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6Abstract Almost all computer vision applications, from remote sensing and

7cartography to medical imaging and biometrics, use image registration or alignment

8techniques that establish spatial correspondence (one-to-one mapping) between two

9or more images. These images depict either one planar (2-D) or volumetric (3-D)

10scene or several such scenes and can be taken at different times, from various

11viewpoints, and/or by multiple sensors. In medical image processing and analysis,

12the image registration is instrumental for clinical diagnosis and therapy planning,

13e.g., to follow disease progression and/or response to treatment, or integrate

14information from different sources/modalities to form more detailed descriptions

15of anatomical objects-of-interest. The unified registration goal – aligning a 2-D or

163-D target (sensed) image with a reference image – is reached by specifying a

17mathematical model of image transformations for and determining model para-

18meters of the desired alignment. Frequently, the parameters provide an optimum of

19a goal function supported by the parameter space, so that the registration reduces to

20a certain optimization problem. This chapter overviews the 2-D and the 3-D

21medical image registration with special reference to the state-of-the-art robust

22techniques proposed for the last decade and discusses their advantages, drawbacks,

23and practical implementations.
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27 9.1 Introduction

28 Image registration, sometimes called image alignment, mapping, or matching,

29 establishes one-to-one spatial correspondence between two or more images of a

30 single 2-D/3-D scene or several similar scenes captured (e.g., at different time

31 instants, from various viewpoints, or by different sensors). This image processing

32 step is fundamental in a variety of applications including remote sensing and

33 cartography, autonomous navigation, robot vision, and medical imaging to mention

34 a few. It is a powerful tool for integrating or fusing image data collected from

35 different sensors (imaging modalities), tracking temporal evolution (changes in

36 images taken at different times), making interpatient comparisons, reconstructing

37 3-D (volumetric) images from multiple 2-D (planar) images, etc. When one image

38 is registered to another image, the latter is typically referred to as a reference, or
39 prototype image, and the former – to be mapped onto the reference image – is called

40 a target, sensed, source, or moving image.

41 Image registration in medical applications is instrumental for clinical diagnosis

42 and therapy planning: e.g., if serial magnetic resonance imaging (MRI) scans of a

43 particular patient, acquired over different time intervals, are to be compared in

44 order to follow disease progression, response to treatment, or even dynamic struc-

45 tural change patterns of organ development [1]. Comparing the unregistered images

46 can lead to incorrect diagnostic conclusions. Computer-aided diagnosis (CAD)

47 systems use image registration to investigate how human anatomy is altering by

48 disease, age, gender, handedness, and other clinical or genetic factors. Data fusion

49 by registering images from various imaging sources (modalities), such as MRI,

50 functional MRI (fMRI), computed tomography (CT), positron emission tomogra-

51 phy (PET), single photon emission computed tomography (SPECT), and ultrasound

52 (US) imagers, allows radiologists to base conclusions on the maximum amount of

53 available information. Recently, image registration has opened up new medical

54 imaging applications, namely, perfusion imaging and image-guided surgery [2].

55 The medical image registration techniques undergo continuous development and

56 extensive research over the years and can be categorized according to various

57 inherent properties such as similarity criteria, mapping models, optimization tech-

58 niques, signal domains, image modalities, and so forth.

59 Similarity criteria in image registration are feature-based (also called geometric)

60 or area/volume-based (intensity-based or iconic). The former account for salient

61 points [3] or distinctive objects, such as closed contours [4], corners [5], etc.,

62 identified in an image. The correspondence between these features is established

63 by measuring similarity between their quantitative descriptors. The area/volume-

64 based criteria (e.g., [6, 7]) compare intensities (gray values), colors, or other pixel-

65 or voxel-wise signatures directly, without feature extraction. Common hybrid

66 registration techniques (e.g., [8–10]) combine advantages of both the classes.

67 Mapping or transformation models (functions) that establish spatial and signal
68 relationships between the reference and target image domains make up two broad

69 mapping classes: rigid (global) and elastic (nonrigid or local) transformations.
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70Most popular global geometric transformations include similarity, affine,

71perspective projection, and polynomial models. The affine transformations (e.g.,

72[6, 11]) that account for translation, rotation, scaling, and skewness of a target

73with respect to a reference are sufficient, if the deformations of depicted anato-

74mical structures are negligible relative to the required registration accuracy.

75However, the global mapping is unable to capture intrinsically local large

76deformations of anatomical structures. Thus, frequently more flexible elastic

77transformations (e.g., [12–25]) that locally warp a target to align with a reference

78image are needed. Most popular such transformations include radial basis func-

79tions (RBF), physical continuum models (viscous fluids), and large deformation
80models (diffeomorphisms).

81Optimization techniques search for a local or global optimum of a cost (objec-

82tive) function in the parameter space of the mapping model, the cost optimizer

83performing the goal registration. Local optimization (see, e.g., [26, 27]) is simpler

84than the global one but leads to accurate and robust registration only if the cost

85function is continuous and unimodal, which rarely appears in image registration.

86Otherwise, it converges to a close local optimum, causing misregistration unless

87good initial parameter values could be found [28]. Global optimization attempts to

88avoid local extrema that are common in many similarity criteria used as objective

89functions in medical image registration. Unfortunately, the global optimization

90algorithms, if they exist, typically converge too slow to the desired optimum and

91have too high computational loads. Some popular global optimization methods,

92e.g., genetic algorithm (GA) [29], simulated annealing (SA) [30], and particle

93swarm optimization (PSO) [31], perform a controllable stochastic search in the

94parameter space.

95Spatial signal domain is used by a vast majority of image registration methods

96that match intensity patterns [6, 7], features [3, 4], or structures [11]. Spatial
97Fourier frequency domain (e.g., [32–45]) allows for a computationally more

98efficient search for some geometric transformations of a target image with respect

99to a reference image. In particular, a simple translation can be recovered in the

100frequency domain by applying the fast Fourier transform to the images and using

101phase correlation (PC) [33] or wavelet-based methods (e.g., [46]). More compli-

102cated methods such as [38] are used for finding both the translation and rotation.

103The advantage of the frequency domain is that the computed mapping parameters

104are relatively stable under various image artifacts, and the rotation and scaling can

105be determined independently of translation [47]. Typical spatial domain registration

106methods determine the rotation, scaling, and translation parameters simultaneously,

107often at the cost of their lower precision. However, a variety of transformations that

108can be estimated in the frequency domain is very limited [48].

109Many registration algorithms assume only a single image modality, i.e.,

110sensors of the same type. The multimodality algorithms register images captured

111by different imaging devices, typical examples include CT/MRI images [49],

112PET/CT images for tumor localization [13], original and contrast-enhanced

113CT images to segment-specific anatomic parts [50], MRI/PET images [51], and

114US/CT images [52].
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115 Many further ways of classifying the registration methods exist, e.g., by data

116 dimensionality (i.e., 2-D/2-D, 2-D/3-D, or 3-D/3-D registration), subjects involved

117 (i.e., intrasubject, intersubject, or atlas-based registration), computational loads,

118 and application areas (e.g., change detection or tumor monitoring). Due to diverse

119 applications, scenes, and objects, a generic registration technique (and in particular

120 a generic medical image registration technique) does not exist [3].

121 The medical image registration remains the challenging problem for many

122 reasons. Physical relationships between the target and reference images are

123 often difficult to model due to the highly nonrigid transformations involved.

124 Also, one-to-one correspondence between the images may not exist due to missing

125 or partial data. Furthermore, each imaging modality provides different informa-

126 tion about a scene and introduces its own unique challenges [53]. Moreover,

127 aligning images of different resolution with non-isotropic pixel or voxel dimen-

128 sions may lead to excessive distortions. In addition, the depicted properties of the

129 same objects in multiple images may considerably differ (e.g., large intensity

130 differences for the same tissues, bones, fluids, or lesions). Finally, intrapatient,

131 interpatient, and atlas-to-patient registrations offer extra challenges, and so on.

132 Therefore, fast, robust, and efficient registration techniques are still in need (see

133 e.g., comprehensive surveys [1, 2, 54–59] both in general purpose [54, 59] and

134 medical image registration [1, 2, 55–58]) This chapter overviews in brief most

135 popular 2-D and 3-D image registration techniques with special reference to the

136 up-to-date medical image registration. Section 9.2 below details basic aspects of

137 medical image registration including popular similarity functions, transformation

138 models, image resampling, and optimization methods. Some of the recent state-of-

139 the-art medical image registration techniques are reviewed in Sect. 9.3, and

140 Sect. 9.4 presents the conclusions. The list of the symbols that are used throughout

141 this chapter is given in Appendix A.

142 9.2 Image Registration Framework

143 The registration establishes correspondence between a reference image, Ir, and a

144 target, It, by a parametric transformation, Tgð�Þ, of image geometry and signals or

145 features in line with a similarity (or cost) function, rð�Þ, specifying the registration

146 accuracy. The optimal transformation maximizes the similarity (minimizes the

147 cost):

T�
gð�Þ ¼ arg max

Tgð�Þ
rðIr; TgðItÞÞ (9.1)

148 The optimization in (9.1) is mostly numerical. Starting from an initial guess, it is

149 converging to the optimum in a series of iterative steps that depend on the objective

150 (similarity) function, image transformations including resampling of a transformed

151 image and optimization technique [54, 57, 59].
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1529.2.1 Similarity Functions

153Similarity (cost) functions or measures quantify signal/feature correspondences

154between the target and reference images to guide the registration. The choice of

155a feature- or area-based function [59] depends generally on the application.

