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Abstract

Unmanned aerial vehicles (UAVs), also known as drones, communicate, collabo-

rate, and form flying ad hoc networks (FANETs) to perform many different

missions, ranging from delivery tasks to agriculture applications. Recently,

FANETs have been integrated with different technologies, such as artificial

intelligence (AI), virtual reality, and Internet of Things. Such new avenues for the

use of UAVs directly impact the research on FANETs and cause some major

challenges, such as security and physical layer issues, resource management, and

UAV positioning issues that need to be addressed. Several researchers have been

working for the last few years to propose AI and machine learning (ML)‐based

solutions for different use cases in UAV‐based networks. They present the

limitations of the existing research work and highlight some possible future works

on FANETs. However, exhibiting the trends in the UAV research papers in a

quantitative manner is still required to motivate researchers to rethink the

research on FANETs. Therefore, this study covers more than 170 scientific

publications extracted from five trusted academic databases published from 2013

to 2021 to provide a thorough overview of the main research and development

statistics in the area of FANETs, the open challenges existing in this area and the

ML‐based solutions to solve these challenges. In addition, the investigation of

emerging technologies integrated with FANETs, as well as the simulation tools

employed for evaluating FANETs' performance are discussed. Moreover, the

future research directions in the area of FANETs are considered within a

prospective vision discussion.

K E YWORD S

cellular networks, flying ad hoc network, machine learning, reinforcement learning, unmanned
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1 | INTRODUCTION

In recent years, designing the collaborative systems of unmanned

aerial vehicles (UAVs) commonly known as drones have become a

major research topic in different areas, especially in robotics and

artificial intelligence (AI) (C. Chen et al., 2018; Sultan et al., 2021). On

the basis of available statistics,1 the worldwide commercial UAV

market size is growing. Around 1.1 billion dollars were invested in the

aerial guided system industry in 2020. The global commercial UAV

J Field Robotics. 2023;1–25. wileyonlinelibrary.com/journal/rob © 2023 Wiley Periodicals LLC. | 1
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market is expected to reach 58.4 billion dollars in 2026. The

significant investments in the aerial guided system industry show

that UAVs are becoming more common in all‐day applications.

Recently, different civilian and military applications are imple-

mented using multi‐UAV systems in which there is a swarm or

formation of small UAVs. This approach brings together the concept

of flying ad hoc network (FANET) of UAVs which allows a group of

UAVs to communicate and cooperate towards completing their

mission without human intervention. To accomplish their missions,

the swarm of UAVs moves freely in the environment using different

types of mobility models, which is an aspect that takes into account

both the dynamics of the UAV network and the physical character-

istics of the UAV platforms. It is important to notice that this paper

refers to the word “FANET” as a network of UAVs (UAV–FANETs)

and uses FANETs, UAV networks, UAV‐networked systems, UAV‐

based networks, and networked UAV‐systems interchangeably

referring to the same concept.

Not only the continuous advance of the hardware has drastically

impacted the FANETs of UAVs, but also the development of

software, in particular in the area of AI, has been crucial (Garaffa

et al., 2021). This advance benefits FANETs used in different

application domains. As the FANETs become more intelligent, they

manage to interact and make part of other systems, such as cloud‐

based ones and Internet of Things (IoT) Systems. In addition to the

existing challenges in traditional FANETs, new issues arise, such as

bottlenecks, latency due to centralized processing, lack of offline

processing, and security issues. In this context, machine learning (ML)

approaches offer promising models in AI domain to address these

challenges with deep learning (DL) and reinforcement learning (RL)‐

based solutions.

As FANETs have been adopted by many industries, a deep

insight into challenges and perspectives in FANETs are important

subjects that need to be studied. A way to guide this study is by

means of a Systematic Literature Review (SLR). SLR deals with the

systematic collection, critical interpretation, and assessment of the

quality level of relevant published papers on a given research topic by

answering clearly formulated questions.

There is a small number of existing SLRs of FANETs that cover

these topics, their joint applications, and their open challenges (Haula

& Agbozo, 2020; Mualla et al., 2019; Rejeb et al., 2021; Stampa et al.,

2021). However each of them only considers specific aspects and

applications of UAVs. The SLR in Rejeb et al. (2021) provides a survey

regarding UAVs in supply chain management and logistics. Mualla

et al. (2019) and Haula and Agbozo (2020) only focus on UAVs in

civilian applications, while in Stampa et al. (2021) they address public

safety applications of UAVs. Such lack of extensive SLRs about

FANETs in the literature motivates the employment of a comprehen-

sive SLR methodology in this paper.

The main contributions of this paper can be summarized as

follows:

• In addition to an extensive study of the existing academic

research, this paper provides a thorough overview of the overall

research and development statistics in the area of FANETs, the

open challenges that exist in this area, the ML‐based solutions to

solve them, and the simulation tools that are employed for

evaluating FANETs' solutions performance.

• Particularly, this SLR also introduces a discussion on possible ML‐

based solutions for FANETs, especially when it comes to the

integration of UAVs with other emerging technologies, such as

IoT, 5G/6G, Blockchain, and quantum communication, with a

prospective vision on FANETs technology.

The research methodology employed for this SLR is described in

Section 2. Section 3 answers the quantitative questions, including

statistical questions (number of publications by year, countries, funding

sponsors, and published patents). Section 4, answers the specific

questions containing FANETs challenges and possible ML‐based

solutions, challenges of applying ML towards to address problems of

FANETs, and the simulation tools, frameworks, and testbeds for

FANETs' performance analysis. The future research directions of

UAV–FANETs, including UAV‐assisted 5G and 6G wireless networks,

Blockchain‐envisioned UAV communication in the 6G network, AI‐

enabled object detection in the UAV‐networked system, Software

Defined Network (SDN), Network Function Virtualization (NFV),

Internet of Multiple‐Input Multiple‐Output things (IoMIMO)‐based

UAVs, quantum communication, three‐dimensional (3D) beamforming,

and reconfigurable intelligent surface (RIS)‐enabled UAVs are discussed

in Section 5. Section 6 concludes the paper.

2 | RESEARCH METHODOLOGY

SLR deals with the systematic collection, critical interpretation, and

assessment of the quality level of relevant published papers on a given

research topic (Kitchenham, 2004). In contrast to the traditional literature

reviews, the SLR provides a more accurate and comprehensive level of

understanding. Inspired by the SLR approach in Kitchenham et al. (2010),

four well‐defined steps are considered, including the definition of

research questions in Section 2.1, the scientific databases in

Section 2.2, the inclusion and the exclusion criteria in Section 2.3, and

the review phase, research and development statistics in Section 2.4.

2.1 | Research questions raised in this SLR

The definition of the Research Question is the essential part of the

systematic investigation which clearly defines a path for the research

process. In this paper, the research is guided based on the central

question:

How do ML techniques improve the performance of

Flying Ad Hoc Network?

Since ML techniques have been broadly employed in wireless

networks, especially in FANETs of autonomous UAVs to train

2 | PASANDIDEH ET AL.
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network nodes to control, monitor, and predict different communi-

cation parameters, such as traffic patterns, node positioning, the

behavior of wireless channels, and so forth (Guerber et al., 2021;

Oliveira et al., 2021), an opportunity was identified to propose this

SLR covering this subject domain. However, as this subject is

complex, other side topics needed to be included to make the SLR

more useful and comprehensive. Table 1 shows the statistical and

specific research questions on the area of FANETs. To illustrate the

research and development statistics on UAV‐based networks, the

statistical question RQ1 was raised which refers to the number of

publications by year, by countries, and funding bodies, and the

number of published patents. In addition to statistical questions,

Table 1 shows specific questions (RQ2–RQ5) that help break up the

study into easy steps to answer the central research question of the

paper (“How do ML techniques improve the performance of Flying

Ad Hoc Network?”). Since countering the current challenges in

UAV‐assisted networks may lead to an improved system perform-

ance in the future, question RQ2 discusses the main open

challenges of FANETs. After identifying the main problems and

breaking the problem down into some subproblems, question RQ3

provides the potential ML‐based solutions to address the existing

issues in UAV‐assisted networks. It is important to know the

challenges of applying ML techniques on FANETs' issues discussed

in question RQ4, since it provides motivation for research and helps

scholars to find the innovative solutions to address these

challenges. Since evaluating the performance of UAV‐based

communication networks in the real world is a tough task that

requires remarkable time and resources, question RQ5 addresses

the common simulators, emulators to implement the FANETs' use

cases.

2.2 | Scientific databases used to find the relevant
published studies

This section shows the scientific sources used in the search for

relevant papers from 2013 to 2022. This time frame was selected

because the most relevant works were found from 2013 to 2021, and

there is also an upward trend in this period in the number of

published studies on this topic. In this paper, the relevant published

studies are obtained from the ACM Digital Library,2 Scopus,3 IEEE

Xplore,4 Elsevier Science Direct,5 Springer Link,6 Google Scholar7

academic databases, and Google Patents8 based on the search terms

provided in Table 2. Table 2 shows the five main search terms,

including “flying ad‐hoc network,” “FANETs” “drone,” cellular net-

works,” “machine learning,” “artificial intelligence,” “reinforcement

learning,” and “federate learning” by considering the main keywords

of the research questions, and the results obtained by applying these

terms on different academic databases. Quotes were used around the

phrases to find results that are exact match results, rather than the

broad results. According to Table 2, s1 shows the related words and

acronyms of UAV‐assisted networks that are combined using the

Boolean operator OR to show all the research investigated in the area

of drones. Since s1 includes general terms combined by operator OR,

it brings a huge number of results. Therefore, the first terms were

refined with the inclusion of other search terms to acquire more

specific results, and a total of 6579 papers were found by applying

the second to fifth search terms. s2 and s3 try to find the research

investigated on AI and ML techniques for UAV‐assisted wireless

networks by adding the terms (“cloud computing” OR “cellular

networks”) AND (“machine learning” OR “artificial intelligence”) into

the first term S1. To change the outcome of the search and obtain

narrower terms, s4 connects the first search term by operator AND

with the terms (“Reinforcement learning” OR “Federate Learning”). s4

shows the studies that take advantage of RL or federated learning (FL)

techniques to address the challenges of UAV‐based communication

networks. To be more specific, and find out the publications that use

ML, RL, and FL in 5G and 6G networks we combined (“Machine

learning” OR “reinforcement learning” OR “Federate Learning”) AND

(“5G” OR “6G”) into to the first search and make s5. The search

started with terms found in relevant SLRs (Haula & Agbozo, 2020;

Mualla et al., 2019; Rejeb et al., 2021; Stampa et al., 2021), then

continued with the combination of these terms, and the creation of

TABLE 1 Research questions of the study based on the two types of questions: statistical and specific questions

Question type Ref Research questions

Statistical questions RQ1 What are the research and development statistics on the area of FANETs? which includes six subquestions:

(the number of publications by year (A), by countries (B), funding bodies (C), and the number of published patents (D).

Specific questions RQ2 What are the main problems being researched regarding FANETs (open challenges)?

RQ3 How ML approaches are being used to improve the performance of the FANETs?

RQ4 What are the challenges of applying machine learning towards the main problems of the FANETs?

RQ5 What are the common simulators, emulators, and test beds to implement the FANETs' scenarios?

Abbreviations: FANETs, flying ad hoc networks; ML, machine learning.

2http://portal.acm.org
3https://www.scopus.com/
4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://www.sciencedirect.com/
6https://link.springer.com/advanced-search
7https://scholar.google.com/
8https://patents.google.com/
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new ones by considering the main keywords of the research

questions as well. On the basis of the acquired results, the selected

terms were refined until coming to those in Table 2.

2.3 | Inclusion and exclusion criteria

After defining the search terms and gathering papers from the

selected scientific databases, a selection process was performed. In

this process, according to the inclusion and exclusion criteria

presented in Table 3, all the publications that are not relevant to

the goals of this survey were removed.

2.4 | Review phase or paper selection

The paper selection phase can be considered in three main steps,

including search, screening, and eligibility analysis.

Search: First, the papers were retrieved from different digital

databases based on search strings, and downloaded

separately. According to Table 2, the first search term

brings a huge number of results. The results obtained by

applying the first term were refined with the inclusion of

other search terms to acquire more specific results. As

shown in Table 2 a total of 6579 papers were found by

applying the second to fifth search terms. Papers in

which search terms appeared in titles, keywords, and

abstracts were selected for screening.

Screening: In this step, 1282 duplicate papers are removed and

3760 studies were excluded based on criteria pro-

vided in Table 3. To remove the duplicates, some tools

are available, such as Menedely and Publish and

Perish.9

Eligibility: Some papers that are not on the focus of this study, are

deleted after reading the titles, keywords and in some

cases the abstracts of the article. In some cases, in which

the title and the abstract are not very clear about the

proposed solution, a full‐text analysis is required.

Therefore, to apply eligibility criteria, the titles and

abstracts of 561 were considered. Finally, the set of 177

most relevant papers (SLRs, research articles, surveys,

and review papers) was included by reading the entire

paper to answer the research question. The results are

discussed in Section 3.

TABLE 2 Definition of six search strings and obtained results from ACM, Scopus, Springer, ScienceDirect, and IEEE academic databases

Result
Ref Search string ACM Scopus Springer ScienceDirect IEEE

s1 “flying ad‐hoc networks” OR “UAVs”

OR “Drones” OR “FANETs” 3451 65,624 33,189 22,027 13,261

s2 (“flying ad hoc networks” OR “FANETs”

OR “UAVs” OR “Drones”) AND

(“cellular networks”) AND (“machine learning”

OR “artificial intelligence”) 36 46 179 295 47

s3 (“flying ad hoc networks” OR “UAVs” OR “Drones”

OR “FANETs”) AND (“cloud computing” OR

“cellular networks”) AND (“machine learning”

OR “artificial intelligence”) 170 128 376 1165 135

s4 (“flying ad hoc networks”

OR “FANETs” OR “UAVs” OR “Drones”)

AND (“Reinforcement learning”

OR “Federate Learning”) 182 1157 213 923 526

s5 (“flying ad hoc networks” OR “FANETs” OR

“UAVs” OR “Drones”) AND (“Machine learning”

OR “reinforcement learning” OR

“Federate Learning”) AND (“5G” OR “6G”) 103 139 97 591 73

Abbreviations: FANETs, flying ad hoc networks; UAVs, unmanned aerial vehicles.

9https://onlinelibrary.wiley.com/doi/10.1111/j.1475-4983.2006.00617.x

4 | PASANDIDEH ET AL.
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3 | QUANTITATIVELY ANSWERING THE
RESEARCH QUESTIONS

In this section, a quantitative research approach is applied using

statistical and mathematical tools to derive results and to provide

possible answers to the first statistical question RQ1 raised inTable 1.

This question includes five subquestions. This section first discusses

the result of the search process, the selection process, and the

quantitative analysis of the selected papers. Then, it provides

statistics about the four subquestions, including the number of

publications by year (A), by countries (B), funding bodies (C), and the

number of published patents (D).

Table 2 provides the search results extracted from the selected

databases for five main search terms. As can be observed in Table 2,

the first search string s1: (“flying ad‐hoc networks” OR “UAVs” OR

“Drones” OR “FANETs”) used returned papers with a broad range of

subjects.

To give a more accurate answer to RQ1, the following analysis

provides the considering 65,624 results obtained from Scopus

database. Scopus was chosen since it covers a broader journal range

and provides more advanced analytics, and higher quality, compared

with other scientific databases.

