35)

≤ −β(t)Q(t) +
β∆(t)

βσ(t)
ωσ1 (t)− β(t)

(βσ(t))2 b(t− τ1)
(ωσ1 (t))2

∫ t−τ1

t2

a−1(s)∆s

+p1
β∆(t)

βσ(t)
ωσ2 (t)− p1

β(t)

(βσ(t))2 b(t− τ1)
(ωσ2 (t))2

∫ t−τ1

t2

a−1(s)∆s

+p2
β∆(t)

βσ(t)
ωσ3 (t)− p2

β(t)

(βσ(t))2 b(t− τ1)
(ωσ3 (t))2

∫ t−τ1

t2

a−1(s)∆s.

Using (2.19) and (2.35), we have

(ω1(t))∆ + p1 (ω2(t))∆ + p2 (ω3(t))∆ ≤ −β(t)Q(t) +
1

4

(
β∆(t)

)2
b(t− τ1)

β(t)
∫ t−τ1
t2

a−1(s)∆s

+
p1

4

(
β∆(t)

)2
b(t− τ1)

β(t)
∫ t−τ1
t2

a−1(s)∆s
+
p2

4

(
β∆(t)

)2
b(t− τ1)

β(t)
∫ t−τ1
t2

a−1(s)∆s
.

Integrating the last inequality from t3 to t, we obtain∫ t

t3

[
β(s)Q(s)− (1 + p1 + p2)

4

(
β∆(t)

)2
b(t− τ1)

β(t)
∫ s−τ1
t2

a−1(s)∆s

]
∆s

≤ ω1(t3) + p1ω2(t3) + p2ω3(t3),

which yields∫ t

t3

[
β(s)Q(s)− (1 + p1 + p2)

4

(
β∆(t)

)2
b(t− τ1)

β(t)
∫ s−τ1
t2

a−1(s)∆s

]
∆s ≤ c1,

where c1 > 0 is a finite constant. But, this contradicts (2.23). Next we assume
that (II) holds. We are then back to the proof of Lemma 2.3 to show that
lim
t→∞

x(t) = 0. The proof is complete. 2

Corollary 2.10. If T = N, then (2.23) becomes

(2.23) lim
n→∞

sup

n−1∑
s=n0

(
β(s)Q(s)− (1 + p1 + p2)

4

(∆β(s))2 b (s− σ1)

β(s)
∑σ1(s)−1

u=n2
a−1(u)

)
=∞.

Then every solution of equation (1.2) is oscillatory or lim
t→∞

x(t) = 0.
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Example 2.4. Consider the following nonlinear neutral equation

∆

(
1

n
∆

(
1

n
∆ (x(n) + p1(n)x (n− 2) + p2(n)x (n+ 1))

))
+

β

n2
x (n− τ3) +

γ

n2
x (n+ τ4) = 0,

where τ1 ≥ τ3, p1 + p2 ≤ 3, β and γ are positive constants. We see that (2.1)
holds. If we take n0 = 1, β(n) = 1, then by Corollary 2.10, every solution of this
equation is oscillatory or tends to zero provided that β + γ > 1.

Theorem 2.4. Assume that (2.3) holds. Let τ3 ≤ τ1 and β(t) be a posi-
tive function. Furthermore, we assume that there exists a function {H(t, s) | t ≥
s ≥ 0}. If

(2.36) lim
m→∞

sup
1

H (m, 0)

m−1∑
n=0

(
H (m,n)β(n)Q(n)

− (1 + p1 + p2)
ϑ2 (m,n)H (m,n)

4ϕ2(n)

)
=∞,

then every solution of equation (1.1) is oscillatory or lim
t→∞

x(t) = 0.

P r o o f. Proceeding as in the proof of Theorem 2.3, we assume that
equation (1.1) has a non-oscillatory solution, say x(t) > 0, x(t−τ1) > 0, x(t+τ2) >
0, x(t − τ3) > 0 and x(t + τ4) > 0 for all t ≥ t0. By Lemma 2.2, there are two
possible cases. If (I) holds, from the proof of Theorem 2.3, we find that (2.35)
holds for all t ≥ t1. From (2.35), we have

β(t)Q(t) ≤ − (ω1(t))∆ − p1 (ω2(t))∆ − p2 (ω3(t))∆ +
β∆(t)

βσ(t)
ωσ1 (t)(2.37)

−ϕ2(t) (ωσ1 (t))2 + p1
β∆(t)

βσ(t)
ωσ2 (t)− p1ϕ2(t) (ωσ2 (t))2

+p2
β∆(t)

βσ(t)
ωσ3 (t)− p2ϕ2(t) (ωσ3 (t))2 .

The remainder of the proof is similar to that of the proof of Theorem 2.2 and
hence the details are omitted. 2

Corollary 2.11. If T = N, then (2.36) becomes
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(2.36) lim
m→∞

sup
1

H (m, 0)

m−1∑
n=0

(
H (m,n)β(n)Q(n)−

(1 + p1 + p2)
ϑ2 (m,n)H (m,n)

4ϕ2(n)

)
=∞.

then every solution of equation (1.2) is oscillatory or lim
t→∞

x(t) = 0.
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