156The feature-based registration establishes one-to-one correspondence between dis-

157tinctive features such as specific points [17, 60], contours [4], curves [5, 61–63], or

158surfaces [64–66] in both images. These features are usually represented by repre-

159sentative, or control points, e.g., gravity centers, line endings, etc., and the registra-

160tion quality is determined by the accuracy of their correspondences.

161The most popular scale-invariant feature transform (SIFT) by Lowe [67] reliably

162determines multiple point-wise correspondences between local areas differing in

163one image from another by the affine geometric and contrast/offset signal transfor-

164mations. An intrasubject SIFT registration of retinal images collected with the

1651-day time difference is exemplified in Fig. 9.1. Many other feature descriptors

166and similarity functions using their spatial relations to establish the point-wise

167correspondence between the target and reference images can be found in the

168comprehensive review [59]. Performance of the feature-based registration depends

169on many factors including, e.g., areas of overlaps between the images, severity of

170geometric distortions, noise, blurring and other signal (photometric) distortions,

171and similarities between dominant uniform (smooth) or textured image areas [68].

172The area/volume-based registration matches directly pixel/voxel intensities [69]

173or colors or other sensed signals. While being known for a long time [70], it recently

174became the most popular method in the medical image registration (see, e.g., [12,

17571–79]) due to no data losses from feature detection and no or little user interaction.

176In most cases, it is fully automated and allows for both qualitative and quantitative

Fig. 9.1 SIFT-based retinal image registration: from left to right in the upper row – the reference

image, target image, and candidate pixels for registration; in the bottom row – the reference image,

the registered image, and the checkerboard visualization of the superposed target and reference

before and after the registration
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177 assessment of the alignment accuracy. Typically, the similarity function and

178 optimal estimates of transformation parameters are derived from a probability

179 model of the allowable transformation of a whole target or its predefined subregion

180 (window) to a reference one. These techniques can efficiently align images of the

181 same or different modality or dimensionality, accommodate rigid and elastic

182 geometric deformations, and provide subpixel (voxel) accuracy [71, 80]. The

183 area-based registration of intersubject CT kidney images by maximizing their

184 mutual information [6] as the similarity measure is exemplified in Fig. 9.2.

185 The feature-based registration is highly effective in remote sensing, robotic

186 vision, and other applications where distinctive and detectable structural image

187 features exist. Because medical images are less rich with such structures, the area-

188 based registration is also a viable alternative [59, 69] in spite of the higher

189 computational complexity and more frequent local minima traps in optimization

190 compared with the feature-based methods [5]. Well-known examples of similarity

191 functions are the sum of squared differences (SSD) and ratio–image uniformity

192 (RIU) [81], cross-correlation (CC) [61], phase correlation (PC) [33] (based on the

193 Fourier shift theorem [83]), mutual information (MI) [6], and normalized mutual

194 information (NMI) [82]. The SSD and CC are common for registering images of the

195 same modality, while the MI and NMI are suitable for multiple modalities, too.

196 Cross-correlation (CC) is a basic similarity measure for registration [84–90] and

197 template matching [91, 92] in classical signal/image processing, pattern recogni-

198 tion, and computer vision. For image registration, it is derived from a simple

199 probabilistic model of target-to-reference image transformations of continuous,

200 by assumption, scalar image signals:

IrðpÞ ¼ mItðp0Þ þ dþ GðpÞ (9.2)

201 where p denotes a 2-D, p ¼ ðx; yÞ, or 3-D, p ¼ ðx; y; zÞ, point of the reference

202 image, p0 is the corresponding target point under a geometric transformation

203 p0 ¼ TgðpÞ, Itðp0Þ and IrðpÞ denote signals (intensities) in these points, m and d
204 specify, respectively, an arbitrary global contrast and the offset deviation of the

205 reference from the target, and GðpÞ is a pixel/voxel-wise random noise with a

Fig. 9.2 An example of area-based registration: from left to right – the reference, target, and

registered target CT kidney images
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206center-symmetric (e.g., normal or Gaussian) probability density. The normalized

207CC for this model is invariant to the contrast/offset transformations of the target:

CCTgð�ÞðIt; IrÞ ¼

P
p2W

½ItðTgðpÞÞ � �It�½IrðpÞ � �Ir�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
p2W

½ItðTgðpÞÞ � �It�2
 ! P

p2W
½IrðpÞ � �Ir�2

 !vuut
(9.3)

208where W denotes a window (usually, rectangular and chosen manually) in the

209reference image to be mapped to the target and �Ir and �It are mean values over the

210window for the reference and target image, respectively. To align the images,

211the maximum normalized CC is searched for in the parameter space of Tgð�Þ. The
212CC of (9.3) is in the range ½ �1 1 �: the values close to 1 indicate strong matches

213between the images. (CC¼ 1 is the exact match.) When the geometric transforma-

214tion is limited only to translations, TgðpÞ ¼ p� d, e.g., Tgðx; yÞ ¼ ðx� dx; y� dyÞ
215or Tgðx; y; zÞ ¼ ðx� dx; y� dy; z� dzÞ, the coordinates of the peak CC are usually

216determined by direct exhaustion of the coordinate offsets d between the two images.

217In more complex cases (e.g., an affine or projective transformation), the least

218squares CC or other generalized variants (see, e.g., [93]) are used so that the optimal

219transformation parameters are found by numerical optimization. The generalized

220CC can handle complex geometric transformations, but the computational load

221grows fast with the increasing numbers of parameters [94].

222The normalized CC is a simple and effective similarity measure, and thus it is

223widely used in practice in spite of its non-robustness under spatially variant contrast

224and offset changes, e.g., due to varying illumination of complex 3-D surfaces and/or

225different sensor types. Moreover, two simpler cost measures, namely, SAD (sum of

226absolute differences) and SSD are frequently used for registering the reference and

227target images that are almost identical except for geometrical misalignment, i.e.,

228have no contrast and offset deviations, m ¼ 1 and d ¼ 0 in (9.2) [95–103]:

SADðIt; IrÞ ¼
X
p2W

jIrðpÞ � ItðTgðpÞÞj (9.4)

SSDðIt; IrÞ ¼
X
p2W

½IrðpÞ � ItðTgðpÞÞ�2 (9.5)

229Close to zero SSD (or SAD) values indicate strong matches between the images

230(zero value gives the exact match). The SAD measure is more robust with respect to

231outliers or individual very large noise values in (9.2): large intensity changes in a

232small number of pixels (voxels) affect the SSD much more than the SAD. These

233cost functions are beneficial for certain medical images. For example, serial MRI

234or fMRI intrasubject scans are identical except for minor changes due to disease
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235 progression or response to treatment [102], so that in these cases the SAD and SSD

236 are likely to work well. However, these measures are unsuitable in the presence of

237 spatially uniform or variant contrast and offset deviations [103].

238 Fourier domain methods (e.g., [32–45]) transfer the classical CC registration

239 from the image to the spatial frequency domain. The simple idea behind the

240 resulting phase correlation (PC) method [33] is based on the Fourier shift property

241 [83]: a constant shift between spatial coordinates of two functions f1ðx; yÞ and

242 f2ðx; yÞ, such that f2ðx; yÞ ¼ f1ðx� dx; y� dyÞ, results in linear phase differences

243 in the Fourier domain:

F2ðu; vÞ ¼ F1ðu; vÞe�jðudxþvdyÞ (9.6)

244 where F1ðu; vÞ ¼ =ff1ðx; yÞg and F2ðu; vÞ ¼ =ff2ðx; yÞg are the Fourier transforms

245 of f1ðx; yÞ and f2ðx; yÞ, respectively. Let F�
1ðu; vÞdenotes the complex conjugate of

246 F1ðu; vÞ. Then, the PC of the functions f1 and f2 for all their mutual coordinate shifts

247 can be restored by the inverse Fourier transform, PCf1;f2 ¼ =�1fCPSF1;F2
g, of the

248 normalized cross-power spectrum:

CPSF1;F2
ðu; vÞ ¼ F2ðu; vÞF�

1ðu; vÞ
jF2ðu; vÞF�

1ðu; vÞj
¼ e�jðudxþvdyÞ (9.7)

249 Then the simplest registration involving only translation has only to locate the PC

250 peak in the spatial ðdx; dyÞ coordinates. If F1ðu; vÞ and F2ðu; vÞ are continuous

251 functions, then the inversed Fourier transform of CPSF1;F2
ðu; vÞ is a delta function.

252 The PC is of lower computational complexity than the usual CC when the fast

253 Fourier transform (FFT) is employed to compute the spectra F1 and F2 for digital

254 images. But the faster CC-based registration in the Fourier domain is simulta-

255 neously less accurate than in the signal domain and therefore it is more suitable

256 for a coarse registration.

257 Foroosh et al. [36] and Shekarforoush et al. [43] have extended the PC to subpixel

258 registration by analytic representation of down-sampled images. De Castro and

259 Morandi [38] have extended it to more complicated registration scenarios combin-

260 ing both translation and rotation. Later, Reddy and Chatterji [34] improved the

261 algorithm in [38] by reducing considerably the number of transformations needed.

262 The Fourier–Mellin transform [34, 37, 39] and the cepstrum filter [40, 41] have been

263 introduced to register images being misaligned by translation, rotation, and scaling.