3.1 | Publications by year

Figure 1 represents the number of studies on this topic according to

their year of publication. According to Figure 1, a significant number of

studies have been published from 2013 to 2020 which means that

drone‐assisted networks are becoming a major research topic. Such a

growth can be justified by rapid technological changes, increasing labor

cost, increase in delivery demand along with other reasons. In 2013,

reputed companies such as Amazon started to take advantage of UAVs

as a product delivery approach. Therefore, 2768 studies were

published in 2013 as depicted in Figure 1. After the issuance of the

permission of employing UAVs in commercial applications by the FAA,

4070 papers were published in 2015. The number of publications

continued to grow in the following years and reached the peak of

12,033 in 2020 which is directly correlated with the growth of

worldwide commercial UAV market size shown in Figure 2. As shown

in Figure 1, the number of published articles in 2020 and in 2021 is

very close to 2019. However, the number of published papers

decreased by around 1000 in 2021 and reached 11,937. This is

because, the values of 2020 and 2021 are still being updated, since

there are delays in indexing and making the published articles available.

3.2 | Publications by countries

Figure 3 shows which countries actively contribute in the UAV

research area. Among represented countries, the largest number of

studies were from the China and the United States (US), with 19,313

and 18,606 publications, respectively. This shows these two countries

spend a huge amount of investment on UAV‐based projects. Other

than the China and US, the United Kingdom (UK), Germany, South

Korea, Italy, India, Australia, France, and Canada have contributed to

many UAV‐based projects with 4137, 3518, 3365, 3341, 2786, 2759,

2709, and 2670 publications, respectively. Currently international

collaboration is very common in scientific publications. Measuring

collaboration between different countries is done by assigning each

paper to the relevant countries on the basis of the authors'

institutional affiliations. For international collaborations, articles

written by authors from more than one institution in the same

country only count as one collaboration for that country.10

3.3 | Publications funding

As funding can motivate researchers to investigate the issues which

require sensitive equipment in‐depth, it is important to identify the

agencies that support research on FANETs financially. According to

Figure 4 National Natural Science Foundation of China, National

Science Foundation spends billions of dollars on the research and

production of UAVs by analyzing search results obtained from

TABLE 3 Inclusion and exclusion criteria used in paper selection
procedure

Counts Inclusion criteria

1 English peer‐reviewed studies that

provide answers to the research questions.

2 The studies consisting of literature

reviews or systematic mapping studies.

3 Studies are published between 2013 and 2022.

4 References of closed related papers that

are explicitly and specifically dedicated

to ML techniques in cloud‐based UAV systems.

5 Papers that cited the closed related papers and are

explicitly dedicated to ML techniques in FANETs.

Exclusion criteria

6 The studies that are not available for access.

7 Studies whose full text is not available.

8 Duplicated studies.

9 Studies are not in English.

10 Studies that are Loosely related (LR)

to the search strings.

11 Studies that are not related

to the research questions.

Abbreviations: FANETs, flying ad hoc networks; ML, machine learning;

UAVs, unmanned aerial vehicles.

10https://oecd.ai/en/elsevier
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 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22157 by C

A
PE

S, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://oecd.ai/en/elsevier


Scopus. The other funding agencies shown in the figure are the

European Commission, National Research Foundation of Korea,

US Department of Defense, Natural Sciences and Engineering, and

Research Council of Canada.

Figure 2 shows the worldwide commercial UAV market size is

growing. As Figure 2 represents, in 2008 around 30 million dollars

were invested in the aerial guided system industry, it increased and

reached 1151 billion dollars in 2020. The global commercial UAV

market is expected to reach 58.4 billion dollars in 2026.11

3.4 | Patents published worldwide in the area of
UAV‐based networks

To have an overall perspective about published patents in the area of

UAV‐based networks, the following string was used as a search criterion

on Google Patents: “flying ad‐hoc networks” OR “FANETs” OR “UAVs”

OR “Drones”OR “aerial guided system”OR “autonomous aerial platform”

OR “unmanned platform” OR “autonomous aerial device” OR “aerial

robot” OR “autonomous aerial delivery” OR “aerial delivery.” Since, some

patents do not explicitly mention the terms “UAVs” or “drones” or

“FANETs,” other possible correlated terms were also part of the search.

On the basis of the search term, the search resulted in 116,030 patents

published in the selected time frame. Figure 5 compares the counts of

published patents in different years from 2013 to 2021.

F IGURE 1 The number of UAV‐based publications per year from
2013 by the end of 2021. UAV, unmanned aerial vehicle. [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Worldwide investments in the aerial guided system
industry, from 2008 to 2020. UAV, unmanned aerial vehicle. [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 The list of 10 first countries, including, China, the
United States, the UK, Germany, South Korea, Italy, India, Australia,
France, and Canada, were actively engaged in UAV‐based research
areas. UAV, unmanned aerial vehicle. [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 4 The list of 10 first funding sponsors in the UAV‐based
research area, including, National Natural Science Foundation (NSFC)
of China, National Science Foundation (NSF), European Commission,
National Research Foundation of Korea, US Department of Defense,
Natural Sciences and Engineering, Research Council of Canada, and
others. UAV, unmanned aerial vehicle. [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 The number of worldwide published patents in the
area of UAV‐based networks. UAV, unmanned aerial vehicle. [Color
figure can be viewed at wileyonlinelibrary.com]

11https://www.statista.com/statistics/878018/global-commercial-drone-market-size/
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This figure shows an upward trend as it is expected based on the

investments spent on the aerial guided system industry (shown in

Figure 2). In 2013, 1435 patents were published, this number increased

by the following years and reached the peak number of publications

33,377 in 2021. The patents revolve around wireless power transforma-

tion, vehicle inspection, road condition detection, agricultural systems,

wireless resource allocation, and wireless charging methods topics.

4 | ANALYSIS OF THE SPECIFIC
QUESTIONS

This section answers the specific questions raised in Table 1. This

section is divided into four subsections (research questions). The

open issues in FANETs are discussed in Section 4.1 (RQ2),

possible ML‐based solutions to address the existing challenges

in FANETs are addressed in Section 4.2 (RQ3), the issues

arising after applying ML techniques in FANETs, are discussed

in Section 4.3 (RQ4). The simulation tools, frameworks, and

testbeds for FANET's performance analysis are explained in

Section 4.4 (RQ5).

4.1 | Existing challenges and open issues of
FANETs (RQ2)

This question addresses the fundamental challenges in FANETs

(RQ2). In addition to UAV constraints shown in Figure 6—box A, the

existing challenges in FANETs are presented as follows:

• Physical Layer issues in Figure 6—box B: According to Figure 6—box

B the physical layer issues are discussed in the following:

F IGURE 6 FANETs Challenges, including
security and physical layer issues, standards,
regulations, QoS, position issues, and UAV
constraints. FANETs, flying ad hoc
networks; QoS, Quality‐of‐service; UAVs,
unmanned aerial vehicles. [Color figure can be
viewed at wileyonlinelibrary.com]
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– Channel modeling: In UAV‐assisted networks, positioning and

path optimization of the UAVs play a crucial role to provide

efficient utilization of scarce communication resources, such as

the electromagnetic spectrum. By taking into account locations

and trajectories of UAVs, algorithms for accurate channel

prediction and estimation in highly mobile environments, such

as FANETs, have been proposed. There are two most common

channel modeling for UAV networks, namely, air‐to‐air (A2A)

channel modeling and air‐to‐ground (A2G) (Won et al., 2022).

Unlike A2A channels, which are prone to free‐space‐path‐loss‐

based models, A2G channels are very difficult to be modeled

due to the blockages of high‐rise buildings, but represent a very

important factor that has to be considered (J. Chen & Gesbert,

2020; Kim et al., 2022; S. Zhang & Zhang, 2019). Predicting

channel behavior is a challenging task because of several

reasons. First, UAVs fly at various height levels which impacts

on how channel impairments affect transmission. Second, the

highly changeable mobility of UAVs and ground equipment are

opposing reliable transmission, since propagation channels are

vulnerable to suffering from spatiotemporal nonstationarity. In

addition, fuselage shadowing which is associated with the size,

altitude, and antenna placement of the UAVs, may lead to

signal interruption. Therefore in the large‐scale fading model,

these influences are important. The diversity of the frequency

band used in the UAV network which is ranging from sub‐

6 GHz to mmWave also affects channel characteristics. Finally,

weather conditions, rainfall in particular lead to considerable

attenuation due to scattering and absorption for frequencies

above 10GHz (Khuwaja et al., 2018; Q. Zhang et al., 2021).

– Interference management: Interference is an arising issue in both

wireless networks and UAV communication systems. UAVs

communicate with each other in the different parts of the radio

spectrum shared with multiple other users. The available

frequency bands for UAV transmissions in the radio spectrum

are shown in Table 4. The radio propagation in the air is like

free space propagation. Consequently, UAVs generate more

interference to the networks in the uplink, also they face

further interference in the downlink. Therefore interference

management (avoidance or mitigation) techniques are required

(Mozaffari et al., 2019; Rezwan & Choi, 2021).

– Spectrum allocation: The deployment of large‐scale clusters of

UAVs can perform a mission more efficient than a single UAV.

However, providing reliable and stable communication

between UAVs is essential. In this regard, spectrum resource

allocation is an important factor that affects the quality of UAV

communications and their cooperation. However, the quality of

communication in UAV networks is sensitive to mutual

interference due to the high demand for wireless resources

and extreme congestion of spectrum resources. Therefore,

more research needs to carry out in spectrum allocation which

is a relatively new research area (J. Chen et al., 2019, 2021).

– Transmission parameters configuration: In FANETs, at the begin-

ning of each transmission frame, the transmission parameters,

such as noise power, the service rate each UAV requests, and

fading coefficient of each A2A channel and A2G channel

between every two UAVs, and between every base station

(BS) and each UAV, respectively (Xu et al., 2021) need to be

configured optimally to utilize wireless resources efficiently and

to achieve reliable communication (Bithas et al., 2019).

• Resource management in Figure 6—box C: Resource management

which tries to manage dynamically different resources, such as

energy, bandwidth, transmit power, the number of UAVs, and

UAV's flight time, is another challenging issue in FANETs

(Mozaffari et al., 2019) according to Figure 6—box C. Multiple

access and routing protocols, and energy management are

described as follows.

– Multiple access and routing protocols: The high‐speed mobility

degree of UAVs and terrestrial nodes lead to frequent topology

changes. Therefore, routing protocols are needed to adapt the

communication to the dynamic topology, high mobility, power

constraints, intermittent links, and changing link quality (Gupta

et al., 2016). The classical multiple access and routing protocols

cannot fully support the dynamic nature of FANETs and

topology modifications (Kim & Lee, 2018, 2020; Pasandideh

et al., 2021). Therefore adaptive routing protocols are required

to multiflow transmission, handling no neighbor problem,

scalability issues, and directional antenna problem (Gupta

et al., 2016; Mukherjee et al., 2019; Rezwan & Choi, 2021;

W. Wang et al., 2017; M. Zhang et al., 2019; Z. Zheng

et al., 2018).

– Energy management: UAVs are equipped with limited battery

and small payload capacity which support the functionalities,

such as communication, flying, and computation. This kind of

power source is insufficient to handle a mission. Therefore,

optimizing the energy and power consumption is an essential

factor which in turn, improves the overall network's perform-

ance (Gupta et al., 2016; Koulali et al., 2016; C. H. Liu et al.,

2018; Sikeridis et al., 2018).

TABLE 4 Available frequency bands for UAV transmissions in
the radio spectrum

Frequency Bands Applications

420–450MHz Emergency communications

902–928MHz Industrial, Scientific, and Medical (ISM)

equipment, computer networking, repeaters,

cordless phones, and amateur TV

1.24–1.3 GHz Data, voice, GPS, and amateur TV

2.39–2.485 GHz Wi‐Fi, Bluetooth, wireless headphones, video

and telemetry, microwave ovens, cordless phones

5.15–5.825 GHz 5G routers, Unlicensed National Information

Infrastructure (UNII) devices

Abbreviations: GPS, global positioning system; TV, television; UAV,
unmanned aerial vehicle; Wi‐Fi, wireless fidelity.
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• Security in Figure 6—box D: Due to the highly dynamic nature of

FANETs, uncontrollable environment, wireless links, heavy com-

putations, important latency, and collaborative characteristics,

traditional security techniques are not appropriate for UAV‐

networked systems. It is difficult and challenging to determine

whether a UAV‐networked system is secure or not according to

the main security criteria, including integrity, availability, authen-

ticity, confidentiality, and reliability. As Figure 6 box D shows, the

security issues in FANETs are physical layer security (PLS), public

and citizen safety which are discussed as follows:

– PLS: The operation of the wireless network needs to be protected

against various attacks, ranging from active and passive eaves-

dropping to jamming or spoofing due to the LOS environment. In

that regard, the PLS solutions need to be investigated to enhance

the privacy level of wireless transmissions (Bassily et al., 2013; B.

Li et al., 2019; Mukherjee et al., 2014).

– Public safety: The deployment of UAVs provides enabling public

safety in different situations and applications, such as police

force missions (to provide better accessibility than police force

in difficult situations, search and rescue, and to inspect an

armed person from a safe distance), correctional facilities (to

fight contraband in prison system), and natural disasters.

During natural disasters in which some ground BSs are out of

service and there is no alternate path available for communi-

cations, flying nodes act as BSs to provide temporary

communication or as monitoring nodes for evaluating the

condition of vital infrastructures and environmental attributes

(Bithas et al., 2019; Sikeridis et al., 2018).

– Citizen privacy: People privacy is another challenging issue that

needs to be addressed before permitting UAVs to fly in the

national airspace. In other words, citizen privacy should be

protected before commercializing UAVs for civilian operations

and missions (Chriki et al., 2019).

• Position issues in Figure 6—box E: The position issues are of at most

importance in multi‐UAV network systems, as the optimal

locations of UAVs significantly affect mission and network

performances (Kim & Lee, 2018, 2020). Position optimization

and trajectory design have been always challenging issues in UAV

systems that are shown in Figure 6 box E.

– Placement problem: The UAVs can be either utilitized to fly and

move continuously, for which the path planning design is a

significant research direction, or operate in a quasistatic way,

for which UAVs optimal positioning is a major research line.

UAV placement problem which tries to maximize the coverage

region is a nonconvex problem and proved to be NP‐hard (X.

Liu et al., 2019; Lyu et al., 2017) in general. In UAV placement

problem, UAVs horizontal and/or vertical positioning, inter‐

UAV safety distance maintenance, cost, UAV numbers, cover-

age rate, and users–UAV connectivity are important factors

needed to be considered in the deployment problem

(Gao et al., 2021; Ghazal, 2021; Kim & Lee, 2018, 2020; Lahmeri

et al., 2021; Q. Liu et al., 2018; Masroor et al., 2021a; Rahimi et al.,

2021; J. Yang, Liang, et al., 2021; C. Zhang et al., 2021).

– Trajectory/path planning: One of the essential factors to

optimize the UAV network's performance is UAV trajectory

design or path planning (Mozaffari et al., 2019). When several

UAVs are launched from different known initial locations, the

issue is to create 2D trajectories, with a smooth velocity

distribution along each trajectory, aiming at reaching a

predetermined target location, while ensuring collision avoid-

ance and satisfying specific routes and coordination constraints

and objectives (Kim & Lee, 2018, 2020; Nikolos et al., 2007).

– UAV detection: UAVs can be detected by ground BSs which

perform an indirect discovery or by direct self‐reporting. In

FANETs, there are some challenges due to the density of

mobile UAVs, numerous obstacles, NLoS propagation condi-

tions, and the variation of light. Therefore, traditional detection

approaches such as LiDaR sensors, radar, electro‐optical

sensors, and computer vision cannot be applied to address

these challenges. As a result UAVs detection is an open issue

(Rezwan & Choi, 2021).

• QoS in Figure 6—box F: Quality‐of‐service (QoS) metrics affect the

performance of FANETs directly in which various types of data

such as delay‐sensitive data, video, and real‐time audio can be

transported. QoS constraints such as ensuring high coverage

probability, throughput, and reliability as well as low latency,

packet loss, and proper bandwidth, need to be considered. Path

planning determination to provide service, protection against

jamming attacks, and synchronization among UAVs are QoS‐

related issues that must be addressed. However, providing a

comprehensive approach to support QoS in FANETs is a

challenging task due to the highly mobile UAVs and the distributed

nature of this network (Chriki et al., 2019; M. A. Khan et al., 2017;

Rezwan & Choi, 2021). The difficulties of providing QoS in

FANETs are shown in Figure 6—box F.

• Standards in Figure 6—box G: The existing networking standards

are not able to fully address the challenges of UAV‐networked

systems and suitable standards are required for FANETs

(Srivastava & Prakash, 2021). Several organizations carry out

FANET's standardization, such as ISO/TC 20/SC 16,12 ASTM

International,13 American National Standards Institute

(ANSI),14 Joint Aviation Authority (JAA),15 and European Organi-

zation for the Safety of air navigation (EUROCONTROL).16 Ac-

cording to Figure 6 box G the open challenges regarding the

standardization are discussed in the following:

– Lack of proper rules: One of the reasons that UAVs cannot be

commercialized for civilian applications is the lack of appropri-

ate rules and standards. Nearly all of the FANETs applications

are provided for the military missions, the public use of UAVs

may cause more complicated rules (Chriki et al., 2019).

12https://www.iso.org/committee/5336224.html
13https://www.astm.org/
14https://www.ansi.org/
15https://jaato.com/virtual-home/
16https://www.eurocontrol.int/
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– Compliance with aviation safety standard: To ensure that there is

no interference with the aviation industry, UAV standards must

comply with the aviation safety standards.

– Specifying domain and bandwidth range: UAV network takes

advantage of different wireless communication bands, such as

UHF (Ultra High Frequency between 300 and 3000MHz and

3 GHz), and L‐band (1–2GHz), VHF (Very high frequency

30–300MHz), C‐band (4–8 GHz), and Ku‐Band (12–18 GHz).

which at the same time used in various application areas, such

as satellite communications and GSM networks. Since in

FANETs there is communication with both UAVs and ground,

the standard bands are needed to reduce the congestion

problem. However, UAV standardization is still a challenging

issue (Ahmadi et al., 2017; Srivastava & Prakash, 2021).

• Regulations in Figure 6—box H: Although FANETs bring many

advantages, UAVs face bans in some countries due to privacy and

ethics. Privacy, security, collision avoidance, public safety, and

protecting data are the main concerns that need to be addressed

by developing airspace regulations and registration of UAVs to

control UAVs' operations while considering different factors, such

as the spectrum, altitude, type, and speed of UAVs (Ahmadi et al.,

2017; Chriki et al., 2019; Mozaffari et al., 2019; Shakhatreh et al.,

2019; Srivastava & Prakash, 2021). The main criteria considered to

make UAV regulations are as follows (Stöcker et al., 2017):

– Applicability: UAV regulations are applied to determine the

scope by considering the weight, type, and role of UAVs.

– Operational limitation: It is related to restrictions on UAVs

locations.

– Administrative procedures: In some cases, particular legal

procedures such as visiting authorities and acquiring required

services and documents are needed for using UAVs.

– Technical requirements: UAV regulations are required for

control, communication, and the mechanical capabilities

of UAVs.

– Implementation of ethical constraints: UAV regulations can be

varied in various geographical regions (rural and urban areas)

and countries due to privacy protection.

4.2 | ML‐based solution for FANETs
problems (RQ3)

AI has been involved in various areas, ranging from speech

recognition to wireless communication. Moreover, ML is one of the

branches of AI that provides algorithms to train machines and help

them to make decisions based on data and their experience. AI, ML,

and DL have been widely employed in wireless networks operations

in which train network nodes and elements to control, monitor, and

predict different communication parameters, such as traffic patterns,

node locations, the behavior of wireless channels, and so forth.

UAVs are becoming a very important part of wireless communi-

cation networks. However, the challenges discussed in Section 4.1 in

this area need to be addressed. In this regard, among available

solutions, some ML techniques are expected to provide some

effective solutions for the various issues and problems identified in

UAV‐based communication systems. On the basis of the challenges

discussed in Section 4.1, the ML‐based solutions can be classified as

shown in Figure 7. Table 5 provides brief descriptions and the main

contributions of several recent surveys focusing on AI, supervised

and unsupervised learning algorithms, DL and RL algorithms, and

FL methods for UAV communication‐based networks. According to

Table 5, Lahmeri et al. (2021), Brik et al. (2020), and Nguyen et al.

(2021) focus on the latest ML and FL methods employed in UAV‐

based communication, discussing the current limitations and chal-

lenges. Brik et al. (2020) discuss the federated DL concept to improve

the communication overhead and data privacy of UAV‐based

wireless networks, and Nguyen et al. (2021) highlight the FL–IoT

services and applications in UAV networks.While Sharma et al. (2020),

Bangui and Buhnova (2021), Hassija et al. (2021), Luong et al. (2019),

Feriani and Hossain (2021), Ullah et al. (2020), and Mekrache

et al. (2021) provide an overview on AI and ML techniques in UAV‐

based network in which Sharma et al. (2020), Pradhan et al. (2023),

and Rovira‐Sugranes et al. (2022) focus on AI‐empowered tech-

niques, Bangui and Buhnova (2021) and Hassija et al. (2021) focus on

ML methods used to provide safety of the UAV‐based network, and

Ullah et al. (2020), Luong et al. (2019), and Mekrache et al. (2021)

discuss DL and deep reinforcement learning (DRL) algorithms used in

F IGURE 7 ML‐based solutions, including supervised and
unsupervised learning, reinforcement learning, and federated learning
algorithms provided for FANETs' issues. FANETs, flying ad hoc
networks; ML, machine learning; RIS, reconfigurable intelligent
surface; UAV, unmanned aerial vehicle. [Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 5 Relevant surveys in the context of AI, ML, DL, and UAV communications

Reference Description Key contributions

Lahmeri et al. (2021) AI for UAV‐based It discusses using unsupervised and supervised ML,

communications RL, and FL techniques in UAV system problems, the current

limitations, challenges, and a set of interesting open problems

Sharma et al. (2020) Communication and networking technologies It discusses the challenges of using AI techniques

problems associated with UAVs for the future UAV communication systems

Bangui and Buhnova (2021) Advances in ML‐Driven Intrusion Detection It discusses different ML techniques

in VANETs and UAV system to protect VANET and UAV communications

Brik et al. (2020) The application of It discusses the federated deep learning concept to improve the

FL in UAV networks communication overhead and data privacy of UAV‐based

wireless networks ranging from 5G networks and beyond,

Edge computing and caching, IoT to FANETs

Nguyen et al. (2021) The use of FL in various It discusses the use of FL in UAV networks smart cities, and

key IoT applications industry, highlighting the FL–IoT services and applications

and current challenges and possible directions

for future research in this area

Hassija et al. (2021) Security‐critical drone applications It discusses different ML algorithms that are used

and security‐related challenges in to detect malicious drones in

UAV‐based communication the network and to detect safe paths

Luong et al. (2019) The use of deep reinforcement It provides a tutorial on DRL from fundamental

learning (DRL) in modern networks, concepts to advanced models in order,

for example, IoT and UAV networks to address the issues of UAV‐based

Feriani and Hossain (2021) Multiagent Reinforcement Learning (MARL) One section of this survey discusses

for AI‐enabled wireless networks, MARL for UAV‐assisted (MEC) and UAV

such as Mobile edge computing networks wireless communications

Ullah et al. (2020) The UAVs challenges, potential applications, One section of this survey discusses optimal

and regulations trajectory design using DLR algorithms

Mekrache et al. (2021) The application of RL and It discusses the DL and DRL

DRL to vehicle networks algorithms that are used to address

the issues of vehicle networks, such as UAV‐based
communication

Pradhan et al. (2023) The role of AI It concludes the use

Models for UAV Communications of UAVs in real‐time scenarios

using AI‐empowered techniques

Ben Aissa and Ben Letaifa (2022) Open issues and applications of It discusses the ML solutions

Machine Learning for for air‐to‐air (A2A),

UAV Communications air‐to‐ground (A2G) and

ground‐to‐air (G2A) communications

Baig and Shahzad (2022) Improve UAV Communication and It discusses and compares

Networking using AI and ML techniques Unsupervised and Supervised ML

for UAVs‐based issues

(Continues)
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UAV‐based networks. The contributions of the surveys provided in

Table 5 are important, since they provide a comprehensive

introduction of possible AI/ML/DL/FL‐based solutions for different

use cases in UAV‐Based networks, present the limitations of the

existing research work and highlighting some possible future works

that motivate researchers to rethink the research on FANETs. To sum

up, FL‐based methods are more adequate for many UAV‐enabled

wireless applications and will have the most impact in the future of

UAV‐assisted applications.

(a) Supervised and unsupervised learning in Figure 7—box A:

The FANETs issues that can be addressed by supervised and

unsupervised learning methods are discussed as follows according to

Figure 7 box A:

• UAVs' positioning and deployment problem: UAVs are employed in

disaster management and emergency conditions where infra-

structure is devastated and the lack of services and communica-

tions are essential issues to address. In this regard, low cost and

high mobility, multiple UAV‐mounted BSs are sent to target

regions to provide temporary wireless communication services.

UAVs horizontal and/or vertical placement, distance, cost, UAV

numbers, coverage rate, and users–UAV connectivity are impor-

tant factors needed to be considered in the deployment problem

(Gao et al., 2021; Ghazal, 2021; Lahmeri et al., 2021; Q. Liu et al.,

2018; Masroor et al., 2021a; Rahimi et al., 2021; J. Yang, Liang,

et al., 2021; C. Zhang et al., 2021). ML algorithms are used to

predict the optimal position of the UAVs by identifying the

overloaded traffic areas by predicting users' demands and

positions (Nouri, Abouei, et al., 2021; Nouri, Fazel, et al., 2021;

Oliveira et al., 2021). According to Oliveira et al. (2021), among ML

approaches tested for predicting users' positions, Gradient

Boosting and Random Forest provide the best result, while Lasso,

Ridge, and ElasticNet are tied at the last place.

• Channel estimation: Channel state information (CSI) highly impacts

the performance of the UAV communication systems. ML

techniques can be used to predict and 3D model the complex

UAV‐to‐UAV and ground‐to‐UAV channels (J. Wang et al., 2021).

According to the literature K‐Nearest Neighbors, Artificial Neural

Networks, SVR, and Random Forest algorithms can be used to

estimate the channel path loss, considering several important

parameters, such as transmitter and receiver altitudes, the

propagation distance, the elevation angle (Lahmeri et al., 2021),

the direction of arrival information, the channel gain information,

and the relative position information (Fan et al., 2019; Song & Ko,

2020; P. Yang, Xi, et al., 2021; Q. Zhang et al., 2021).

• Anomaly detection: In UAV communication‐based network the

animosities and any malfunctioning that is happen during UAVs'

missions need to be detected to provide a safe flight (Dutta et al.,

2021; Lahmeri et al., 2021). Hyper anomaly detection, which

identifies abnormal observations and data samples, is a hot topic in

hyperspectral image processing (S. Wang et al., 2021). Using an

anomaly detection system, UAVs are prevented to do missions

when there are motor malfunctioning, insufficient battery capac-

ity, and loss of communication (Lu et al., 2018). In UAV imaging

platforms (Guo et al., 2020), monitoring and surveillance systems,

the UAV camera plays a vital role in abnormal behavior detection

representing any security risk in video footage (Chriki et al., 2021).

However, anomaly detection, which aims to apply specific feature

extraction techniques to the videos recorded by UAVs, is a

complex task due to the lack of data sets from UAVs in real

conditions as available data sets have been designed for

surveillance with fixed cameras and variable and dynamic varying

ambient brightness and large‐scale backgrounds. The choice of

features affects the ability to detect specific anomalies. ML

techniques and DL methods can extract relevant features that are

used as the input to the anomaly detection system by automatic

learning representations from raw data (Bozcan & Kayacan, 2020).

(b) RL and DRL in Figure 7—box B:

RLs continuously identify new data patterns through a process of

reward and punishment. While supervised methods employ one

training step to create a classification model, reinforcement methods

collect feedback throughout the model's usage and continuously

update it (Dulac‐Arnold et al., 2019; Szepesvári, 2010).

The RL model used in the context of FANETs, contains five main

elements, including agent which is UAV in FANETs, environment,

value function, reward signal, and policy. The model‐based RL and

the model‐free RL are two main categories of RL problems (Anokye

TABLE 5 (Continued)

Reference Description Key contributions

Rovira‐Sugranes et al. (2022) It discusses AI‐enabled routing It provides a review on AI‐based routing protocols

protocols for UAV networks designed for UAV networks, highlighting the benefits

and costs of each type, along with available testing and

implementation tools, relations to mobility models and

networking protocols, and connection to UAV swarming

Abbreviations: AI, artificial intelligence; DL, deep learning; FANETs, flying ad hoc networks; IoT, Internet of Things; ML, machine learning; RL,

reinforcement learning; UAV, unmanned aerial vehicle; VANET, vehicular ad hoc network.
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et al., 2021). RL can provide good solutions for various decision‐

making problems. However, for complex problems in which a large

state space and action are required, RL shows limited performance.

Therefore, DRL which estimates the states using NN, can be a proper

choice. DRL allows the computational agents make decisions from

unstructured input data in unseen situations, opposing the traditional

RL techniques, such as Q‐learning (Lahmeri et al., 2021; Rezwan &

Choi, 2021). Deep Deterministic Policy Gradient (DDPG; Rodriguez‐

Ramos et al., 2019), and Deep Q Network (DQN) are two popular

DRL algorithms used in UAV networks (Anokye et al., 2021).

However, DRL requires higher computational complexity and more

memory than traditional ML approaches (Hu et al., 2020). In

particular, when online RL is applied to a UAV‐based communication

system where UAVs have high‐speed mobility, many safety devices

are needed to compensate for problems caused by the high

complexity.