264 These approaches combine the PC with the log-polar transform (LPT). First, to

265 recover translation, these methods apply a Fourier transform to images. Then, the

266 LPT is applied to the magnitude spectrum, and the rotation and scale are recovered

267 by phase correlation in the log-polar space [32]. A different approach by Zokai and

268 Wolberg [44] performs the matching and localization in the spatial rather than

269 frequency domain. The translation is recovered using the coarse-to-fine multiresolu-

270 tion framework, while the scale and rotation are obtained by matching the log-polar
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271transformed images with the CC. Recently, Matungka et al. [45] proposed an

272adaptive polar transform (APT) combined with a projection transform to evenly

273and effectively sample an image in Cartesian coordinates. This approach requires

274less computations than the conventional LPT while remaining robust to both the

275scale and rotation changes. Due to low computational complexity and insensitivity

276to relative image translation, rotation, and scaling as well as to correlated pixel/

277voxel-wise noise and certain nonuniform signal variations, e.g., due to changing

278illumination, the PC is more appropriate in many practical applications than the

279classical CC [43].

280Mutual information (MI) [6, 7] and normalized mutual information (NMI)

281[82, 104] are the most successful and commonly used universal and highly accurate

282similarity measures [105]. Recently, the MI has been shown to be efficient for

283aligning multimodal images [42, 106] and 2-D/3-D rigid and nonrigid registration

284[107]. The reference and target images are considered as a collection of statistically

285independent samples of a discrete random variable, and the MI and NMI evaluate

286the amount of information in a reference image about a target image (and vice

287versa) from statistical dependencies between the samples in the corresponding

288locations.

289Let X ¼ fxi; i ¼ 1; . . . ; ng and Y ¼ fyj; j ¼ 1; . . . ;mg be finite signal sets for

290the reference and target image, respectively, and let x0i ¼ fðxiÞ and y0j ¼ cðyjÞ be
291one-to-one signal mappings: f : X ! X0 ¼ fx0i; i ¼ 1; . . . ; ng and c : Y ! Y0

292¼ fy0j; j ¼ 1; . . . ;mg. Because the image signals are treated as independent sam-

293ples, the MI and NMI functions are invariant both to arbitrary permutations of the

294corresponding locations ðp; p0 ¼ TgðpÞÞ in the images and to arbitrary one-to-one

295mappings ðf;cÞ of their signal sets. Let pi, qi, and pij denote the (empirical)

296marginal probability of the target signal xi, the reference signal yi, and the

297corresponding pair ðxi; yjÞ, respectively: pi ¼ PrðIrðpÞ ¼ xiÞ, qj ¼ PrðItðp0Þ ¼ yjÞ,
298and pij ¼ PrðIrðpÞ ¼ xi; Itðp0Þ ¼ yjÞ, obtained by normalizing marginal and joint

299intensity histograms of the overlapping areas of Ir and It, respectively. Then the MI

300and NMI are defined as:

MIðIr; ItÞ ¼ HðIrÞ � HðIrjItÞ ¼ HðItÞ � HðItjIrÞ ¼
Xn
i¼1

Xm
j¼1

pij log
pij
piqj

(9.8)

NMIðIr; ItÞ ¼ HðIrÞ þ HðItÞ
HðIr; ItÞ ¼ 1þMIðIr; ItÞ

HðIr; ItÞ (9.9)

301where Hð�Þ is the Shannon’s entropy HðIrÞ ¼ �Pn
i¼1 pi log pi; and HðItÞ

� ¼
302�Pm

j¼1 qj log qjÞ of the signals, Hð�; �Þ is their joint entropy HðIr; ItÞ ¼ �Pn
i¼1

�
303

Pm
j¼1 pij log pijÞ, and Hð�j�Þ is the conditional entropy HðIrjItÞ ¼ �Pn

i¼1

� Pm
j¼1 pij

304log pijj ¼ �Pn
i¼1

Pm
j¼1 pij log(pij=qjÞÞ. The following obvious properties hold

305HðIrÞrHðIrjItÞr0, HðIr; ItÞ ¼ HðIrÞ þ HðIrjItÞ ¼ HðItÞ þ HðItjIrÞ, and HðIr; ItÞ ¼
306HðIrÞ þ HðItÞ � HðIrjItÞ
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307 Image registration by minimizing the joint entropy was first proposed by

308 Collignon et al. [108] and Studholme et al. [109]. However, this cost function

309 was highly sensitive to the area of overlap between the images. To decrease the

310 sensitivity, Viola [105] and Maes and Collignon [72] proposed to measure the MI

311 and applied it to registering MRI and matching a 3-D object model to a real scene.

312 Later, Studholme [104] proposed the NMI as a similarity measure that depends

313 less on the overlap area and thus avoids misregistration. The MI and NMI

314 generally work with the entire image data and directly with image intensities,

315 but are rarely applied to points extracted from the area border as proposed

316 by Rangarajan et al. [110]. Zhu [111] introduced the cross-entropy as an alterna-

317 tive information-based similarity measure. Comparisons between the MI and

318 other information-based measures in the application to image registration can be

319 found in [112].

320 Estimation of marginal and joint probabilities plays an important role in the MI/

321 NMI-based image registration. Wells et al. [106] employed widely used nonpara-

322 metric Parzen window estimates [113], whereas Maes and Collignon [72] employed

323 conventional normalized joint histograms. Niu [114] improved the approach in [72]

324 by using Kriging estimation (KE). The Parzen window-based estimates result in

325 differentiable MI/NMI functions and corresponding optimization techniques. The

326 histogram-based estimates lead to a derivative-less multivariate optimization (e.g.,

327 the Powell’s direction set method [72]).

328 The MI/NMI-based registration is widely used in medical image analysis.

329 However, it has a few drawbacks. The lack of signal (intensity) values in some

330 images, i.e., lossy rather than one-to-one signal mapping, and the amount and

331 distribution of image noise may heavily influence the registration accuracy. Also,

332 the MI and NMI do not account for spatial relationships between adjacent pixels or

333 voxels. To improve the MI/NMI-based registration by using spatial signal relation-

334 ships, the MI is sometimes combined with the gradient information [74], or limited

335 to within clusters of feature points [115], or combined with the correlative edge

336 deviation [116].

337 Markov–-Gibbs random filed (MGRF)-based similarity measure proposed in

338 [117, 118] is derived from an MGRF model of target images. The reference

339 image is used as a training sample to learn a characteristic structure of pairwise

340 pixel or voxel dependencies, called interactions, such as e.g., in Fig. 9.3, and Gibbs

341 potential functions of signal co-occurrences on these pairs.

342 Let N denote a finite set of 2-D (or 3-D) coordinate offsets D ¼ ðdx; dyÞ (or (dx,
343 dy, dz)) defining a spatially uniform family of interacting pixel (voxel) pairs, called

344 neighbors. Each pair of the neighbors is the second-order clique of an interaction

345 graph with nodes in the pixels (voxels) and edges between the neighbors. The

346 target-to-reference similarity in their overlap area W is measured by the relative

347 Gibbs energy of pairwise target signal co-occurrences:

EðIt;WÞ ¼
X
D2N

lDVT
DFDðIt;WÞ �

X
D2N

lD
X

ðy;y0Þ2Y2

VDðy; y0ÞFDðy; y0 It;Wj Þ (9.10)

244 F. Khalifa et al.



348where VD ¼ ðVDðy; y0Þ : ðy; y0Þ 2 Y2Þ is the learned potential function of signal

349co-occurrences over the second-order clique family with the inter-node coordi-

350nate offset D, lD is the relative cardinality of this family on the area W, and

351FDðIt;WÞ ¼ ðFDðy; y0jIt;WÞ : ðy; y0Þ 2 Y2Þis the empirical probability of signal

352co-occurrences in this clique family on the area W. The geometric transforma-

353tion for aligning It with Ir maximizes the MGRF energy of (9.10). Experiments

354in global affine 3-D image registration [117, 118] using an automatic initializa-

355tion followed by gradient search suggest that the MGRF similarity function

356aligns complex 2-D/3-D objects more accurately than more conventional popu-

357lar measures. An example of the MGRF-based 3-D image registration is pre-

358sented in Fig. 9.4.

359Other similarity/cost measures in addition to the above most well-known ones

360have been proposed and applied successfully to different image registration

y

z

x

Fig. 9.3 Characteristic

pairwise voxel interaction in a

3-D MGRF image model

Fig. 9.4 MGRF-based 3-D image registration: from left to right – the reference, target images, the

3-D affine transformation of the target, and the checkerboard visualization of the co-aligned

reference and transformed target
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361 problems, e.g., ratio–image uniformity (RIU) (also known as variation of intensity

362 ratios) [119, 120], partitioned intensity uniformity (PIU) (also known as variance of

363 intensity ratios) [51, 121–124], variance of gray values within segments [125, 126],

364 histogram entropy of difference images [127], histogram clustering and dispersion

365 [41, 108, 128], zero crossings in difference images [stochastic sign change (SSC)

366 and deterministic sign change (DSC) criteria] [129–136], local low-order Taylor

367 expansions determined by the image gray values [137], cepstral echo filtering

368 [138], and optical flow field [139, 140]. However, some of these methods get

369 good registration results only after complex image preprocessing to remove ana-

370 tomic background and form the target and reference images including only the

371 object pixels or voxels.

372 9.2.2 Geometric Transformations

373 Geometric mapping, or transformation Tgð�Þ, relates the target plane or volume

374 to the reference one, i.e., aligns or register the target to the reference to establish

375 one-to-one correspondence between their pixels or voxels. Medical images always

376 have nonuniform geometric differences (deformations) due to the nature of objects-

377 of-interest and image acquisition including scanner-induced deformations, patient

378 movements, surgical interventions, etc. The mapping model depends on the

379 assumed target-to-reference deformations, required registration accuracy, and

380 images to be registered [141].