According to Figure 7—box B the RL and DL algorithms can

address the following issues in FANETs:

• Autonomous path planning: Recently the guidance, navigation, and

control (GNC) system of UAVs which provides an autonomous

navigation by following a desired path defined by observed

information, has become popular research area (Cui & Wang,

2021). In the GNC system, UAVs can make intelligent decisions,

therefore a high autonomy for UAVs is implemented (Lahmeri

et al., 2021). However, reaching such a high‐level control strategy

of UAVs (autonomous level) is a challenging issue because of the

frequent topology changes in FANETs and UAVs' constraints, such

as limited UAVs' power. ML approaches, especially RL with their

powerful learning ability have been widely employed in unmanned

systems in which the action policy is optimized based on the

interaction between environment and agent (UAV). RL‐based path

planning methods are more flexible than traditional ones, such as

A* and RTT algorithms (Chang et al., 2021). Q‐learning‐based

strategies, S‐MGD, Sarsa, Multiagent RL (MAXQ), DQN, DDQN,

mutual and Decaying DQN are RL algorithms that have been

investigated for UAV path planning (Bayerlein et al., 2021; He

et al., 2021; Qie et al., 2019; Yan et al., 2020).

• Schedule, and resource management: Beyond path planning for

UAV‐based communication systems, UAV‐assisted resource man-

agement, scheduling smart UAVs, content caching, and network

planning are very demanding in 5G and 6G networks where higher

throughput, increased data rate, lower overhead, lower interfer-

ence, and better coverage and support of a massive number of

devices are required (Jung et al., 2021). The reasons why UAVs are

widely employed to assist resource management that can be

performed in a distributed or centralized, include: UAVs can

quickly manage resources requested by overloaded users in the

network. In addition, further growth of capacity and coverage of

the system is easy to accommodate using UAVs. UAVs that can fly

and operate missions in various altitudes can provide services for

users and devices rapidly (Munaye et al., 2021). The multiple UAVs

do time‐limited missions due to their lack of battery capacity.

Therefore, the scheduling approaches that enable UAVs to cover

temporally and spatially distributed events in the geographical

areas of interest over a long period, are required (Ghazzai et al.,

2019). RL techniques such as Q‐learning, DQN network coupled

with a Long Short Term Memory network and MultiAgent

Reinforcement Learning have facilitated resource management

and scheduling in UAV‐based communication systems (H. Yang,

Zhao, Xiong, et al., 2021; Y. Yuan et al., 2021).

(c) FL in Figure 7—box C:

FL, one of the most robust and secure cloud infrastructures, has

been implemented in 2016 by Google to execute ML algorithms in a

decentralized manner in constrained networks composed of a central

node and several users such as UAV networks in which there is no

need to download the training set to a central server (Nguyen et al.,

2021). While standard ML techniques need to centralize the training

data in a data center or on one machine (Lahmeri et al., 2021).

According to Figure 7 box C, FL can provide promising solutions to

address the following issues in FANETs:

• FANETs security: In FANETs, the sensitive information carried by

UAVs is at risk of different malicious, communication attacks,

wireless fidelity (Wi‐Fi) attacks, and cyberattacks (Dahiya & Garg,

2020; Mowla et al., 2020). FL‐assisted approaches are promising

solutions. There are available unbalanced data at the different

nodes and the huge number of interacting nodes in FANETs, and

FL performs well in such a scenario. FL can address the unbalanced

data and provide efficient communication (Bekmezci et al., 2016;

Yazdinejad et al., 2021)

• Path control: The autonomous control of a massive number of

UAVs that move from a source to a destination to accomplish a

mission is a difficult control task. This is because some randomness

sources such as wind might lead to inter‐UAV collisions. Path

control is a promising solution in this regard. DL‐based path

control has been investigated in several studies (Aggarwal &

Kumar, 2020; Challita et al., 2018; Q. Liu et al., 2020; Yan et al.,

2020; Zhao et al., 2018). Recently, the real‐time UAV path control

frameworks have been proposed using mean‐field game theory

and FL in which the model parameters will be shared between

UAVs. By doing so, UAVs can consider the impact of locally

nonobservable samples on the learning process (Donevski et al.,

2021; Lahmeri et al., 2021; Shiri et al., 2020).

• Scheduling and resource management: Resource management in

UAV‐based communication networks aims to improve QoS,

provide better coverage of users, reduce the cost for end‐users

and address the challenges with the lack of resources, such as

frequency, charging, energy, channel, cost, spectrum allocation,

trajectory, data offloading, backhaul, and other resources in UAV‐

assisted networks (Masroor et al., 2021b). Recently, FL algorithms

have been used to facilitate resource management and scheduling

in UAV‐assisted networks and to address the existing challenges.

When it comes to FL, the network needs to be composed of one

UAV as a leader (FL UAV server) and a group of following UAVs
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which run an FL algorithm on their local data set and send the local

updates to the FL UAV server. After aggregating all the local

updates, the UAV leader performs a global update to the global

model (Masroor et al., 2021b; H. Yang, Zhao, Xiong, et al., 2021; T.

Zeng et al., 2020). However, this huge amount of exchanging

updates between nodes negatively affects the transmission delay,

fading, antenna gain, and interface which destructively impacts the

performance of the FL algorithm.

• UAV sensing: UAVs provide a reliable, versatile, powerful, and

flexible platform for acquiring data and detecting a target, and

identifying its real location in real‐time as they can be equipped

with any kind of active and passive sensors. The low‐cost visual

sensors are widely mounted on UAVs to detect the target in

surveillance applications as they support different types of

analysis methods. Although using UAVs provide many advantages

in remote sensing technology in comparison with manned systems,

there are some issues (Asadzadeh et al., 2022; Lahmeri et al.,

2021) that can be addressed by FL techniques. For example, for

predicting the air quality index throughout integrating sensor‐

based and vision‐based air quality sensing, FL can be applied to

provide an accurate visual model‐based, enabling UAVs to learn

from haze images with a higher accuracy than conventional

approaches (Y. Liu et al., 2021).

• Client selection strategies: Selecting a proper UAV to participate in

the learning process of FL, which impacts the overall accuracy, is a

difficult task for FL. In this context, the FL technique can be

improved by some client selection strategies that provide a

prioritization approach to select better clients (UAVs) for calculat-

ing the global update to the model (Lahmeri et al., 2021; Lim et al.,

2021; Y. Wang et al., 2021).

• Content caching: Content caching is one of the most promising

technologies to reduce the backhaul congestion links and latency

in 5G and 6G networks. In addition to backhaul congestion and

latency, the energy efficiency of 5G and 6G networks is also

important and need to be addressed. According to the energy

efficiency formula provided in Khuwaja et al. (2021), which is

defined as the ratio of the area spectral efficiency for the

successful content delivery to the average power consumption

of the network, the energy efficiency of the cache‐enabled

networks is more effective than the traditional networks. Contents

are stored in caches at the small‐cell BSs such as heterogeneous

flying BS (UAV‐BS) so that users can request and access the

required content locally during peak hours to decrease the burden

on backhaul (Wei et al., 2021). UAVs provide flexible access,

meaning that they can take the caching content closer to the

users, and they can be used as flying BS or cache to speed up the

transmissions (Al‐Hilo et al., 2021). However, there are some

challenges such as UAV deployment in this context. Therefore,

intelligence FL‐based content caching solutions for 5G and 6G

networks composed of UAV‐BSs and ground BSs, have been

proposed. Using FL techniques, users do not need to share

explicitly their content preference and reporting because using FL,

the cached content in various BSs will be accurately predicted

based on mobile users preferences (Khuwaja et al., 2021; Lahmeri

et al., 2021).

4.3 | Main challenges of applying ML towards the
main problems of FANETs (RQ4)

There are some challenges when it comes to implementing ML

techniques for FANETs of UAVs. The first issue is, how to select a

suitable ML technique to address the problem among the huge

number of available ML techniques (Sharma et al., 2020). In addition,

to ML be properly utilized, considerable training data is required.

However, in fact, the data that UAVs can learn to communicate in

three dimensions (3D) is currently insufficient. Other existing

challenges of using AI/ML techniques in the UAV network are

discussed in the following.

When it comes to implement supervised and unsupervised

learning algorithms to overcome the existing challenges of UAV‐

based communication systems, new issues have emerged. First, most

of the existing UAVs have limited computing capacity. In other words,

they are not equipped with powerful graphics processing unit (GPU),

central processing unit (CPU), and power that are required to execute

heavy ML techniques. Therefore, the cloud computing is one of the

interesting solutions to train models and do computational tasks.

However, in this solution UAVs have to communicate back and forth

with the cloud which in its turn increases the communication costs and

again leads to the power constraint problem QoS‐related challenges.

Therefore executing ML algorithms on‐board is a solution that is

known as on‐device learning dedicated to constrained devices. In

addition, FL is one of the promising solutions to address the execution

of ML on‐board which was already discussed (Lahmeri et al., 2021).

In terms of RL, although it provides many advantages in

comparison with supervised and unsupervised learning, the applica-

bility of RL in real‐world issues such as self‐driving and autonomous

flying tasks is still doubtable. It is almost impossible to perfectly

understand the high‐varying environment, explore the action space

to discover surroundings and exploit the knowledge in such an

environment. Regarding FAA regulations, in some countries, UAVs

are not allowed to fly over all regions and have altitude constraints so

that they can only fly in the operator's field of sight (Bithas et al.,

2019). As a result, such regulations prevent the development of RL

for various UAV‐based applications. To sum up, the majority of

existing studies focus on providing autonomous path planning for

UAVs using RL techniques, the Q‐learning approach in particular.

However, a classical Q‐learning algorithm requires full knowledge of

the environment, which is impossible due to the high‐varying nature

of the UAV network. Therefore this algorithm might be slow. DRL

techniques such as Q‐learning NN and DDPG are promising

approaches in path planning problems. The other applications such

as event scheduling and resource management have not been

investigated well which has led to an unbalanced research content

towards path planning applications (Anokye et al., 2021; Lahmeri

et al., 2021; Rezwan & Choi, 2021; Rodriguez‐Ramos et al., 2019).
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As already mentioned, UAVs can perform distributed ML

algorithms for terrestrial wireless devices without the presence of

any centralized BS, and the ground wireless nodes do not require to

send any raw data to the UAVs during the learning process. In other

words, the wireless nodes take advantage of their local data sets to

train ML models, then send the local model parameters to an FL UAV

server to aggregate the model. Next, the FL UAV server broadcasts

the parameters to related nodes for a new round of local model

training. This will continue until a target learning accuracy is achieved.

Since raw data is kept at devices, privacy is preserved, and the

network traffic congestion reduces.

However, due to the exchanging ML models parameters across the

heterogeneous UAV networks which contain different types of UAVs

with various GPUs and CPUs, and the high mobility of UAVs and devices,

the UAVs' task consensus and FL convergence are negatively influenced

by transmission latency. Therefore the convergence of the FL algorithm

is not always guaranteed (H. Yang, Zhao, Xiong, et al., 2021).

In addition, the scalability problems might happen while using FL

techniques, due to the high exchange of updates between FL UAV

servers and devices which leads to the massive communication loads

in the training step (Lahmeri et al., 2021).

4.4 | Simulation tools, frameworks, and testbeds
for FANET's performance analysis (RQ5)

Evaluating the performance of UAV‐based communication networks in

the real world is a tough task that requires remarkable time and

resources. Frequent topology changes and the high degree of mobility

of the UAVs in FANETs make the practical evaluation of UAV

performance a challenging, costly, and time‐consuming task. In addition,

due to some regulations of using UAVs in most countries, some cyber‐

attack resistance evaluation tests for UAV networks are not allowed

(Chriki et al., 2019). Therefore, many flexible simulation tools, frame-

works, emulators, and testbeds have been developed to make it

possible to create, implement, test, and evaluate schemes virtually

without requiring real‐world implementation. They provide the

possibilities for UAVs flights, mobility models, and UAVs management.

However, choosing an adequate tool has always been an issue for

researchers. In most cases, it is not possible to switch between

simulation tools as they all differ in functionality and use. If the

evaluation tool is selected wrong, it will take a considerable time and

effort from the researcher to learn, implement the simulation scenario.

Therefore, this study provides the information about FANETs

analysis tools, such as

• AVENs: It is a flight control simulator that implements co‐simulation

between the XPlane Flight Simulator and an OMNeT++/INET

simulation for modeling UAV communication.

• CUSCUS: It is a simulation architecture for networked control

systems which are based on two well‐known solutions in both the

fields of networking simulation (the NS‐3 tool) and UAV control

simulation (the FL‐AIR tool).

• Simbeeotic: It is used to evaluate microaerial vehicle swarms.

• UAVSim: It is an OMNeT++‐based UAV simulator and it is useful

for cyber security analysis in UAV‐based networks.

• UTSim: It is useful for air traffic simulation and capable of

simulating UAV physical specification, control, navigation, sensing,

communication, and avoidance in environments with stationary

and mobile objects.

• FANETSim: It is a Java software able to consider a set of flying

UAVs in the sky that provides connectivity to the users inside the

considered map.

• Netsim: It provides three various versions NetSim Pro, Standard,

and Academic. It has a very intuitive graphical user interface (GUI).

• OMNeT++: It is a modular, extensible, component‐based network

simulator used for research and commercial purposes.

• NS2: It is a discrete event simulator used for networking research

which simulates transmission control protocol (TCP), routing, and

multicast protocols over wired and wireless (local and satellite)

networks.

• NS3: It allows the simulation of both IP and non‐IP‐based

networks. It is suitable for performance evaluation of mobile ad

hoc and TCP networks.

• OPNET: It provides a powerful GUI and animation but involves

significant costs.

• ROS‐NetSim: It is a ROS package that acts as an interface between

robotic and network simulators.

• MATLAB: It provides different example applications involving both

fixed‐wing and multirotor UAVs. It has a UAV Toolbox and the

ability to do AI/ML as it also has a Statistics and ML Toolbox.

• TOSSIM: It is a BSD‐licensed OS designed and for low‐power

wireless devices. It is widely used in both academia and industry.

• QualNet: It is a powerful simulation tool for UAV research focusing

on network security.

• GloMoSim: It is widely used for research purposes and is very

scalable. It does not offer good documentation, which makes it

less user‐friendly.

• YANS: It is a lightning‐fast Docker‐based network simulator.

• ONE: It generates node movement using different movement

models and visualizes both mobility and message passing in real‐

time in its graphical user interface. ONE can import mobility data

from real‐world traces or other mobility generators.

• SSFNet: It is a scalable simulation framework network model and

designed for the expansion of the higher network, including

topology, protocols, traffic, and so forth.

• RoboNetSim: It integrates multirobot simulators with network

simulators for communication‐realisticsimulation of networked

multirobot systems. It has been applied to interface the NS‐2,

NS‐3, and ARGoS, Player/STAGE simulators.

• Mininet‐Wifi: It is an extension of the Mininet SDN network

emulator by adding or modifying classes and scripts.

• SIMU: It cannot be used directly in FANETs as it is tailored for 2D

vehicles, but it can integrate with OMNeT++ and NS3.

• FlynetSim: It is an open‐source synchronized UAV network

simulator which works based on NS3 and Ardupilot.
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• J‐Sim: It is a powerful tool, but it is relatively complicated to use

and has a longer execution time than NS3.

• BonnMotion: It is a Java software that creates and analyzes

mobility scenarios and is widely used as a tool for the investigation

of mobile ad hoc network characteristics.

• GAZEBO: It is a robotics simulation platform to test algorithm and

build AI/ML platforms for UAV applications. It can connect to a

robot control framework (ROS).

• AirSim: It is an open‐source platform for AI research to experiment

with computer vision, DL, and RL algorithms for UAVs.

Table 6 helps researchers to identify and to choose the right

FANETs performances analysis tools (Chowdhury et al., 2021; Gill

et al., 2021; Hentati et al., 2018; Kang et al., 2016).

5 | FUTURE RESEARCH DIRECTIONS FOR
FANETs

On the basis of the papers analyzed in this study, selected future

research directions regarding UAV‐based communication systems are

discussed in this section. This section is divided into eight subsections,

including UAV‐assisted 5G and 6G wireless networks (Section 5.1),

Blockchain‐envisioned UAV communication in the 6G network

(Section 5.2), AI‐Enabled Object Detection in UAV‐networked system

(Section 5.3), IoMIMO Things‐based UAVs (Section 5.4), SDN and

NFV (Section 5.5), Quantum Communication (Section 5.6), 3D

beamforming (Section 5.7), and RIS‐enabled UAVs (Section 5.8).

5.1 | UAV‐assisted 5G and 6G wireless networks in
Figure 8—Cell A

The ever‐increasing use of UAVs in various applications makes UAVs

a major part of beyond 5G and 6G wireless networks in near future to

offer secure, cost‐effective, and reliable wireless communications

and coverage improvement. In this regard, cellular networks serve

multiple UAVs acting as flying BSs/user equipment to provide

wireless connectivity (Masaracchia et al., 2021; H. Yang, Zhao, Nie,

et al., 2021). However, enabling robust UAV operations faces several

key barriers and challenges, including security and safety of UAVs

and airspace control. In addition, providing efficient connectivity for

flying UAVs face several challenges, such as interference routing and

mobility issues (I. U. Khan et al., 2020), Sidelobe and Antenna tilt

(Mozaffari et al., 2021). Figure 8—cell A shows an overall structure of

the UAV‐assisted 6G networks and the usefulness of blockchain for

these networks. As illustrated in Figure 8—cell A, blockchain which is

a decentralized and transparent database (Nguyen et al., 2022),

creates the secure communication system in which UAVs are

considered as blockchain clients and communicate with each other

and ground BSs to exchange information and perform their missions.

UAVs, network operators, and users store and trace their data on the

ledger with a distributed control.

5.2 | Blockchain‐envisioned UAV communication
in the 6G network in Figure 8—Cell A

Blockchain technology is a promising solution to mitigate the issues

related to the UAV network, shown in Figure 6. The integration of

blockchain and 6G technologies in UAV‐based communication, which

is shown in Figure 8—Cell A), is an interesting field of research that

needs more effort and investigation. In such integration, 6G supports

the communication among UAV, satellites, and ground stations, and

guarantees the reliability of vehicle‐to‐server connectivity and

Vehicle to Everything (Amin et al., 2015). Blockchain provides a

decentralized environment to the UAV and improves UAV communi-

cation. Blockchain‐assisted UAV communication in 6G environment

brings interesting research directions (Aggarwal et al., 2020; Alladi

et al., 2020; Kumari et al., 2020), such as security and privacy,

scalability, path planning, storage capacity, and optimizing UAV

energy consumption which is discussed in Table 7.

5.3 | AI‐enabled object detection in UAVs in
Figure 8—Cell B

Object detection is a component of computer vision applications and

can be supported by UAVs equipped with many sensors and high‐

resolution cameras as can be observed in Figure 8—Cell B. DL

algorithms have widely been employed for object detection (Sandino

et al., 2021). However, aerial object detection is much more complex

than general object detection scenarios. First, UAVs capture a

multitude of object sizes, such as bicycles, buses, trucks, and so forth,

due to their large field‐view. The deeper layer of NN can detect large

objects easily but detecting objects that are very small in size and also

crowded would be a challenging task. The crowded objects with low‐

resolution images also make it difficult to classify each of them

separately with distinguished boundaries. Therefore, managing various

objects together is a challenging task for DL‐based models. In addition,

due to limited computational resources and power constraints of

UAVs, it is difficult to carry out DL inference in UAVs to do object

detection tasks. Finally, addressing the occlusion problem in aerial

images captured by UAVs is more difficult than general object

detection scenarios (Jain et al., 2021; Rabah et al., 2020). In other

words, aerial object detection is almost impossible due to the very

small size of the objects, variation in surrounding illumination,

occlusion and the shadowing of objects by trees and high buildings.

5.4 | IoMIMO things in Figure 8—Cell C

Massive multiple‐input multiple‐output (MIMO) is one of the key

technologies in developing 5G network and it can enable other

wireless networks, such as cellular‐connected UAV communications.

However, the performance that massive MIMO provides depends on

accurate CSI of both UAVs and ground users at the GBSs (de Freitas

et al., 2012; Marinho et al., 2013b). On the other hand, to have a
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TABLE 6 Simulation tools and testbeds for UAV systems performance analysis (Pasandideh et al., 2022)

Name Type Mobility model Operating system Programming language

AVENSa Simulator Linear Mobility Linux, Windows, N/A

MacOS

CUSCUS (Zema et al., 2017) Simulator Micromobility >Ubuntu 14.04 N/A

Simbeeotic (Kate et al., 2012) Simulator and N/A Linux Java

Testbed

UAVSim (Javaid et al., 2013) Testbed Well‐defined Windows, Linux, C++

mobility framework and MacOs

UTSim (Al‐Mousa et al., 2019) Simulator N/A Windows C#, JavaScript,

and a framework Linux Unity Script, or,

BOO coding languages

FANETSim (Tropea et al., 2020) Simulator Grid Linux Java

Netsim (Veith et al., 1999) Simulator RW, RWP Windows, MacOS or C

OMNeT++ (Varga, 2010) Simulator FP, RWP, RW Linux, MacOS C++, high‐level

NS2 (Issariyakul & Hossain, 2009) Simulator RW, RWP, Linux, C++, with an OTcl

GM, MG, RPGM Windows, interpreter as

MacOs

NS3 (Vasiliev et al., 2014) Simulator RW, RWP, Linux, Windows, C++, Python

RD, GM, MG, RPGM and MacOS

OPNET (Durham et al., 2009) Simulator RW, Group mobility, Windows, Red Hat, C, C++

RWP, RD and CentOS

ROS‐NetSim (Calvo‐Fullana
et al., 2021)

Simulator N/A Linux C++

MATLAB (Ribeiro & Oliveira, 2010) Simulator SRCM, PSMM Windows, Linux, C, C++

and MacOs

TOSSIM (Levis & Lee, 2003) Testbed RWP Linux, C++

QualNet (Y. Zheng et al., 2014) Simulator RWP, Group mobility MacOs, Linux C++.

GloMoSim (Gu et al., 2000) Simulator RWP, Group mobility Linux, Windows C, Parsec

YANS (Lacage & Henderson, 2006) Simulator N/A MacOS, Python,

Ubuntu C, C++

ONE (X. Li et al., 2012) Simulator RWP Linux, Windows, Java

and MacOS

SSFNetb Simulator MG, RPGM, Linux, Solaris, and Java, C++

RW, RWP, GM Windows NT using

JDK1.2 and higher

RoboNetSim (Kudelski &
Gambardella, 2013)

Framework It provides good MacOs Python

C++, mobility patterns Linux, Windows,

Mininet‐Wific Emulator RW, RWP, TruncatedLevyWalk, Any Ubuntu

Distribution

C++,

GM, RandomDirection, Reference

Point

from 14.04

(Continues)
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sustainable and reliable intelligent world, pervasive IoT adoption is

required, in which wireless devices suffer from limited capacity

batteries. Although wireless power transfer (WPT), energy harvesting

(EH), and energy‐efficient communication techniques have been

employed to address this issue, IoT services are still looking for fully

autonomous things without power constraints. The green IoT can be

obtained using UAVs infrastructure and a new concept called the

IoMIMO, which is still in its infancy stages, as IoT connectivity has

constraints and requirements that are totally different from broad-

band connections (Cetinkaya et al., 2020; Huang et al., 2021;

Marinho et al., 2013a; Taştan & İlhan, 2021; Yilmaz & Denizer, 2020).

Moreover, IoT‐based UAV is a new research topic that takes

advantage of location identification and tracking with the advance-

ment of aerial technology. However, identifying the location of the

wireless nodes is a challenging task. Therefore, I. U. Khan et al. (2021)

provide a received signal strength identifier controlled long‐range

communication technique in IoT‐based UAV. I. U. Khan et al. (2021)

construct 2D and 3D models to gather more accurate information on

the nodes by measuring the signal strength. An example of IoMIMO‐

enabled UAV network can be observed in Figure 8—Cell C, in which a

UAV acts as flying BS using A2G mmWave beams to expand wireless

coverage, and provides multi‐Gigabit transmission towards ground

users in 5G systems via thing‐to‐thing or people‐to‐thing

communications.

5.5 | SDN and NFV in Figure 8—Cell D

UAV networks face some crucial performance issues and challenges

such as complex, manual, and time‐consuming network management

which in turn leads to many interoperability problems. Recently,

some studies have employed SDN and NFV technologies to mitigate

the network management complexity and enhance the drone

assistance for the next generation of mobile networks. However,

the integration of SDN and NFV in UAV‐assisted networks is still at

the infancy stage of development and there are still some unresolved

issues that require scrutiny by researchers, including hardware

resource constraints, power limitation of UAVs, high density and

mobility of UAVs, and failure of SDN controller and NFVs (Das et al.,

2019; Gebremariam et al., 2019; Sami Oubbati et al., 2020). A typical

SDN‐based UAV network is shown in Figure 8—Cell D. According to

Figure 8—Cell D, in the data plane, a swarm of UAVs that perform a

specific task act as forwarding nodes and provide necessary

communications to users within their transmission range. On the

other hand, the SDN controller in the control panel manages and

control the whole network.

5.6 | Quantum communication

Quantum computing is a rapidly‐emerging technology that can speed

up computation and provide real‐time solutions for problems too

complex in classical systems using the laws of quantum mechanics

(Vista et al., 2021). Recently, Quantum communication is being used

as a promising technology to ensure robust security of information

exchange in UAV‐assisted 5G and 6G mobile networks, while

supporting many applications. In addition, Quantum Evolutionary

Algorithms are used to allocate tasks among a network of

heterogeneous resource‐constrained UAVs in a remote and highly

dynamic environment, where the energy and resources available at

TABLE 6 (Continued)

Name Type Mobility model Operating system Programming language

SUMO (Sugiura, 2018) Simulator N/A Windows, Linux, C++, Python

or MacOs

FlynetSim (Baidya et al., 2018) Simulator GM, MG, RPGM, Ubuntu Distributions Python

RW, RWP, RD

J‐Simd Simulator RWP Linux, Windows, Tcl, Python,

and MacOS and Perl

BonnMotion (BonnMotion, 2011) Mobility RW, RWP, Linux, OSX Java,

generator GM, MG, RPGM, and more Windows

GAZEBO (Bernardeschi et al., 2018) Simulator High‐speed Linux, C++

Mobility Linux virtual machines

AirSim (Madaan et al., 2020) Simulator N/A Windows, Linux C++, C#

Abbreviation: UAV, unmanned aerial vehicle.
ahttp://hdl.handle.net/10125/41924.
bhttp://www.ssfnet.org/.
chttps://mininet-wifi.github.io/.
dhttps://sites.google.com/site/jsimofficial/downloads.
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the UAVs are limited (Mousavi et al., 2019). Quantum Annealing is

also used to solve a binary optimization problem to derive an optimal

scheduling plan in a UAV‐enabled IoT network (Vista et al., 2021).

However, when it comes to using quantum communications, an open

issue arises, which is signal degradation due to weather conditions

(Vista et al., 2021). The attenuation of a signal transmitted through

the UAV‐assisted 5G or 6G quantum‐based mobile networks,

significantly and directly degrades the performance of quantum

communication.

5.7 | 3D beamforming in Figure 8—Cell C

Three‐dimensional beamforming is a promising solution to improve

the performance of cellular‐connected UAV communications. Ac-

cording to Figure 8—Cell D, GBSs which are equipped with full‐

dimensional antenna arrays are capable of performing fine‐tuned 3D

receive or transmit beam‐forming with improved intercell

interference mitigation for communicating with UAVs. The 3D

beamforming can also generate high system throughput based on

the location of the UAV which is not practical in traditional cell

sectorization based on 2D directional antennas. In addition, location‐

based 3D beam‐forming schemes in UAV‐enabled mobile relaying

systems optimize the beamforming direction and trajectory of the

UAVs to minimize the secrecy outage probability of the system

(Colpaert et al., 2020; Huang et al., 2020; Q. Yuan et al., 2019; Y.

Zeng et al., 2019).

5.8 | RIS‐enabled UAVs in Figure 8—Cell E

The 6G wireless communication networks aim to provide widely

dimensional wireless coverage, full connectivity, full‐vertical applica-

tion, and adequate bandwidth and achieve ultrahigh data rates (Long

et al., 2021). In this regard, intelligent reflective surfaces (IRS) is a

promising technology for 6G that can intelligently control a wireless

F IGURE 8 Future FANETs directions, including 5G and 6G networks, blockchain enabled UAV communication, SD, NFV, IRS‐enabled UAV
networks, 3D beamforming, and RIS‐enabled UAV networks. 3D, three‐dimensional; BS, base station; FANETs, flying ad hoc networks; IRS,
intelligent reflective surface; MIMO, Multiple‐Input Multiple‐Output; NFV, Network Function Virtualization; RIS, reconfigurable intelligent
surface; SDN, Software Defined Network; UAV, unmanned aerial vehicle. [Color figure can be viewed at wileyonlinelibrary.com]
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environment, control the wavefront, including frequency, amplitude,

phase, and even polarization by massive tunable elements. As

presented in Figure 8—cell E, IRS can direct a signal to the target

position using this set of passive, tunable and reflective elements.

UAV‐assisted IRSs have been investigated to improve spectrum

efficiency in which IRS is employed to reflect the signal towards

UAVs equipped with small BSs. There are two main scenarios in this

context as shown in Figure 8—cell E. First UAV‐BS that carry the IRS,

act as the passive relay in both downlink and uplink communications

between group users and ground BSs. In the second scenario,

buildings equipped with IRS help UAV's communications (Basharat

et al., 2021; Z. Chen et al., 2021; Z. Li & Chen, 2021; Long

et al., 2021).

6 | CONCLUSIONS

This SLR presents a comprehensive review of Multiple Unmanned

Aerial Vehicle Networks from traditional and ML‐enabled wireless

communications perspectives. The main goal of this paper is to discuss

the challenges in FANETs, possible AI, supervised and unsupervised

learning algorithms, DL and RL algorithms, and FL methods for the

challenges of UAV communication‐based networks, as well as to

provide a prospective insight of future research in FANETs in a

quantitative manner. Therefore, an extensive literature review was

performed to find the most relevant publications on these topics in

which more than 170 publications extracted from five trusted academic

databases published from 2013 to 2021 were considered. The research

investigated on FANETs and the worldwide commercial UAV market

size show an upward trend from 2013 to 2021 which means drone‐

assisted network is becoming a major research topic. Such a growth can

be mainly justified by rapid technological changes and advances,

increasing labor cost, and increase in delivery demand. It is also worth

mentioning that the largest number of studies were from China and the

United States. To sum up, regarding the possible AI/ML/DL/FL‐based

solutions for different use cases in UAV‐based networks, FL‐based

methods are more adequate for many UAV‐enabled wireless applica-

tions and will have the most important impact in the future of UAV‐

assisted applications.
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TABLE 7 Research directions in blockchain‐assisted UAV communication in 6G environment

Research direction Description

Privacy Secure and tamper‐proof information sharing between the blockchain network and the UAV needs to be well addressed.