381 All the mapping models fall into two basic categories: rigid (global) and

382 nonrigid (elastic) transformations. The rigid models (see, e.g., [6, 11]) transform

383 uniformly the whole 2-D or 3-D images, e.g., translate, rotate, scale, and/or shear

384 every depicted object just in the same manner. While these models are sufficient in

385 many applications, medical objects to be co-aligned always have spatially variant

386 geometric differences. Such complex deformations of images suggest more flexible

387 elastic models that register a target to a reference image by spatially variant local

388 warping (see, e.g., [12–25]). Common global models include affine transforma-

389 tions, similarity transformations being a frequent particular case, and perspective

390 projections. Sometimes more general polynomial transformations of the target 2-D

391 area or 3-D volume1 are also associated with the global models. Some examples of

392 2-D rigid transformations are shown in Fig. 9.5, and Fig. 9.6 demonstrates a very

393 simple nonrigid transformation. Elastic models produce considerably more flexible

394 image transformations by using, e.g., radial basis functions (RBF), physical contin-

395 uum models (viscous fluids), or large deformation models (diffeomorphisms).

396 A comprehensive analysis of the popular nonrigid transformations can be found

397 in [142].

1 For example, a quadratic 2-D mapping of target points ðx; yÞto reference points ðx0; y0Þ:
x0 ¼ a00 þ a10xþ a01yþ a20x

2 þ a02y
2 þ a03xy; y

0 ¼ b00 þ b10xþ b01yþ b20x
2 þ b02y

2 þ b03xy;
with 12 parameters aij; bij, to be estimated (e.g., from the six exact correspondences of the points).
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398Rigid or global transformations are conveniently converted into linear

399(matrix–vector) operations by using so-called homogeneous coordinates. Every

400Cartesian 2-D or 3-D point coordinates p produce an infinite set of the equivalent

4013-D or 4-D, respectively, homogeneous coordinates ~p such that the initial Carte-

402sian coordinates are simple ratios of the homogeneous coordinates:

if p ¼ x
y

� �
then ~p ¼¼

~x ¼ t � x
~y ¼ t � y

t

2
4

3
5and if p ¼

x
y
z

2
4
3
5 then ~p ¼¼

~x ¼ t � x
~y ¼ t � y
~z ¼ t � z

t

2
664

3
775

403with an arbitrary scale coordinate t, i.e., x ¼ ~x=t, y ¼ ~y=t, etc. The global 2-D

404translation by coordinate-wise steps dx and dy, rotation by y, coordinate-wise
405scaling by factors ax and ay, and shearing by factors zx and zy are exemplified in

406Fig. 9.7.

407An Affine transformation maps straight lines into straight lines while preserving

408properties of the lines to be parallel or intersect but not preserving neither lengths

409nor angles between the lines. Therefore, geometric objects change their shapes.

Fig. 9.5 Rigid transformation: from left to right – the reference image and similarity, affine, and

projective transformations of the target image

Fig. 9.6 Nonrigid transformation: from left to right – the initial, transformed, and difference

images
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410 A planar (2-D) affine transformation can be described by independent translation,

411 rotation, scaling, and shearing (seven parameters in total):

~x0

~y0

1

2
64

3
75 ¼

a11 a12 a13

a21 a22 a23

0 0 1

2
64

3
75

~x

~y

1

2
64
3
75

�
1 0 dx
0 1 dy
0 0 1

2
64

3
75

ax 0 0

0 ay 0

0 0 1

2
64

3
75

cos y � sin y 0

sin y cos y 0

0 0 1

2
64

3
75

�
1 0 0

zy 1 0

0 0 1

2
64

3
75

1 zx 0

0 1 0

0 0 1

2
64

3
75

~x

~y

1

2
64
3
75

(9.11)

412 The affine parameters are uniquely determined from the known coordinates of

413 three corresponding pairs of points forming triangles to be co-aligned in the target

414 and reference images. A 3-D affine transformation depends on the 12 parameters

415 that can be determined from the known four corresponding pairs of points forming

416 the tetrahedrons to be co-aligned in the images:

~x0

~y0

~z0

1

2
664

3
775 ¼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 1

2
664

3
775

~x
~y
~z
1

2
664
3
775 (9.12)

=
100
010
001

gT =
100
00
00

y

x

gT α
α −

=
100
0cossin
0sincos

θθ
θθ

gT

=
100

10
01

y

x

gT δ
δ

=
100
01
001

ygT

y − shearing

ζ =
100
010
01 x

gT
ζ

Translation x − shearing

Identity Scaling Rotation

Fig. 9.7 Particular cases of a rigid 2-D affine transformation ~p0 ¼ Tg
~p
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417Similarity transformation is a particular case of the affine transformation that

418preserves shapes of objects. It does not affect angles between lines while changing

419lengths of the lines and positions of points because it accounts for only translation,

420rotation, and uniform scaling ax ¼ ay ¼ a. With the unit scale factor a ¼ 1 (i.e.,

421with only translation and rotation), it is called the orthogonal transformation.
422The affine parameters for the 2-D similarity transformation (a11 ¼ a cos y,
423a12 ¼ �a sin y, a13 ¼ dx, a21 ¼ a sin y; a22 ¼ �a cos y, and a23 ¼ dy) depend

424on the four parameters (dx, dy, a, and y) that can be determined from the known

425coordinates of two corresponding pairs of points in the images. The 3-D similarity

426transformation depends on seven parameters: three translations, three rotation

427angles, and one scaling factor. If the point-to-point correspondences are noisy

428or inaccurate, the affine parameters are determined from a large number of point-

429to-point correspondences by the least squares [143] or clustering [144] methods.

430Perspective projection transformations also map lines to lines, but do not

431necessarily preserve their property to be parallel. Optical image acquisition per-

432forms an exact 3-D to 2-D projection, if the lens and sensor nonlinearities are not

433taken into account:

~x0

~y0

~z0

2
4

3
5 ¼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

2
4

3
5

~x
~y
~z
1

2
664
3
775 (9.13)

434When an almost flat frontal scene ðz � constÞ is projected, the above relations

435between the 3-D ðx; y; zÞ and 2-D ðx; yÞ points: x0 ¼ a11xþa12yþa13zþa14
a31xþa32yþa33zþa34

and

436y0 ¼ a21xþa22yþa23zþa24
a31xþa32yþa33zþa34

can be simplified to x0 ¼ b11xþb12yþb13
c11xþc12yþ1

and y0 ¼ b21xþb22yþb23
c21xþc22yþ1

.

437Nonrigid or elastic transformations are needed when geometric differences

438between the target and reference images are spatially variant and global transforma-

439tions become inadequate, i.e., errors of the rigid registration are too large and their

440probability distributions vary with the location [56, 59]. Medical image analysis

441frequently employs spline-based nonrigid mapping models including thin-plate

442splines (TPS) [15], elastic body splines (EBS) [17], and cubic B-splines [14].
443TPS or surface splines [145, 146] are the most popular examples of using RBF to

444model spatially variant geometric deviations in image registration. Originally

445introduced by Goshtasby [147] in remote sensing, this mapping model was applied

446then by Grimson [148] and Bookstein [15] to medical images. At present, the TPS

447are widely used in medical image registration (see, e.g., [149–152]) to approximate

448a dense deviation field with a due balance between smoothness and accuracy of the

449registration. Given N control points fðxk; yk; fkÞ : k ¼ 1; 2; . . . ;Ng of a continuous

4502-D function, f ðx; yÞ, the TPS interpolates all the points as follows [142]:

f ðx; yÞ ¼ a00 þ a10xþ a01yþ
XN
k¼1

Fkr
2
k lnðr2kÞ (9.14)
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451 where r2k ¼ ðx� xkÞ2 þ ðy� ykÞ2 þ �2is the augmented Cartesian distance between

452 the points ðx; yÞ and ðxk; ykÞ, the value �2 acting as a stiffness parameter, and

453 a00; a10; a01 and Fk; k ¼ 1; 2; . . . ;N are the numerical parameters determined by

454 solving a system of N + 3 linear equations. This model describes deformations of an

455 infinite plate under N loads causing fixed deflections at the control points. The latter

456 provide N linear equations that come from (9.14) by letting f ðxk; ykÞ ¼ fk, and the

457 three more equations come from constraining the TPS to ensure that the plate will

458 not translate or rotate:

XN
k¼1

Fk ¼ 0;
XN
k¼1

xkFk ¼ 0;
XN
k¼1

ykFk ¼ 0 (9.15)

459 Due to combined affine and non-affine warping, the TPS captures both the global

460 rigid and local nonrigid deviations and gives good registration accuracy. However,

461 the number of parameters grows linearly with the number of control points, and

462 computations become quickly time consuming. Considerable attention has been

463 paid to decreasing the TPS complexity while keeping reasonable accuracy (see,

464 e.g., [153–156]). A comprehensive study of the TPS-based registration of medical

465 images can be found in [157]. The TPS is easily extended to 3-D images (e.g.,

466 [158]) by modifying (9.14):

f ðx; y; zÞ ¼ a000 þ a100xþ a010yþ a001zþ
XN
k¼1

Fkr
2
k lnðr2k Þ (9.16)

467 where r2k ¼ ðx� xkÞ2 þ ðy� ykÞ2 þ ðz� zkÞ2 þ �2 and adding one more constraint:

XN
k¼1

zkFk ¼ 0 (9.17)

468 An EBS was proposed in [17] for landmark-based registration of 3-D breast

469 MRI. The EBS is a solution to the Navier–Cauchy PDE of linear elasticity describ-

470 ing the equilibrium displacements of a homogeneous, isotropic, and elastic material

471 under a radially symmetric polynomial force. As was reported in [17], the EBS

472 outperformed the TPS in the registration accuracy.