Security Blockchain‐based UAV network can overcome many attacks that UAV applications face, including eavesdropping,

hijacking, and so forth, due to connections and open links, using the blockchain properties, such as security, transparency,
and immutability.

Scalability A swarm of UAV is able to form the scalable multi‐UAV networks help make fast and effective communication and
ubiquitous

connections for ground users using the 6G wireless communication network.

Storage capacity As the UAVs suffer from lack of storage capacity, the details of collected data scanned by UAVs and the time stamp at

which the

block was added, can be directly transmitted to a cyber–physical system connected to a blockchain. Therefore information
about

data can be easily stored and monitored. However the blockchain‐based storage capacity is still in its infancy.

Low latency Some of the UAV real‐time applications such as remote surgeries requires ultralow latency in

blockchain‐based communication network obtained by using a 6G wireless communication infrastructure.

Efficient path planning However many studies have investigated UAV path planning problem, there are still many open issues, such as efficient
trajectory and route

planning. Therefore, providing an efficient path planning is still required for blockchain‐based UAV in 6G wireless

communication infrastructure.

Abbreviation: UAV, unmanned aerial vehicle.

20 | PASANDIDEH ET AL.

 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22157 by C

A
PE

S, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



001 and in part by Conselho Nacional de Desenvolvimento Científico

e Tecnológico—Brasil (CNPq) Projects 309505/2020‐8 and 420109/

2018‐8, and FAPERGS.

REFERENCES

Aggarwal, S. & Kumar, N. (2020) Path planning techniques for unmanned
aerial vehicles: a review, solutions, and challenges. Computer

Communications, 149, 270–299.
Aggarwal, S., Kumar, N. & Tanwar, S. (2020) Blockchain‐envisioned UAV

communication using 6G networks: open issues, use cases, and
future directions. IEEE Internet of Things Journal, 8(7), 5416–5441.

Ahmadi, H., Katzis, K. & Shakir, M.Z. (2017) A novel airborne self‐
organising architecture for 5G+ networks. In: 2017 IEEE 86th

vehicular technology conference (VTC‐Fall), pp. 1–5.
Al‐Hilo, A., Samir, M., Assi, C., Sharafeddine, S. & Ebrahimi, D. (2021) A

cooperative approach for content caching and delivery in UAV‐
assisted vehicular networks. Vehicular Communications, 32, 100391.

Alladi, T., Chamola, V., Sahu, N. & Guizani, M. (2020) Applications of

blockchain in unmanned aerial vehicles: a review. Vehicular

Communications, 23, 100249.
Al‐Mousa, A., Sababha, B.H., Al‐Madi, N., Barghouthi, A. & Younisse, R.

(2019) UTSim: a framework and simulator for UAV air traffic
integration, control, and communication. International Journal of

Advanced Robotic Systems, 16(5), 1729881419870937.
Amin, R., Islam, S.H., Biswas, G., Khan, M.K. & Kumar, N. (2015) An

efficient and practical smart card based anonymity preserving user
authentication scheme for TMIS using elliptic curve cryptography.
Journal of Medical Systems, 39(11), 1–18.

Anokye, S., Ayepah‐Mensah, D., Seid, A.M., Boateng, G.O. & Sun, G.
(2021) Deep reinforcement learning‐based mobility‐aware UAV
content caching and placement in mobile edge networks. IEEE

Systems Journal, 16, 1–12.
Asadzadeh, S., de Oliveira, W. J. & de Souza Filho, C.R. (2022) UAV‐based

remote sensing for the petroleum industry and environmental
monitoring: state‐of‐the‐art and perspectives. Journal of Petroleum
Science and Engineering, 208, 109633.

Baidya, S., Shaikh, Z. & Levorato, M. (2018) FlyNetSim: an open source

synchronized UAV network simulator based on NS‐3 and Ardupilot.
In: Proceedings of the 21st ACM international conference on modeling,

analysis and simulation of wireless and mobile systems, pp. 37–45.
Baig, B. & Shahzad, A.Q. (2022) Machine learning and AI approach to

improve UAV communication and networking. In: Computational

intelligence for unmanned aerial vehicles communication networks.
Cham: Springer International Publishing, pp. 1–15. https://doi.org/
10.1007/978-3-030-97113-7_1

Bangui, H. & Buhnova, B. (2021) Recent advances in machine‐learning
driven intrusion detection in transportation: survey. Procedia

Computer Science, 184, 877–886.
Basharat, S., Ali Hassan, S., Pervaiz, H., Mahmood, A., Ding, Z. &

Gidlund, M. (2021) Reconfigurable intelligent surfaces: potentials,
applications, and challenges for 6G wireless networks. IEEE Wireless

Communications, 28, 1–8.
Bassily, R., Ekrem, E., He, X., Tekin, E., Xie, J., Bloch, M. R., Ulukus, S. &

Yener, A. (2013) Cooperative security at the physical layer: a summary of
recent advances. IEEE Signal Processing Magazine, 30(5), 16–28.

Bayerlein, H., Theile, M., Caccamo, M. & Gesbert, D. (2021) Multi‐UAV
path planning for wireless data harvesting with deep reinforcement
learning. IEEE Open Journal of the Communications Society, 2,
1171–1187.

Bekmezci, İ., Şentürk, E. & Türker, T. (2016) Security issues in flying ad‐
hoc networks (FANETs). Journal of Aeronautics and Space

Technologies, 9(2), 13–21.
Ben Aissa, S. & Ben Letaifa, A. (2022) UAV communications with machine

learning: challenges, applications and open issues. Arabian Journal for

Science and Engineering, 47(2), 1559–1579. https://doi.org/10.
1007/s13369-021-05932-w

Bernardeschi, C., Fagiolini, A., Palmieri, M., Scrima, G. & Sofia, F. (2018)
ROS/Gazebo based simulation of co‐operative UAVs. In: International
conference on modelling and simulation for autonomous systems.
Springer, pp. 321–334.

Bithas, P.S., Michailidis, E.T., Nomikos, N., Vouyioukas, D. & Kanatas, A.G.
(2019) A survey on machine‐learning techniques for UAV‐based
communications. Sensors (Basel, Switzerland), 19(23), 5170.

BonnMotion. (2011) A mobility scenario generation and analysis tool.
University of Bonn, pp. 4–14.

Bozcan, I. & Kayacan, E. (2020) UAV‐AdNet: unsupervised anomaly
detection using deep neural networks for aerial surveillance.
In: 2020 IEEE/RSJ international conference on intelligent robots and

systems (IROS), pp. 1158–1164.
Brik, B., Ksentini, A. & Bouaziz, M. (2020) Federated learning for UAVs‐

enabled wireless networks: use cases, challenges, and open
problems. IEEE Access, 8, 53841–53849.

Calvo‐Fullana, M., Mox, D., Pyattaev, A., Fink, J., Kumar, V. & Ribeiro, A.

(2021) ROS‐NetSim: a framework for the integration of robotic and

network simulators. IEEE Robotics and Automation Letters, 6(2),
1120–1127.

Cetinkaya, O., Balsamo, D. & Merrett, G.V. (2020) Internet of MIMO

things: UAV‐assisted wireless‐powered networks for future smart
cities. IEEE Internet of Things Magazine, 3(1), 8–13.

Challita, U., Saad, W. & Bettstetter, C. (2018) Deep reinforcement learning
for interference‐aware path planning of cellular‐connected UAVs.
In: 2018 IEEE international conference on communications (ICC),

pp. 1–7.
Chang, H., Chen, Y., Zhang, B. & Doermann, D. (2021) Multi‐UAV mobile

edge computing and path planning platform based on reinforcement
learning. IEEE Transactions on Emerging Topics in Computational

Intelligence, 1–10.
Chen, C., Shi, D., Cui, S. & Kang, Y. (2018) Cloud‐based UAV monitoring

and management framework. In: 2018 3rd International conference

on control, robotics and cybernetics (CRC), pp. 61–66.
Chen, J. & Gesbert, D. (2020) Efficient local map search algorithms for the

placement of flying relays. IEEE Transactions on Wireless

Communications, 19(2), 1305–1319.
Chen, J., Xu, Y., Wu, Q., Zhang, Y., Chen, X. & Qi, N. (2019) Interference‐

aware online distributed channel selection for multicluster FANET: a
potential game approach. IEEE Transactions on Vehicular Technology,

68(4), 3792–3804.
Chen, J., Wu, Q., Xu, Y., Qi, N., Fang, T. & Liu, D. (2021) Spectrum

allocation for task‐driven UAV communication networks exploiting
game theory. IEEE Wireless Communications, 28(4), 174–181.

Chen, Z., Ma, X., Han, C. & Wen, Q. (2021) Towards intelligent reflecting

surface empowered 6G terahertz communications: a survey. China
Communications, 18(5), 93–119.

Chowdhury, M.M.U., Anjinappa, C.K., Guvenc, I., Sichitiu, M., Ozdemir, O.,
Bhattacherjee, U., Dutta, R., Marojevic, V. & Floyd, B. (2021) A
taxonomy and survey on experimentation scenarios for aerial

advanced wireless testbed platforms. In: 2021 IEEE aerospace

conference (50100), pp. 1–20.
Chriki, A., Touati, H., Snoussi, H. & Kamoun, F. (2019) FANET:

communication, mobility models and security issues. Computer

Networks, 163, 106877.

Chriki, A., Touati, H., Snoussi, H. & Kamoun, F. (2021) Deep learning and
handcrafted features for one‐class anomaly detection in UAV video.
Multimedia Tools and Applications, 80(2), 2599–2620.

Colpaert, A., Vinogradov, E. & Pollin, S. (2020) 3D beamforming and

handover analysis for UAV networks. In: 2020 IEEE Globecom

workshops (GC Wkshps), pp. 1–6.
Cui, Z. & Wang, Y. (2021) UAV path planning based on multi‐layer

reinforcement learning technique. IEEE Access, 9, 59486–59497.

PASANDIDEH ET AL. | 21

 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22157 by C

A
PE

S, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/978-3-030-97113-7_1
https://doi.org/10.1007/978-3-030-97113-7_1
https://doi.org/10.1007/s13369-021-05932-w
https://doi.org/10.1007/s13369-021-05932-w


Dahiya, S. & Garg, M. (2020) Unmanned aerial vehicles: vulnerability to
cyber attacks. In: Jain, K., Khoshelham, K., Zhu, X. & Tiwari, A. (Eds.)
Proceedings of UASG 2019. Cham: Springer International Publishing,
pp. 201–211.

Das, T., Sridharan, V. & Gurusamy, M. (2019) A survey on controller
placement in SDN. IEEE Communications Surveys Tutorials, 22(1),
472–503.

de Freitas, E.P., daCosta, J.P.C.L., de Almeida, A.L.F. & Marinho, M. (2012)
Applying MIMO techniques to minimize energy consumption for

long distances communications in wireless sensor networks. In:
Andreev, S., Balandin, S. & Koucheryavy, Y. (Eds.) Internet of things,
smart spaces, and next generation networking. Berlin, Heidelberg:
Springer, pp. 379–390.

Donevski, I., Babu, N., Nielsen, J.J., Popovski, P. & Saad, W. (2021) Feder-

ated learning with a drone orchestrator: path planning for minimized
staleness. IEEE Open Journal of the Communications Society, 2,
1000–1014.

Dulac‐Arnold, G., Mankowitz, D. & Hester, T. (2019) Challenges of real‐
world reinforcement learning. arXiv preprint arXiv:1904.12901.

Durham, C.M., Andel, T.R., Hopkinson, K.M. & Kurkowski, S.H. (2009)
Evaluation of an opnet model for unmanned aerial vehicle (UAV)
networks. In: Proceedings of the 2009 spring simulation multi-

conference, pp. 1–8.
Dutta, T., Soni, A., Gona, P. & Gupta, H.P. (2021) Real testbed for

autonomous anomaly detection in power grid using low‐cost
unmanned aerial vehicles and aerial imaging. IEEE MultiMedia, 28(3),
63–74.

Fan, D., Gao, F., Ai, B., Wang, G., Zhong, Z., Deng, Y. & Nallanathan, A.

(2019) Channel estimation and self‐positioning for UAV swarm. IEEE
Transactions on Communications, 67(11), 7994–8007.

Feriani, A. & Hossain, E. (2021) Single and multi‐agent deep reinforcement
learning for AI‐enabled wireless networks: a tutorial. IEEE

Communications Surveys & Tutorials, 23(2), 1226–1252.
Garaffa, L., Basso, M., Konzen, A. & de Freitas, E.P. (2021) Reinforcement

learning for mobile robotics exploration: a survey. IEEE Transactions

on Neural Networks and Learning Systems, 8, 1–15.
Gao, N., Li, X., Jin, S. & Matthaiou, M. (2021) 3‐D deployment of UAV

swarm for massive MIMO communications. IEEE Journal on Selected

Areas in Communications, 39(10), 3022–3034.
Gebremariam, A.A., Usman, M. & Qaraqe, M. (2019) Applications of

artificial intelligence and machine learning in the area of SDN and
NFV: a survey. In: 2019 16th international multi‐conference on sys-

tems, signals devices (SSD), pp. 545–549.
Ghazal, T.M. (2021) Positioning of UAV base stations using 5G and

beyond networks for IoMT applications. Arabian Journal for Science

and Engineering.
Ghazzai, H., Menouar, H., Kadri, A. & Massoud, Y. (2019) Future UAV‐

based its: a comprehensive scheduling framework. IEEE Access, 7,
75678–75695.

Gill, J.S., Velashani, M.S., Wolf, J., Kenney, J., Manesh, M.R. &
Kaabouch, N. (2021) Simulation testbeds and frameworks for UAV
performance evaluation. In: 2021 IEEE international conference on

electro information technology (EIT), pp. 335–341.
Gu, D.L., Pei, G., Ly, H., Gerla, M. & Hong, X. (2000) Hierarchical routing

for multi‐layer ad‐hoc wireless networks with UAVs. In: MILCOM

2000 Proceedings of the 21st century military communications.

Architectures and technologies for information superiority (Cat. No.

00CH37155), Vol. 1, pp. 310–314.
Guerber, C., Royer, M. & Larrieu, N. (2021) Machine learning and software

defined network to secure communications in a swarm of drones.
Journal of Information Security and Applications, 61, 102940.

Guo, Y., Yin, G., Sun, H., Wang, H., Chen, S., Senthilnath, J., Wang, J. &
Fu, Y. (2020) Scaling effects on chlorophyll content estimations with
RGB camera mounted on a UAV platform using machine‐learning
methods. Sensors, 20(18), 5130.

Gupta, L., Jain, R. & Vaszkun, G. (2016) Survey of important issues in UAV
communication networks. IEEE Communications Surveys & Tutorials,
18(2), 1123–1152.

Hassija, V., Chamola, V., Agrawal, A., Goyal, A., Luong, N.C., Niyato, D.,

Yu, F.R. & Guizani, M. (2021) Fast, reliable, and secure drone
communication: a comprehensive survey. IEEE Communications

Surveys & Tutorials, 23(4), 2802–2832.
Haula, K. & Agbozo, E. (2020) A systematic review on unmanned aerial

vehicles in sub‐Saharan Africa: a socio‐technical perspective.