473 Cubic B-splines are the most widely used nonrigid free-form deformation (FFD)

474 models. These spline models were introduced first by Sederberg and Parry [159] in

475 computer graphics and used then by Rueckert et al. [14] for registering the breast

476 MRI. In contrast to the TPS [15] and EBS [17], the locally controlled B-splines

477 remain computationally efficient even for a very large number of control points.

478 Because their basis functions have a limited support, any movement of a control

479 point affects only a local neighborhood of that point. An FFD-based registration of

480 the images in Fig. 9.6 is illustrated in Fig. 9.8.

481 Let F ¼ ðFl;m : l ¼ 0; 1; . . . ; L� 1;m ¼ 0; 1; . . . ;M � 1Þ denote a lattice of

482 L�M control points Fl;m with uniform linear spacing g. Let ðx; yÞ denote the
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483Cartesian coordinates of planar points in the g-units and let Bb c be the integer part
484of a real-valued number B. The FFD model is defined by the 2-D tensor product of

485standard uniform cubic 1-D B-splines bkð�Þ [159]:

f ðx; yÞ ¼
X2
i¼�1

X2
j¼�1

biðsÞbjðtÞFlþi;mþj (9.18)

486where l ¼ xb c, m ¼ yb c, ðs; tÞ : s ¼ x� l 2 ½0; 1Þ, and t ¼ y� m 2 ½0; 1Þ are the

487relative position of the point ðx; yÞ with respect to the nearest lattice points ðl;mÞ,
488ðlþ 1;mÞ, ðl;mþ 1Þ, ðlþ 1; mþ 1Þ, and bkðuÞ are the kth basis function,

489u 2 ½0; 1Þ; k ¼ �1; . . . ; 2, of the uniform cubic B-spline [160, 161]:

b�1ðuÞ ¼ 1
6
ð�u3 þ 3u2 � 3uþ 1Þ; b0ðuÞ ¼ 1

6
ð3u3 � 6u2 þ uÞ

b1ðuÞ ¼ 1
6
ð�3u3 þ 3u2 þ 3uþ 1Þ; b2ðuÞ ¼ 1

6
u3

(
(9.19)

490The control points are the FFD parameters, and the resolution of the lattice F (or

491the mesh in the 3-D case) determines the number of the control points and therefore

492the computational complexity. The large lattice spacing g permits the representation

493of nonrigid deviations of the whole image, whereas the fine lattice allows for

494modeling highly local nonrigid deviations. The 3-D FFD is represented by the

4953-D tensor product of the same 1-D uniform cubic B-splines:

f ðx; y; zÞ ¼
X2
i¼�1

X2
j¼�1

X2
k¼�1

biðsÞbjðtÞbkðwÞFlþi;mþj;nþk (9.20)

496where n ¼ zb c and w ¼ z� n 2 ½0; 1Þ
497The TPS, EPS, and cubic B-spline models yield an overall smooth image

498deformation but become problematic when desired local deformations have to be

499limited to only specific image parts. To cope with such deformations, the control

500points have to be well distributed over the image and prevent deformations in

501regions that should not be changed [162].

Fig. 9.8 FFD registration: from left to right – the reference, target, the registered target,

deformation field, and error images
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502 More flexible RBF-based models (e.g., [162, 163]) include special parameters

503 into the basis functions to control the locality of deformations:

f ðpÞ ¼
XN
k¼1

FkRkðpÞ (9.21)

504 where RkðpÞ is a real-valued RBF depending on the distance rkðpÞ ¼ jp� pkj
505 between p and the control point pk, and Fk specifies the influence of this RBF

506 onto the value f ðpÞ (here, the distance rkðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xkÞ2 þ ðy� ykÞ2

q
in the 2-D

507 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xkÞ2 þ ðy� ykÞ2 þ ðz� zkÞ2

q
in the 3-D case). Typical examples are

508 multiquadric (MQ), Gaussian, and inverse MQ-based RBF models with

509 RkðpÞ ¼ ðr2kðpÞ þ �2Þ0:5, expð�r2kðpÞ=ð2s2kÞÞ, ðr2k ðpÞ þ �2Þ�0:5
, respectively. The

510 parameters Fk : k ¼ 1; 2; . . . ;N are estimated by letting f ðpkÞ ¼ fk for the control

511 points k ¼ 1; 2; . . . ;N.
512 The MQ-based RBF was investigated for both image registration [141] and

513 deformation [163] largely influences locations being far off the control point pk.

514 Conversely, the inverse MQ (e.g., [164]) and Gaussian RBFs (e.g., [162, 165, 166])

515 decrease their influence with the growing distance to the control point. Local

516 properties of the TPS were compared with the Gaussian and MQ RBF models in

517 [163]. Moreover, a comparative study by Franke [167] has found that monotoni-

518 cally decreasing RBFs perform worse than the monotonically increasing RBFs and

519 the MQ followed by the TPS produced the best accuracy in interpolating randomly

520 spaced data. An excellent review of the RBF models can be found in [168].

521 When only a fraction of the control points is used to find the value f ðpÞ, the
522 RBFs are called compactly supported. Wendland [169] described a family of

523 compactly supported and positive definite RBFs such that the resulting system of

524 equations is always solvable. Later Fornefett et al. [170] introduced an elastic

525 registration using positive definite functions of compact support to align pre- and

526 postoperative 2-D and 3-D tomographic images in the case of tumor resection.

527 Image registration results with the globally defined RBFs and the compactly

528 supported RBFs were compared in [171].

529 Many other efficient and sophisticated nonrigid registration techniques have

530 been developed for various medical applications: see, e.g., [12–25]. Recently,

531 El-Baz et al. [172] and Khalifa et al. [173] proposed to register a segmented target

532 object to the reference one by accurate co-alignment of their conjugate internal

533 closed contours. As shown in Fig. 9.9, a distance map is generated inside each

534 object by finding for every inner point the closest distance to the object’s boundary.

535 The map is used to form a collection of separate, equispaced iso-contours within the

536 object, the number of the contours depending generally on the required registration

537 accuracy and speed. Correspondence between the target and reference iso-contours

538 is evaluated by either their NCC (normalized cross-correlation) [172] or solving a

539 special PDE [173]. In [172], the target iso-contours are evolved under a specific

540 exponential speed function to fit the conjugate reference contours. In [173], the

541 authors avoid using the exponential speed function by solving Laplace’s PDE
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542between respective iso-contours. The solution of Laplace’s equation results in

543intermediate equipotential surfaces (dashed lines in Fig. 9.10) and streamlines

544(filed lines) that connect both iso-contours (e.g., PA and PB in Fig. 9.10). These

545streamlines are defined as being everywhere orthogonal to all equipotential surfaces

546(e.g., the line connecting the points Pai and Pbj in Fig. 9.10) and are used to find the

547point-to-point correspondences between both boundaries. Deforming a medical

548object by inner contours is more accurate than by deforming a lattice: see, e.g.,

549Fig. 9.11 showing the application to the retinal images in Fig. 9.1.

5509.2.3 Numerical Optimization

551As shown in Sect. 9.2.1, cost or similarity functions for image registration are

552typically invariant to expected target-to-reference signal transformations due to the

553use of either specific functions (e.g., the MI or NMI) or explicit parametric signal

Fig. 9.9 Iso-contour-based kidney registration: from left to right in the upper row – the reference

image, its distance map, and iso-contours; in the middle row – the target image, its distance map

and iso-contours; in the bottom row – the aligned target and checkerboard visualization before and

after the registration

9 State-of-the-Art Medical Image Registration Methodologies: A Survey 253



554 models and analytical parameter estimates (e.g., contrast and offset in deriving the

555 NCC). But these functions depend on the global or elastic geometric transforma-

556 tions Tgð�Þ only implicitly, so that transformation parameters ensuring the best

557 registration (i.e., the maximum similarity or minimum cost) have to be searched

558 for by numerical techniques.

559 In the space of transformation parameters, the goal functions are usually multi-

560 modal, and the global optimum – the smallest cost or the largest similarity – with

561 respect to all the possible solutions has to be found. Generally, global optimization

562 means a full exhaustion of all the local optima that is feasible only in a parameter

563 space of low cardinality (e.g., only translations). Today’s global techniques con-

564 strain the exhaustion by adaptive parameter space exploration (e.g., to refine

565 probabilities of candidate solutions) combined with local optimization. The latter

566 explores a goal function only in a vicinity of each current location in the parameter

567 space to successively move toward and eventually converge to the closest optimum.

Fig. 9.11 Iso-contour-based retinal registration: from left to right in the upper row – the reference

and target images and their respective iso-contours; in the bottom row – the reference and

registered target images and the checkerboard visualization before and after the registration

Fig. 9.10 Two dimensional illustration of the Laplace method
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568The local techniques are sufficient and efficient for a continuous and well-behaved

569function with only one optimum [7] or, at least, when the search can be initiated

570closely to the global optimum. Medical image registration widely uses various local

571methods including the Nelder–Mead downhill simplex method [174], Powell’s
572direction set method [175], the Levenberg–Marquardt search [176], quasi-Newton
573(variable metric) methods [177], and so forth. In many cases, these methods are

574efficient and result in sufficiently accurate registration in spite of their limited

575capture range and convergence to a local optimum in the parameter space. How-

576ever, in general, no single best method exists for optimal image registration.

577Multiresolution techniques (e.g., [178–181]) tend to increase the probability of

578finding the global optimum in the parameter space. The images are registered first at

579a low resolution, the optimal transformation found initiates the search at the next

580resolution level, and the process is repeated until the highest resolution level is

581reached. In practice, the multiresolution techniques were relatively robust to image

582noise, accelerated the optimization, and increased the capture range [181]. How-

583ever, the search still is likely trapped in local optima because the global optimum

584may be absent at lower resolutions [1, 180]. More sophisticated techniques, includ-

585ing energy minimization, are used to accurately evaluate the transformation

586parameters [7]. A regularizing term can be added to the energy to penalize

587undesired geometric deviations of the target; see, e.g., [182, 183]. To make the

588global optimum more probable, complex stochastic optimization techniques, such

589as genetic algorithms (GA) [29], simulated annealing (SA) [30], particle swarm

590optimization (PSO) [31], evolutionary strategies (ES) [184], and the tabu search
591[185], are used sometimes.

592Comprehensive comparisons of deterministic (e.g., steepest ascent or quasi-

593Newton) and stochastic (e.g., ES) gradient-based algorithms for nonrigid

594MI-based image registration with respect to speed, accuracy, and robustness can

595be found in [186]. Viola and Wells [6] found the maximum MI using the gradient

596ascent method. Thévenaz et al. [187] minimized the SSD cost function with the

597Levenberg–Marquardt method, while Wolberg and Zokai [188] applied the same

598registration to, respectively, deformed target images. Powell’s multidimensional

599direction set method was used by Maes and Collignon [72]. The SA was applied in

600[189] to minimize the dissimilarity between the corresponding pairs of points, and

601the GA was used for image registration in [190]. Matsopoulos et al. [28] compared

602the accuracy and efficiency of the Nelder–Mead downhill simplex method, SA, and

603GA in registering retinal images under the affine and projective transformations.

6049.2.4 Image Resampling

605Geometric transformations assume a continuous image plane or volume. With

606respect to digital images on finite lattices, most of the transformations involve

607resampling, i.e. restoration of signals (e.g., gray levels) in locations mapped to

608the lattice points by transformation from the initial image signals [57]. From the

609theoretical viewpoint, only finite (band-limited) functions can be restored exactly
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610 from the lattice samples. However, natural images very rarely possess this property,

611 so in practice only an approximate “continuous” image can be obtained by inter-

612 polating available discrete pixel- or voxel-wise signals.

613 Let N and N0 denote an initial and destination image plane or volume, respec-

614 tively, and let Tg : N ! N0 and T�1
g : N0 ! N be a particular point-to-point geo-

615 metric transformation (mapping) of N into N0 and the inverse mapping. Forward
616 resampling maps each pixel (voxel) p of the lattice in N to N0 line with Tg and

617 interpolates the mapped signals to find the pixel-wise (voxel-wise) signals for the

618 lattice on N0. As shown in Fig. 9.12, this method may leave holes and/or produce

619 signal overlaps in the resampled images. Backward resampling escapes these

620 drawbacks by using the inverse mapping and interpolating the signals on the initial

621 plane (volume) N.

622 Popular interpolation methods, such as the nearest neighbor, bilinear, bicubic

623 spline, and radial symmetric kernel interpolation, vary in computational complexity

624 and image restoration quality, the nearest neighbor and bilinear interpolation being

625 the fastest. Most of these methods compute a weighted average of signals in the

626 pixels (voxels) in an immediate neighborhood of the mapped location. Their

627 detailed description is beyond the scope of this chapter. (A comprehensive analysis

628 can be found in [191].)

629 Let, for simplicity, a 2-D image lattice have integer pixel coordinates, and let

630 Bb c denote, as before, the integer part of a real-valued number B. The nearest
631 neighbor interpolation assigns to a point (x, y) in the restored continuous image the

632 gray value I(l, m) of the closest pixel l ¼ xþ 0:5b c; m ¼ yþ 0:5b cð Þ. The bilinear
633 interpolation combines the signals in up to four neighboring pixels.

Iðx; yÞ ¼ ð1� sÞð1� tÞIðl;mÞ þ sð1� tÞIðlþ 1;mÞ þ tð1� sÞItðl;mþ 1Þ
þ stIðlþ 1;mþ 1Þ (9.22)

634 and the bicubic interpolation combines up to 4� 4 neighbors:

Iðx; yÞ ¼
X2
i¼�1

X2
j¼�1

b½3�ðs� iÞb½3�ðt� jÞIðlþ i;mþ jÞ (9.23)

Fig. 9.12 Image resampling methods: from left to right – reference, target images, forward, and

backward resampling for registration
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635where l ¼ xb c, m ¼ yb c, s ¼ x� l and t ¼ y� m, and b½3�ðuÞ is the basic cubic

636B-spline:

b½3�ðuÞ ¼
1
6
ð4� 6juj2 þ 3juj3Þ if jujb1

1
6
ð2� jujÞ3 if 1<jujb2

0 if juj>2

8<
: (9.24)

637The bicubic interpolation involves more computations (e.g., �10 times more

638than the nearest neighbor one). But it is more accurate than the two others and does

639not produce false boundaries as the nearest neighbor interpolation. Generally, the

640B-splines are very effective interpolants [192] having, in accord with Thévenaz

641et al. [191], the superior performance than any other polynomial basis function of

642the same order. The zero-order B-spline coincides with the nearest neighbor inter-

643polant: b½0�ðuÞ ¼ 1 if juj<0:5 and 0 otherwise. The n-order B-spline is obtained by

644convolving the ðn� 1Þ-order one with b½0�ðuÞ. In particular, the first-order B-spline
645is the linear interpolant: b½1�ðuÞ ¼ 1� juj if juj<1 and 0 otherwise.

646The use of cubic splines in image interpolation was pioneered by Hou and

647Andrews [193]. In the limit ðn ! 1Þ, the B-spline converges to the Gaussian,

648and the corresponding interpolants rapidly converge to the sin c function sin pu=pu
649being optimal for exact restoration of finite functions [194]. However, even if the

650images were strictly bandlimited, the exact restoration is impossible because of the

651infinite support of the sin c function [191]. A truncated (usually called windowed)

652sin c function [195] uses a limited number of neighbors for interpolation but at the

653expense of larger restoration errors and artifacts [196].

654The above resampling is not rotationally invariant. To obtain such invariance,

655one needs a radially symmetric interpolant combining a resampled value from the

656pixels within a circular area centered at the point of interest [197]. Popular

657examples of radially symmetric interpolants with elegant analytical properties are

658the Gaussians (e.g., [198]) and RBF (e.g., [199]).

6599.3 Medical Image Registration for the Last Decade

660Image registration in (9.1) is an (iterative) estimation of a parametric transforma-

661tion ensuring the maximum similarity, or minimum cost, between the transformed

662target and reference images (Fig. 9.13). Roche et al. [200] considered the medical

663image registration as a maximum likelihood estimation problem to show that it fits

664to well-known similarity measures (e.g., NCC, correlation ratio, and MI) and used

665Powell’s optimization method for rigid registration of 3-D brain images acquired

666for ten patients from different modalities (MR-T1, MR-T2, CT, and PET) and of an

667MR-T1-weighted scan to an intra-operative 3-D US image.

668Likar and Pernus [201] proposed a hierarchical image subdivision strategy to

669perform an elastic registration of three differently stained serial transverse sections
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670 of muscle fibers using the NMI. The nonrigid matching problem was decomposed

671 into a TPS-based elastic interpolation of multiple local rigid registrations of sub-

672 images of decreasing size. The marginal and joint intensity probability distributions

673 were estimated by normalizing the joint intensity histogram.

674 Topology-preserving intersubject registration of medical images is of particular

675 interest because no new structures appear, no existing structures disappear, and the

676 connectedness of and neighborhood relationships between the structures are not

677 affected. Musse et al. [202] proposed a parametric topology-preserving deformable

678 image registration using a nonlinear Gauss–Seidel block algorithm to minimize the

679 inter-image energy. Elegant linear constraints derived give the necessary and

680 sufficient conditions for the determinant of the Jacobian of such transformations

681 to be continuously positive everywhere. The method applies to the 2-D images only

682 and is restricted to the first-order B-spline deformations.

683 A projection-based (or vector correlation) image registration algorithm proposed

684 by Cain et al. [203] operates only on vectors as opposed to images. When compared

685 with the classical NCC-based techniques, it was computationally efficient

686 and accurate on images with a specific fixed-pattern noise of low SNR. However,

687 only a global tip and tilt in an image can be removed, and the registered images

Yes

No

Select the appropriate 
transformation model and

initialize its parameters

Target
image(s)

Reference 
image(s) 

Compute the 
appropriate cost 

function

Good Match

Optimization and update 
of the transformation 

parameter  
Resampling 

Done

Fig. 9.13 Iterative image registration
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688retain all other distortions (e.g., caused by high-order atmospheric effects and

689laser speckles).

690Kaneko et al. [204] proposed a parametric registration with an increment sign

691correlation (ISC) extending the NCC and coping with some occlusions, shadows,

692saturation, or illumination highlights of images or objects to be registered. But it

693fails if the occluding object has nonuniform brightness. A more robust modified ISC

694in [205], called selective correlation coefficient (SCC), filters the irrelevant pixels

695out by deriving a mask from the brightness increments.