Technology in Society, 63, 101357.
He, L., Aouf, N. & Song, B. (2021) Explainable deep reinforcement learning

for UAV autonomous path planning. Aerospace Science and

Technology, 118(7), 107052.
Hentati, A.I., Krichen, L., Fourati, M. & Fourati, L.C. (2018) Simulation

tools, environments and frameworks for UAV systems performance
analysis. In: 2018 14th International wireless communications mobile

computing conference (IWCMC), pp. 1495–1500.
Hu, J., Zhang, H., Song, L., Han, Z. & Poor, H.V. (2020) Reinforcement

learning for a cellular internet of UAVs: protocol design, trajectory

control, and resource management. IEEE Wireless Communications,
27(1), 116–123.

Huang, Y., Wu, Q., Lu, R., Peng, X. & Zhang, R. (2021) Massive MIMO for
cellular‐connected UAV: challenges and promising solutions. IEEE

Communications Magazine, 59(2), 84–90.
Huang, Y., Wu, Q., Wang, T., Zhou, G. & Zhang, R. (2020) 3D beam

tracking for cellular‐connected UAV. IEEE Wireless Communications

Letters, 9(5), 736–740.
Issariyakul, T. & Hossain, E. (2009) Introduction to network simulator 2

(NS2). In: Introduction to network simulator NS2. Springer, pp. 1–18.
Jain, A., Ramaprasad, R., Narang, P., Mandal, M., Chamola, V., Yu, F.R. &

Guizan, M. (2021) AI‐enabled object detection in UAVs: challenges,
design choices, and research directions. IEEE Network, 35(4),
129–135.

Javaid, A.Y., Sun, W. & Alam, M. (2013) UAVsim: a simulation testbed for
unmanned aerial vehicle network cyber security analysis. In: 2013
IEEE Globecom workshops (GC Wkshps), pp. 1432–1436.

Jung, S., Yun, W.J., Shin, M., Kim, J. & Kim, J.‐H. (2021) Orchestrated
scheduling and multi‐agent deep reinforcement learning for cloud‐
assisted multi‐UAV charging systems. IEEE Transactions on Vehicular

Technology, 70(6), 5362–5377.
Kang, S., Aldwairi, M. & Kim, K.‐I. (2016) A survey on network simulators

in three‐dimensional wireless ad hoc and sensor networks.

International Journal of Distributed Sensor Networks, 12(9),
1550147716664740.

Kate, B., Waterman, J., Dantu, K. & Welsh, M. (2012) Simbeeotic: a
simulator and testbed for micro‐aerial vehicle swarm experiments.
In: 2012 ACM/IEEE 11th international conference on information

processing in sensor networks (IPSN), pp. 49–60.
Khan, I.U., Qureshi, I.M., Aziz, M.A., Cheema, T.A. & Shah, S.B.H.

(2020) Smart IoT control‐based nature inspired energy efficient
routing protocol for flying ad hoc network (FANET). IEEE Access, 8,
56371–56378.

Khan, I.U., Alturki, R., Alyamani, H.J., Ikram, M.A., Aziz, M.A., Hoang, V.T. &
Cheema, T.A. (2021) RSSI‐controlled long‐range communication in
secured IoT‐enabled unmanned aerial vehicles. Mobile Information

Systems, 2021(1), 5523553. Available at: https://doi.org/10.1155/
2021/5523553

Khan, M.A., Safi, A., Qureshi, I.M. & Khan, I.U. (2017) Flying ad‐hoc
networks (FANETs): a review of communication architectures, and
routing protocols. In: 2017 First international conference on latest

trends in electrical engineering and computing technologies (INTEL-

LECT), pp. 1–9.
Khuwaja, A.A., Chen, Y., Zhao, N., Alouini, M.‐S. & Dobbins, P. (2018) A

survey of channel modeling for UAV communications. IEEE

Communications Surveys Tutorials, 20(4), 2804–2821.

22 | PASANDIDEH ET AL.

 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22157 by C

A
PE

S, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1155/2021/5523553
https://doi.org/10.1155/2021/5523553


Khuwaja, A.A., Zhu, Y., Zheng, G., Chen, Y. & Liu, W. (2021) Performance
analysis of hybrid UAV networks for probabilistic content caching.
IEEE Systems Journal, 15(3), 4013–4024.

Kim, D.‐Y. & Lee, J.‐W. (2018) Integrated topology management in flying

ad hoc networks: topology construction and adjustment. IEEE

Access, 6, 61196–61211.
Kim, D.‐Y. & Lee, J.‐W. (2020) Joint mission assignment and topology

management in the mission‐critical FANET. IEEE Internet of Things

Journal, 7(3), 2368–2385.
Kim, D.‐Y., Saad, W. & Lee, J.‐W. (2022) On the use of high‐rise

topographic features for optimal aerial base station placement. IEEE
Transactions on Wireless Communications, 82, 1.

Kitchenham, B. (2004) Procedures for performing systematic reviews, Vol.
33, No. 2004, pp. 1–26. Keele, UK: Keele University.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M.,
Niazi, M. & Linkman, S. (2010) Systematic literature reviews in
software engineering—a tertiary study. Information and Software

Technology, 52(8), 792–805.
Koulali, S., Sabir, E., Taleb, T. & Azizi, M. (2016) A green strategic activity

scheduling for UAV networks: a sub‐modular game perspective. IEEE
Communications Magazine, 54(5), 58–64.

Kudelski, M., Gambardella, L.M. & Di Caro, G.A. (2013) Robonetsim: an
integrated framework for multi‐robot and network simulation.

Robotics and Autonomous Systems, 61(5), 483–496.
Kumari, A., Gupta, R., Tanwar, S. & Kumar, N. (2020) A taxonomy of

blockchain‐enabled softwarization for secure UAV network.
Computer Communications, 161(12), 304–323.

Lacage, M. & Henderson, T.R. (2006) Yet another network simulator.

In: Proceedings from the 2006 workshop on NS‐2: the IP network

simulator, pp. 12–es.
Lahmeri, M.‐A., Kishk, M.A. & Alouini, M.‐S. (2021) Artificial intelligence

for UAV‐enabled wireless networks: a survey. IEEE Open Journal of

the Communications Society, 2, 1015–1040.
Levis, P. & Lee, N. (2003) TOSSIM: a simulator for TinyOS networks, Vol. 24.

UC Berkeley.
Li, B., Fei, Z., Zhang, Y. & Guizani, M. (2019) Secure UAV communication

networks over 5G. IEEE Wireless Communications, 26(5), 114–120.
Li, X., Ci, L., Cheng, B., Tian, C. & Yang, M. (2012) Ant colony based routing

strategy in UAV delay tolerant networks. In: China conference on

wireless sensor networks. Springer, pp. 191–203.
Li, Z. & Chen, W. (2021) Transmissive reconfigurable meta‐surface

empowered 6G ultra massive MIMO.

Lim, W.Y.B., Huang, J., Xiong, Z., Kang, J., Niyato, D.T., Hua, X., Leung, C.
& Miao, C. (2021) Towards federated learning in UAV‐enabled
internet of vehicles: a multi‐dimensional contract‐matching
approach. IEEE Transactions on Intelligent Transportation Systems, 22,
5140–5154.

Liu, C.H., Chen, Z., Tang, J., Xu, J. & Piao, C. (2018) Energy‐efficient UAV
control for effective and fair communication coverage: a deep
reinforcement learning approach. IEEE Journal on Selected Areas in

Communications, 36(9), 2059–2070.
Liu, Q., Liu, R., Wang, Z. & Thompson, J.S. (2018) UAV swarm‐enabled

localization in isolated region: a rigidity‐constrained deployment
perspective. IEEE Wireless Communications Letters, 10(9),
2032–2036.

Liu, Q., Shi, L., Sun, L., Li, J., Ding, M. & Shu, F. (2020) Path planning for
UAV‐mounted mobile edge computing with deep reinforcement

learning. IEEE Transactions on Vehicular Technology, 69(5),
5723–5728.

Liu, X., Liu, Y. & Chen, Y. (2019) Reinforcement learning in multiple‐UAV
networks: deployment and movement design. IEEE Transactions on

Vehicular Technology, 68(8), 8036–8049.
Liu, Y., Nie, J., Li, X., Ahmed, S.H., Lim, W.Y.B. & Miao, C. (2021) Federated

learning in the sky: aerial‐ground air quality sensing framework with
UAV swarms. IEEE Internet of Things Journal, 8(12), 9827–9837.

Long, W., Chen, R., Moretti, M., Zhang, W. & Li, J. (2021) A promising
technology for 6G wireless networks: intelligent reflecting surface.
Journal of Communications and Information Networks, 6(1), 1–16.

Lu, H., Li, Y., Mu, S., Wang, D., Kim, H. & Serikawa, S. (2018) Motor

anomaly detection for unmanned aerial vehicles using reinforcement
learning. IEEE Internet of Things Journal, 5(4), 2315–2322.

Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y.‐C. &
Kim, D.I. (2019) Applications of deep reinforcement learning in
communications and networking: a survey. IEEE Communications

Surveys & Tutorials, 21(4), 3133–3174.
Lyu, J., Zeng, Y., Zhang, R. & Lim, T.J. (2017) Placement optimization of

UAV‐mounted mobile base stations. IEEE Communications Letters,
21(3), 604–607.

Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T.,

Cristofalo, E., Scaramuzza, D., Schwager, M. & Kapoor, A. (2020)
AirSim drone racing lab. In: NeurIPS 2019 competition and

demonstration track. PMLR, pp. 177–191.
Marinho, M.A.M., de Freitas, E.P., da Costa, J.P.C.L., de Almeida, A.L.F. &

de Sousa Júnior, R.T. (2013a) Using MIMO techniques to enhance

communication among static and mobile nodes in wireless sensor
networks. In: 2013 IEEE 27th international conference on advanced

information networking and applications (AINA), pp. 500–505.
Marinho, M.A.M., de Freitas, E.P., da Costa, J.P.C.L., de Almeida, A.L.F. &

de Sousa, R.T. (2013b) Using cooperative MIMO techniques and
UAV relay networks to support connectivity in sparse wireless
sensor networks. In: 2013 International conference on computing,

management and telecommunications (ComManTel), pp. 49–54.
Masaracchia, A., Li, Y., Nguyen, K.K., Yin, C., Khosravirad, S.R.,

Da Costa, D.B. & Duong, T.Q. (2021) UAV‐enabled ultra‐reliable
low‐latency communications for 6G: a comprehensive survey. IEEE
Access, 9, 137338–137352.

Masroor, R., Naeem, M. & Ejaz, W. (2021a) Efficient deployment of UAVs
for disaster management: a multi‐criterion optimization approach.

Computer Communications, 177, 185–194.
Masroor, R., Naeem, M. & Ejaz, W. (2021b) Resource management in

UAV‐assisted wireless networks: an optimization perspective. Ad

Hoc Networks, 121, 102596.
Mekrache, A., Bradai, A., Moulay, E. & Dawaliby, S. (2021) Deep

reinforcement learning techniques for vehicular networks: recent
advances and future trends towards 6G. Vehicular Communications,
33, 100398.

Mousavi, S., Afghah, F., Ashdown, J.D. & Turck, K. (2019) Use of a

quantum genetic algorithm for coalition formation in large‐scale
UAV networks. Ad Hoc Networks, 87, 26–36.

Mowla, N.I., Tran, N.H., Doh, I. & Chae, K. (2020) Federated learning‐
based cognitive detection of jamming attack in flying ad‐hoc
network. IEEE Access, 8, 4338–4350.

Mozaffari, M., Lin, X. & Hayes, S. (2021) Towards 6G with connected sky:
UAVs and beyond. arXiv preprint arXiv:2103.01143.

Mozaffari, M., Saad, W., Bennis, M., Nam, Y.‐H. & Debbah, M. (2019) A

tutorial on UAVs for wireless networks: applications, challenges, and
open problems. IEEE Communications Surveys Tutorials, 21(3),

2334–2360.
Mualla, Y., Najjar, A., Daoud, A., Galland, S., Nicolle, C., Yasar, A.‐U.‐H. &

Shakshuki, E. (2019) Agent‐based simulation of unmanned aerial
vehicles in civilian applications: a systematic literature review and
research directions. Future Generation Computer Systems, 100(1),

344–364.
Mukherjee, A., Fakoorian, S.A.A., Huang, J. & Swindlehurst, A.L.

(2014) Principles of physical layer security in multiuser wireless
networks: a survey. IEEE Communications Surveys Tutorials, 16(3),

1550–1573.
Mukherjee, A., Misra, S., Chandra, V.S.P. & Obaidat, M.S. (2019) Resource‐

optimized multiarmed bandit‐based offload path selection in edge
UAV swarms. IEEE Internet of Things Journal, 6(3), 4889–4896.

PASANDIDEH ET AL. | 23

 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22157 by C

A
PE

S, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Munaye, Y.Y., Juang, R.‐T., Lin, H.‐P., Tarekegn, G.B. & Lin, D.‐B. (2021)
Deep reinforcement learning based resource management in UAV‐
assisted IoT networks. Applied Sciences, 11(5), 2163.

Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J. & Poor, H.V.

(2021) Federated learning for internet of things: a comprehensive
survey. arXiv preprint arXiv:2104.07914.

Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Niyato, D.,
Dobre, O. & Poor, H.V. (2022) 6G internet of things: a comprehen-
sive survey. IEEE Internet of Things Journal, 9(1), 359–383.

Nikolos, I.K., Zografos, E.S. & Brintaki, A.N. (2007)UAV path planning using

evolutionary algorithms. Berlin, Heidelberg: Springer, pp. 77–111.
Nouri, N., Fazel, F., Abouei, J. & Plataniotis, K. (2021) Multi‐UAV

placement and user association in uplink MIMO ultra‐dense wireless
networks. IEEE Transactions on Mobile Computing, 20, 1.

Nouri, N., Abouei, J., Sepasian, A.R., Jaseemuddin, M., Anpalagan, A. &
Plataniotis, K.N. (2021) 3D multi‐UAV placement and resource
allocation for energy‐efficient IoT communication. IEEE Internet of

Things Journal, 9(3), 2134–2152.
Oliveira, F., Luís, M. & Sargento, S. (2021) Machine learning for the

dynamic positioning of UAVs for extended connectivity. Sensors,
21(13), 4618.

Pasandideh, F., da Costa, J.P.J., Kunst, R., Islam, N., Hardjawana, W. &
Pignaton de Freitas, E. (2022) A review of flying ad hoc networks:

key characteristics, applications, and wireless technologies. Remote

Sensing, 14(18), 4459. Available at: https://www.mdpi.com/2072-
4292/14/18/4459

Pasandideh, F., Silva, T.D.e., Silva, A.A.S.d. & de Freitas, E.P. (2021)
Topology management for flying ad hoc networks based on particle

swarm optimization and software‐defined networking. Wireless

Networks, 28, 257–272.
Pradhan, N., Sille, R. & Sagar, S. (2023) Artificial intelligence empowered

models for UAV communications. In: Unmanned aerial vehicle cellular

communications. Cham: Springer International Publishing, pp.

95–113. Available at: https://doi.org/10.1007/978-3-031-08395-
2_5

Qie, H., Shi, D., Shen, T., Xu, X., Li, Y. & Wang, L. (2019) Joint optimization
of multi‐UAV target assignment and path planning based on multi‐
agent reinforcement learning. IEEE Access, 7, 146264–146272.

Rabah, M., Rohan, A., Haghbayan, M.‐H., Plosila, J. & Kim, S.‐H. (2020)
Heterogeneous parallelization for object detection and tracking in
UAVs. IEEE Access, 8, 42784–42793. Available at: https://doi.org/
10.1109/Access.6287639

Rahimi, Z., Sobouti, M.J., Ghanbari, R., Seno, S.A.H., Mohajerzadeh, A.H.,
Ahmadi, H. & Yanikomeroglu, H. (2021) An efficient 3D positioning
approach to minimize required UAVs for IoT network coverage. IEEE
Internet of Things Journal, 9, 1.

Rejeb, A., Rejeb, K., Simske, S.J. & Treiblmaier, H. (2021) Drones for supply

chain management and logistics: a review and research agenda.
International Journal of Logistics Research and Applications, 1–24.

Rezwan, S. & Choi, W. (2021) A survey on applications of reinforcement
learning in flying ad‐hoc networks. Electronics, 10(4), 19.

Ribeiro, L.R. & Oliveira, N.M.F. (2010) UAV autopilot controllers test

platform using matlab/simulink and x‐plane. In: 2010 IEEE frontiers in

education conference (FIE). IEEE, pp. S2H–1.
Rodriguez‐Ramos, A., Sampedro, C., Bavle, H., de la Puente, P. &

Campoy, P. (2019) A deep reinforcement learning strategy for
UAV autonomous landing on a moving platform. Journal of Intelligent

& Robotic Systems, 93(1), 351–366.
Rovira‐Sugranes, A., Razi, A., Afghah, F. & Chakareski, J. (2022) A review

of AI‐enabled routing protocols for UAV networks: trends, chal-
lenges, and future outlook. Ad Hoc Networks, 130, 102790.

Available at: https://www.sciencedirect.com/science/article/pii/
S1570870522000087

Sami Oubbati, O., Atiquzzaman, M., Ahanger, T.A. & Ibrahim, A.
(2020) Softwarization of UAV networks: a survey of applications
and future trends. IEEE Access, 8, 98073–98125.

Sandino, J., Maire, F., Caccetta, P., Sanderson, C. & Gonzalez, F. (2021)

Drone‐based autonomous motion planning system for outdoor
environments under object detection uncertainty. Remote Sensing,
13(21), 4481.

Shakhatreh, H., Sawalmeh, A.H., Al‐Fuqaha, A., Dou, Z., Almaita, E.,
Khalil, I., Othman, N.S., Khreishah, A. & Guizani, M. (2019) Unmanned

aerial vehicles (UAVs): a survey on civil applications and key research
challenges. IEEE Access, 7, 48572–48634.

Sharma, A., Vanjani, P., Paliwal, N., Basnayaka, C.M., Jayakody, D.N.K.,
Wang, H.‐C. & Muthuchidambaranathan, P. (2020) Communication
and networking technologies for UAVs: a survey. Journal of Network

and Computer Applications, 168, 102739.
Shiri, H., Park, J. & Bennis, M. (2020) Communication‐efficient massive

UAV online path control: federated learning meets mean‐field game
theory. IEEE Transactions on Communications, 68(11), 6840–6857.

Sikeridis, D., EleniTsiropoulou, E., Devetsikiotis, M. & Papavassiliou, S.

(2018) Self‐adaptive energy efficient operation in UAV‐assisted
public safety networks. In: 2018 IEEE 19th international workshop on

signal processing advances in wireless communications (SPAWC),
pp. 1–5.

Sikeridis, D., Tsiropoulou, E.E., Devetsikiotis, M. & Papavassiliou, S.
(2018) Wireless powered public safety IoT: a UAV‐assisted
adaptive‐learning approach towards energy efficiency. Journal of

Network and Computer Applications, 123, 69–79.
Song, H.‐L. & Ko, Y.‐C. (2020) Flight sensor data and beamforming based

integrated UAV tracking with channel estimation using gaussian
process regression. arXiv: Signal Processing.

Srivastava, A. & Prakash, J. (2021) Future FANET with application and
enabling techniques: anatomization and sustainability issues.
Computer Science Review, 39, 100359.

Stampa, M., Sutorma, A., Jahn, U., Thiem, J., Wolff, C. & Röhrig, C.
(2021) Maturity levels of public safety applications using unmanned
aerial systems: a review. Journal of Intelligent & Robotic Systems,
103(1), 1–15.

Stöcker, C., Bennett, R., Nex, F., Gerke, M. & Zevenbergen, J. (2017)

Review of the current state of UAV regulations. Remote Sensing,
9(5), 459.

Sugiura, K. (2018) SuMo‐SS: submodular optimization sensor scattering
for deploying sensor networks by drones. IEEE Robotics and

Automation Letters, 3(4), 2963–2970.
Sultan, L., Anjum, M., Rehman, M., Murawwat, S. & Kosar, H.

(2021) Communication among heterogeneous unmanned aerial
vehicles (UAVs): classification, trends, and analysis. IEEE Access, 9,
118815–118836.

Szepesvári, C. (2010) Algorithms for reinforcement learning. Synthesis

Lectures on Artificial Intelligence and Machine Learning, 4(1), 1–103.
Taştan, M. C. & İlhan, H. (2021) Performance analysis of SSK modulation

for UAVs communication. Vehicular Communications, 31, 100375.
Tropea, M., Fazio, P., De Rango, F. & Cordeschi, N. (2020) A new FANET

simulator for managing drone networks and providing dynamic
connectivity. Electronics, 9(4), 543.

Ullah, Z., Al‐Turjman, F. & Mostarda, L. (2020) Cognition in UAV‐aided 5G
and beyond communications: a survey. IEEE Transactions on

Cognitive Communications and Networking, 6(3), 872–891.
Varga, A. (2010) Omnet++. In: Modeling and tools for network simulation.

Springer, pp. 35–59.
Vasiliev, D.S., Meitis, D.S. & Abilov, A. (2014) Simulation‐based compari-

son of AODV, OLSR and HWMP protocols for flying ad hoc

networks. In International conference on next generation wired/

wireless networking. Springer, pp. 245–252.

24 | PASANDIDEH ET AL.

 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22157 by C

A
PE

S, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.mdpi.com/2072-4292/14/18/4459
https://www.mdpi.com/2072-4292/14/18/4459
https://doi.org/10.1007/978-3-031-08395-2_5
https://doi.org/10.1007/978-3-031-08395-2_5
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/Access.6287639
https://www.sciencedirect.com/science/article/pii/S1570870522000087
https://www.sciencedirect.com/science/article/pii/S1570870522000087


Veith, T.L., Kobza, J.E. & Koelling, C.P. (1999) Netsim: JavaTM based
simulation for the world wide web. Computers & Operations Research,
26(6), 607–621.

Vista, F., Iacovelli, G. & Grieco, L.A. (2021) Quantum scheduling

optimization for UAV‐enabled IoT networks. In: Proceedings of the

CoNEXT student workshop. CoNEXT‐SW '21. NewYork, NY: Associa-
tion for Computing Machinery, pp. 19–20.

Wang, J., Han, R., Bai, L., Zhang, T., Liu, J. & Choi, J. (2021) Coordinated
beamforming for UAV‐aided millimeter‐wave communications using

gpml‐based channel estimation. IEEE Transactions on Cognitive

Communications and Networking, 7(1), 100–109.
Wang, S., Wang, X., Zhang, L. & Zhong, Y. (2021) Auto‐AD: autonomous

hyperspectral anomaly detection network based on fully convolu-
tional autoencoder. IEEE Transactions on Geoscience and Remote

Sensing, 60, 1–14.
Wang, W., Dong, C., Zhu, S. & Wang, H. (2017) DFRA: demodulation‐free

random access for UAV ad hoc networks. In 2017 IEEE international

conference on communications (ICC), pp. 1–6.
Wang, Y., Su, Z., Zhang, N. & Benslimane, A. (2021) Learning in the air:

secure federated learning for UAV‐assisted crowdsensing. IEEE

Transactions on Network Science and Engineering, 8(2), 1055–1069.
Wei, M., Chen, Y. & Ding, M. (2021) On the performance of UAV‐aided

content caching in small‐cell networks with joint transmission.

Electronics, 10(9), 22.
Won, J., Kim, D.‐Y., Park, Y.‐I. & Lee, J.‐W. (2022) A survey on UAV

placement and trajectory optimization in communication networks:
from the perspective of air‐to‐ground channel models. ICT Express,
13. Available at: https://www.sciencedirect.com/science/article/pii/

S2405959522000157
Xu, W., Huang, C., Zhang, Z., Shaosheng, L., Zhang, P. & Jiaru, L. (2021)

Method of route construction of UAV network, UAV and storage

medium thereof. Google Patents, 2021. US Patent 11,129,082.
Yan, C., Xiang, X. & Wang, C. (2020) Towards real‐time path planning

through deep reinforcement learning for a UAV in dynamic
environments. Journal of Intelligent & Robotic Systems, 98(2),
297–309.

Yang, H., Zhao, J., Nie, J., Kumar, N., Lam, K.‐Y. & Xiong, Z. (2021) UAV‐
assisted 5G/6G networks: joint scheduling and resource allocation

based on asynchronous reinforcement learning. In: IEEE INFOCOM

2021—IEEE conference on computer communications workshops

(INFOCOM WKSHPS). IEEE, pp. 1–6.
Yang, H., Zhao, J., Xiong, Z., Lam, K.‐Y., Sun, S. & Xiao, L. (2021) Privacy‐

preserving federated learning for UAV‐enabled networks: learning‐
based joint scheduling and resource management. IEEE Journal on

Selected Areas in Communications, 39(10), 3144–3159.
Yang, J., Liang, T. & Zhang, T. (2021) Deployment optimization in UAV

aided vehicle localization. In: 2021 IEEE 93rd vehicular technology

conference (VTC2021‐Spring), pp. 1–6.
Yang, P., Xi, X., Quek, T.Q.S., Chen, J. & Cao, X. (2021) Power control for a

URLLC‐enabled UAV system incorporated with DNN‐based channel
estimation. IEEE Wireless Communications Letters, 10(5), 1018–1022.

Yazdinejad, A., Parizi, R.M., Dehghantanha, A. & Karimipour, H.

(2021) Federated learning for drone authentication. Ad Hoc

Networks, 120, 102574.

Yilmaz, B.Y. & Denizer, S.N. (2020) Multi UAV based traffic control in
smart cities. In: 2020 11th International conference on computing,

communication and networking technologies (ICCCNT). IEEE, pp. 1–7.
Yuan, Q., Hu, Y., Wang, C. & Li, Y. (2019) Joint 3D beamforming and

trajectory design for UAV‐enabled mobile relaying system. IEEE

Access, 7, 26488–26496.
Yuan, Y., Lei, L., Vu, T.X., Chatzinotas, S., Sun, S. & Ottersten, B.

(2021) Energy minimization in UAV‐aided networks: actor–critic
learning for constrained scheduling optimization. IEEE Transactions

on Vehicular Technology, 70(5), 5028–5042.
Zema, N.R., Trotta, A., Sanahuja, G., Natalizio, E., Di Felice, M. & Bononi, L.

(2017) CUSCUS: communications‐control distributed simulator.
In: 2017 14th IEEE annual consumer communications & networking

conference (CCNC). IEEE, pp. 601–602.
Zeng, T., Semiari, O., Mozaffari, M., Chen, M., Saad, W. & Bennis, M.

(2020) Federated learning in the sky: joint power allocation and
scheduling with UAV swarms. In ICC 2020—2020 IEEE international

conference on communications (ICC), pp. 1–6.
Zeng, Y., Lyu, J. & Zhang, R. (2019) Cellular‐connected UAV: potential,

challenges, and promising technologies. IEEE Wireless

Communications, 26(1), 120–127.
Zhang, C., Zhang, L., Zhu, L., Zhang, T., Xiao, Z. & Xia, X.‐G. (2021) 3D

deployment of multiple UAV‐mounted base stations for UAV

communications. IEEE Transactions on Communications, 69(4),
2473–2488.

Zhang, M., Dong, C. & Huang, Y. (2019) FS‐MAC: an adaptive MAC
protocol with fault‐tolerant synchronous switching for FANETs. IEEE
Access, 7, 80602–80613.

Zhang, Q., Ferdowsi, A. & Saad, W. (2021) Distributed generative
adversarial networks for mmWave channel modeling in wireless
UAV networks. In: ICC 2021—IEEE international conference on

communications, pp. 1–6.
Zhang, S. & Zhang, R. (2019) Radio map based path planning for cellular‐

connected UAV. In: 2019 IEEE global communications conference

(GLOBECOM), pp. 1–6.
Zhao, Y., Zheng, Z. & Liu, Y. (2018) Survey on computational‐intelligence‐

based UAV path planning. Knowledge‐Based Systems, 158, 54–64.
Zheng, Y., Wang, Y., Li, Z., Dong, L., Jiang, Y. & Zhang, H. (2014) A mobility

and load aware OLSR routing protocol for UAV mobile ad‐hoc
networks. IET.

Zheng, Z., Sangaiah, A.K. & Wang, T. (2018) Adaptive communication
protocols in flying ad hoc network. IEEE Communications Magazine,

56(1), 136–142.

How to cite this article: Pasandideh, F., Costa, J.P.J.d., Kunst,

R., Hardjawana, W. & Freitas, E.P.d. (2023) A systematic

literature review of flying ad hoc networks: state‐of‐the‐art,

challenges, and perspectives. Journal of Field Robotics, 1–25.

https://doi.org/10.1002/rob.22157

PASANDIDEH ET AL. | 25

 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22157 by C

A
PE

S, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.sciencedirect.com/science/article/pii/S2405959522000157
https://www.sciencedirect.com/science/article/pii/S2405959522000157
https://doi.org/10.1002/rob.22157

	A systematic literature review of flying ad hoc networks: State-of-the-art, challenges, and perspectives
	1 INTRODUCTION
	2 RESEARCH METHODOLOGY
	2.1 Research questions raised in this SLR
	2.2 Scientific databases used to find the relevant published studies
	2.3 Inclusion and exclusion criteria
	2.4 Review phase or paper selection

	3 QUANTITATIVELY ANSWERING THE RESEARCH QUESTIONS
	3.1 Publications by year
	3.2 Publications by countries
	3.3 Publications funding
	3.4 Patents published worldwide in the area of UAV-based networks

	4 ANALYSIS OF THE SPECIFIC QUESTIONS
	4.1 Existing challenges and open issues of FANETs (RQ2)
	4.2 ML-based solution for FANETs problems (RQ3)
	4.3 Main challenges of applying ML towards the main problems of FANETs (RQ4)
	4.4 Simulation tools, frameworks, and testbeds for FANET's performance analysis (RQ5)

	5 FUTURE RESEARCH DIRECTIONS FOR FANETs
	5.1 UAV-assisted 5G and 6G wireless networks in Figure 8—Cell A
	5.2 Blockchain-envisioned UAV communication in the 6G network in �Figure 8—Cell A
	5.3 AI-enabled object detection in UAVs in �Figure 8—Cell B
	5.4 IoMIMO things in �Figure 8—Cell C
	5.5 SDN and NFV in �Figure 8—Cell D
	5.6 Quantum communication
	5.7 3D beamforming in �Figure 8—Cell C
	5.8 RIS-enabled UAVs in �Figure 8—Cell E

	6 CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST STATEMENT
	FUNDING
	REFERENCES