696Feature-based registration methods determine the transformation parameters

697from a set of control points extracted from each image. To improve the perfor-

698mance, recent studies (e.g., [206–208]) select the control points on the basis of local

699spatial frequencies of the signals. Liu et al. [206, 207] and Elbakary and Sundar-

700eshan [208] register multimodal medical images using banks of local Gabor and

701Gaussian filters to evaluate the frequencies. However, the number and character-

702istics of filters in the bank for given input images is to be selected ad hoc.

703Extending the phase correlation to subpixel registration of multispectral images

704by analytic representation of down-sampling was pioneered by Foroosh et al. [36].

705In spite of the analytic closed-form estimate of the subpixel translation, this method

706lacks the ability to evaluate mutual shifts greater than one pixel. Moreover, the

707phase-based similarity accounts for only translation, so more complex deviations

708may not be compensated appropriately.

709Widely used in atlas-based segmentation, level set techniques have been tried for

710image registration, too (e.g., [209–211]). Vemuri et al. [209] and Bertalmio et al.

711[210] introduced a PDE-based joint registration and segmentation algorithm

712deduced from the general Osher–Sethian’s level set evolution [212]. The higher

713dimensional level set function was replaced in [209] with the intensity function of

714an image to be registered (the target image), thus employing one PDE for registra-

715tion. This algorithm has been tested on registering 3-D MRI. The registration of

716images from different modalities requires a different speed function. Two PDEs,

717one for morphing the image intensities as in [209] and the second for morphing the

718image contours, were used in [210]. Duay et al. [211] included more local prior

719information (e.g., the object’s gray level distribution, shape, and contour curvature)

720in addition to the atlas. The main advantage is that any type of contours (closed,

721open, connected, or disconnected) can be registered. But the level set registration on

722the image intensities in [209, 210] can cause misregistration in the presence of local

723intensity differences between the images or a lesion in one of the images. The

724algorithm in [211] was tested only on 2-D synthetic and natural medical images.

725An MI-based FFD registration of 3-D CT and PET chest images by Mattes et al.

726[13] uses continuous estimates of probability densities of signals with the Parzen

727windows [113] and a hierarchical multiresolution scheme to escape local minima

728and alleviate the need for accurate initialization. The goal function was split into

729two terms associated with the rigid and nonrigid deformations, respectively, to get

730both the criterion and its gradient in the closed form and use a quasi-Newton

731optimization technique. However, the authors pointed out that the results were

732unsatisfactory in the regions with larger deformations, such as at the diaphragm
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733 and abdomen. Also, only uniform image grids can be used, and this approach

734 assumes a functional relation between the acquired transmission and emission

735 PET images. A fully automated 3-D image registration by Zhu [111] uses cross-

736 entropy (also called relative entropy or Kullback–Leibler distance) as a similarity

737 measure and a multiresolution optimization. This approach had been tested on

738 seven MR and nuclear transmission and emission brain images using the trilinear

739 interpolation for volume resampling. However, it accounts for the rigid transforma-

740 tions only and is time consuming (computationally expensive).

741 Rohlfing et al. [182] used the NMI for nonrigid FFD registration of pre- and

742 postcontrast breast MRI. Assuming the volume preserving local deformations, an

743 incompressibility constraint – the unit determinant of the Jacobian of transforma-

744 tion – has been used. The goal function was penalized by adding the absolute log-

745 Jacobian of the transformation or the squared second derivative for each voxel. The

746 method was applied after making an initial affine transformation. An uphill-simplex

747 algorithm restricted to the steepest ascent direction and a multiresolution optimiza-

748 tion strategy were used to search for the optimum transformation parameters. But

749 the flexibility of the method may be reduced due to the hard, regularizing incom-

750 pressibility constraint. While the latter is well suited to intrasubject images, it may

751 be unsuitable for intersubject image registration.

752 Noblet et al. [213] generalized the volume-preserving technique in [202] to 3-D

753 B-spline deformations using a hierarchical first-order B-spline deformation field

754 rather than the higher-order B-spline as in [13]. Unlike the above hard constraint

755 [182], the determinant of the Jacobian is to be positive and within the two user-

756 defined bounds in a continuous 3-D transformation domain. Due to difficulties of

757 optimizing a 3-D B-spline-based deformable mapping, the maximum feasible step

758 along the search direction that allows the determinant to remain in the feasible

759 positive region is found by global optimization based on interval analysis [214].

760 This approach guarantees an invertible image-to-image transformation, but it is

761 restricted to only linear B-splines because the higher-order splines result in the

762 computationally too complex interval analysis.

763 D’Agostino et al. [19] proposed a multimodal MI-based FFD registration using

764 a viscous fluid image model allowing for large local deformations, while maintain-

765 ing a smooth one-to-one topology. The MI gradient with respect to individual voxel

766 displacements is derived analytically from a differentiable, continuous joint proba-

767 bility density constructed with the Parzen window [113] from an empirical signal

768 histogram. Experimental registration of simulated T1/T1, T1/T2, and T1/PD brain

769 MRI showed good performance in both mono- and multimodal cases, but was very

770 time consuming because a new PDE had to be solved iteratively at every step to

771 find a vector field of velocities. Rohde et al. [78] refined the lattices using the

772 gradient of global MI. Magnitudes of the gradient components were limited by

773 bounding coefficients of the basis functions. An analytical sufficient condition to

774 guarantee the positive Jacobian determinants was derived and achieved using a

775 constrained optimization subject to a box constraint in the parameter space. This

776 study focused only on 3-D brain images of non-articulated subjects (volumes with a

777 small deformation range) that may be inadequate for articulated subjects with a
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778considerably wider deformation range. Also, the search space is too restricted, e.g.,

779large deformations with small gradients are not allowed.

780Automatic analytical updates of steps for gradient descent optimization, cubic

781B-spline deformation models, and a multiresolution approach similar to [13, 111,

782182, 215] were used in the SSD-based parametric elastic registration by Kybic and

783Unser [216]. External hints (landmarks) could be entered interactively to facilitate

784the correct solution. Efficiency of different local SSD-minimization algorithms

785(such as the gradient descent with feedback step adjustment or quadratic step

786estimation, the conjugated gradients, and the Levenberg–Marquardt algorithm)

787has been tested on simulated anatomical MRI.

788Automatic 3-D-to-2-D-registration helps to transfer the acquired 3-D informa-

789tion to the 2-D data, to provide image-guided interventions, and to facilitate

790treatment planning. Penney et al. [217], Hipwell et al. [218], and Byrne et al.

791[219] developed automated intensity-based algorithms for updating a 3-D position

792of an interventional instrument using a single-plane angiogram registered to a 3-D

793volume. In particular, the algorithm by Penney et al. [217] for aligning preoperative

794CT and intraoperative fluoroscopy images was expanded to registering 3-D cerebral

795magnetic resonance angiography (MRA) with 2-D X-Ray angiograms [218] and

796matching 3-D X-ray digital subtraction angiography (3-D-DSA) images [219].

797Comparative experiments in [217] gave surface-target registration errors of the

798order of 1–2 mm. Experimental selection of similarity measures for neurovascular

799interventions in [218] resulted in successful registrations of 95% of the phantom

800and 82% of the clinical images with the reprojection rms errors of 1:3	 0:6 and

8011:5	 0:9mm, respectively. The registration accuracy improves to 1:3	 0:6mm in

802the clinical study for the two images of the same modality (3-D-DSA). Measuring

803the correspondence between the local intensity changes by the gradient difference

804in [218, 219] provides good registration results, but requires the contrast agent

805injection for the reference 2-D image. Furthermore, the computation time for these

806methods combined with the manual interaction to initiate the registration reduces

807possibilities of their wide integration into complete automatic toolkits [220]. The

808reader is referred to a comprehensive survey [221] of registering pre-interventional

8093-D CT or MRI data to 2-D intra-interventional X-ray projection images.

810The registration accuracy depends generally on the correctness of geometric

811transformation parameters. To improve the accuracy of their estimation, an improved

812FFD based on a hierarchical B-spline has been proposed in, e.g., [222–225].

813A hierarchical B-spline contour-based registration byXie and Farin [222] superposes

814FFD grids of different scales at various locations to provide a finer registration in

815certain areas. However, the global deformation still sums all the different-scale

816transformations. The algorithm is illustrated by both landmark- and intensity-based

817applications, but the validation is absent and the consistency of registration is

818not guaranteed. To analyze the heart local motion, Mora et al. [223] coupled the

819hierarchical B-spline with a variation-based level set. Tustison et al. [225]

820proposed a directly manipulated free-form deformation (DMFFD) model that

821improves the existing gradient-based FFD. The FFD- and DMFFD-based regis-

822tration scenarios have been compared on both 2-D and 3-D images using
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823 different similarity or cost metrics (NCC, mean squares, and MI) and cubic B-

824 splines. For a potentially faster image registration, the DMFFD framework

825 calculates the gradient only in randomly selected points. It was shown that

826 this framework overcomes problems of energy topography associated with the

827 standard FFD. While the efficacy of the DMFFD was demonstrated for the

828 random sampling-based registration, other nonuniform sampling strategies can

829 improve the gradient approximations, too.

830 Proposed by Matsopoulos et al. [226] multimodal registration of retinal auto-

831 fluorescence and infrared images uses a self-organizing map (SOM) to find the

832 affine transformation minimizing differences between intensity gradients in specific

833 pixels (landmarks) of the reference image and corresponding target points. Tests on

834 the 24 pairs of multimodal images yielded the accuracy of approximately 40 mm for

835 all the retinal pairs. However, the landmarks are difficult to extract in the case of

836 hyperfluorescence, hemorrhages, or drusens, and the landmark correspondences are

837 difficult to establish for small blood vessels at image periphery or in low-quality

838 (blurred or noisy) images. An intensity-based registration by Kim and Fessler [227]

839 uses a robust correlation coefficient to measure the similarity. It is less sensitive to

840 outliers in one image, but not in the other, and was proven (both analytically and

841 experimentally) to be more efficient than the MI-based registration.

842 Image registration can benefit from parallel implementations of its computation-

843 ally intensive optimization algorithms. For example, the MI-based registration of

844 multimodal images by Wachowiak and Peters [228] uses a coarse-grained parallel

845 Powell’s optimization. It is based on the global DIviding RECTangles (DIRECT)

846 technique [229] and local multidirectional search (MDS) [230, 231] and increases

847 the capture range for the goal optimum, but does not account for the memory

848 locality. Lee et al. [232] presented a coordinate-invariant, geometric version of the

849 Nelder–Mead optimization for the MI-based image registration. The computational

850 efficiency on real 3-D CT and MRI increased by 15% compared with existing local

851 coordinate-based methods. However, this approach may not be applicable for other

852 similarity or cost measures and considers only the rigid-body transformation, while

853 medical images have intrinsically nonrigid deformations.

854 Orchard [233] proposed an efficient globally exhaustive alignment search

855 (GEAS) to perform the fast global optimization for multimodal image registration.

856 The underlying SSD minimization was reformulated to be performed with the fast

857 Fourier transform (FFT). The method was tested on aligning MR and CT head

858 images, a chest CT image to a grayscale photo-image, antemortem to postmortem

859 dental images, fingerprints, a grayscale photo to a gray-coded height map, and other

860 images. However, the user’s interaction is required to select an initial region-of-

861 interest (ROI) for each image pair (with about 40% of the object in the overlapping

862 portions of the images), and only a limited 2-D rigid-body transformation with the

863 same scales and close orientations of the object is under consideration.

864 A SSD-based nonrigid registration by Sdika [234] uses nonlinear constraints

865 to prevent spatial singularities or foldings due to zero or negative Jacobian determi-

866 nants, respectively, of the transformation modeled with the cubic B-splines. To speed

867 up the registration and avoid local minima in the high-dimensional parameter space,
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868it uses a large-scale, constrained, nonlinear multiresolution optimization combining

869the method of multipliers and the low-memory Broyden–Fletcher–Goldfarb–Shanno

870algorithm (L-BFGS) with a monotone linear search. This approach ensures the local

871invertibility everywhere. However, calculating the Jacobian determinant or its gradi-

872ent significantly increases the computation time due to additional B-spline interpola-

873tions of the partial derivatives of an image transformation. A framework for nonrigid

874image registration introduced by Glocker et al. [235] reformulates the registration

875problem in terms of Markov random field (MRF) models of images. Any similarity

876measure can be employed, and the optimization is tackled by quantizing the search

877space, thus making the problem completely discrete. But, the approach lacks the

878validation.

879Recently, a number of rigid (e.g., [236, 237]) and nonrigid (e.g., [238–240])

880registration algorithms have been applied to carotid images. The first MI-based 3-D

881rigid-body registration of MRA to Power Doppler US carotid images was proposed

882by Slomka et al. [236]. Fei et al. [237] introduced an automatic, NMI-based, rigid-

883body registration of multiple contrast-weighted MRI of carotid vessels that

884accounts for translations and rotations only (but not for scaling) and uses the uphill

885simplex optimization. But because different head positions during image acquisi-

886tion cause relative bending and torsion in the neck, producing spatially variant

887image deformations, the transformation should be nonrigid. Chan et al. [238]

888proposed a nonrigid 3-D TPS-based registration of carotid MRI and 3-D US images

889that produced the mean registration error of approximately 1 mm on an ex vivo

890specimen. Krucker et al. [239] extended the TPS-based registration to synthetic and

891clinical breast images and tested the performance on 1.5–2.5 mm synthetic defor-

892mations and two phantom scans. Although the nonrigid registration in [238, 239]

893can capture mutual nonuniform image deformations due to different head positions,

894it is not always suitable for monitoring carotid plaque changes since it can alter

895existing plaque morphology during the registration. The computational cost is high

896due to the large number of registration parameters involved. Nanayakkara et al.

897[240] introduced an NMI-based nonrigid registration of 3-D US carotid images

898obtained at two different imaging sessions. Its “twisting and bending” model of

899nonuniform image deformations due to neck movements overcomes the plaque

900morphology alteration problem in [238, 239].

901Sabuncu and Ramadge [241] introduced the first entropy-based algorithm for

902registering multimodal images that incorporates spatial information. Spatial feature

903vectors obtained from the images and a minimum spanning-tree approach are used

904to estimate the conditional higher-dimensional entropy: the Jensen-Renyi diver-

905gence between the learned and new joint intensity distributions is minimized with a

906gradient descent method. The method was compared with five different 3-D rigid

907registration algorithms on three simulated 3-D MRI sets of a healthy human brain

908and was shown to be fast. However, only simulated data and a rigid-body transfor-

909mation were under consideration. Staring et al. [242] incorporated multiple

910image features, including the intensity gradients and Hessians (second derivative),

911into a nonrigid MI-based algorithm for registering cervical MRI. It employed a

912multiresolution and multifeatured approach combining the principal component
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913 analysis (PCA) to reduce the feature space, parametric cubic B-splines, and an

914 iterative stochastic gradient ascent optimization [186, 243]. The reported median

915 errors up to 3 mm with the third quartiles up to 5 mm for segmented clinical target

916 volumes slightly outperformed results of the conventional MI-based registration.

917 Loeckx et al. [244] proposed a new intensity-based similarity measure, called the

918 conditional mutual information (cMI), between the reference and target intensity

919 distributions, given a certain spatial pixel distribution, and compared the cMI with

920 the MI and total correlation introduced by Studholme et al. [245]. The algorithm

921 uses analytical derivatives to avoid the discretization errors, a tensor-product

922 B-spline image deformation model, and a limited memory quasi-Newton optimiza-

923 tion. A parametric intensity-based registration framework by Bhagalia et al. [79]

924 uses a multiresolution pyramid and an importance sampling (i.e., sampling of a

925 subset of voxels on prominent image edges) to reduce the computational costs of

926 calculating the MI gradient. Experiments on simulated brain MRI and real lung CT

927 images from eight subjects showed that a combination of stochastic approximation-

928 based optimization and importance sampling accelerates the registration while

929 preserving the registration accuracy.

930 9.4 Conclusion

931 This chapter presented a brief review of medical image registration algorithms

932 including the similarity or dissimilarity measures, rigid and elastic geometric

933 transformations, popular numerical optimization methods, and image resampling.

934 Image registration is considered as an optimal estimation of a geometric transfor-

935 mation that aligns partially overlapped target and reference images. The emphasis

936 of the chapter is on describing most popular models and methods at each step of

937 registration and pointing out their basic advantages and drawbacks. Some of the

938 cutting-edge contributions to the medical image registration for the last decade are

939 presented, too. But many important issues still remain to be solved, and the future

940 research will likely focus on developing sophisticated, robust, efficient, and real-

941 time approaches for nonrigid registration.

942 Appendix A: List of Symbols

Ir943 Reference image.

It944 Target image.

Tgð�Þ945 Transformation function.

rð�Þ946 Cost function.

p947 Spatial coordinates vector.

p~948 Homogeneous coordinates vector.
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m 949Contrast deviation factor.

Gð�Þ 950Random noise.

W 951Rectangular window or neighborhood system

952(regular and irregular).
�Ir 953Reference image mean value.
�It 954Target image mean value.

Fð:; :Þ 9552-D Fourier transform.

CPSF1;F2
956Normalized cross-power spectrum.

X and Y 957Finite signal sets.

f and c 958One-to-one mappings.

pi and qj 959Marginal probability distributions.

pij 960Joint probability distribution of two random

961variables.

pijj 962Conditional probability distribution.

Hð�Þ 963Shannon Entropy.

Hð�j�Þ 964Conditional Entropy.

H �; �ð Þ 965Joint Entropy.

D ¼ ðdx; dy; dzÞ 966Spatial offsets vector.

Eð�Þ 967Gibbs energy.

VD 968Potential function.

FD 969Empirical probability of signal co-occurrences

970in the MGRF clique Family.

l 971Relative cardinality of the MGRF model.

t 972Arbitrary scale factor.

y 973Angel in radians.

a ¼ ðax; ay; azÞ 974Scaling vector.

zx and zy 975xand y-Shearing Factors.

a ¼ ða11; a12; a13; a14; . . . ;
a33; a34Þ;

b ¼ ðb11; b12; b13; . . . ; b23Þ; and
c ¼ ðc11; c12; c21; c22Þ

976Rigid transformation coefficients vectors.

A ¼ ða00; a10; a01;
a02; a20; a03;

a000; a100; a010; a001Þ;
B ¼ ðb00; b10; b01; b02; b20; b03Þ

977Global polynomial and spline numerical

978coefficients.

Fk 979Spline distance weight coefficients.

�2 980Spline stiffness coefficient.

r 981Cartesian distance between two points.

F 982Control points lattice (mesh).

g 983Lattice (mesh) spacing.

N 984Number of control points.

b ¼ b�1; b0; b1; b2ð Þ 985uniform cubic B-spline basis functions.
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Rkð:; :Þ986 Radial basis function.

s987 Standard deviation.

N,N0988 Reference and target image planes (volumes).

b n½ � �ð Þ989 n-order B-spline.
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