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Abstract

In a classic optimization problem the complete input
data is known to the algorithm. This assumption
may not be true anymore in optimization problems
motivated by the Internet where part of the input data
is private knowledge of independent selfish agents. The
goal of algorithmic mechanism design is to provide (in
polynomial time) a solution to the optimization problem
and a set of incentives for the agents such that disclosing
the input data is a dominant strategy for the agents.
In case of NP-hard problems, the solution computed
should also be a good approximation of the optimum.

In this paper we focus on mechanism design for
multi-objective optimization problems, where we are
given the main objective function, and a set of sec-
ondary objectives which are modeled via budget con-
straints. Multi-objective optimization is a natural set-
ting for mechanism design as many economical choices
ask for a compromise between different, partially con-
flicting, goals. Our main contribution is showing that
two of the main tools for the design of approximation
algorithms for multi-objective optimization problems,
namely approximate Pareto curves and Lagrangian re-
laxation, can lead to truthful approximation schemes.

By exploiting the method of approximate Pareto
curves, we devise truthful FPTASs for multi-objective
optimization problems whose exact version admits a
pseudo-polynomial-time algorithm, as for instance the
multi-budgeted versions of minimum spanning tree,
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§Sapienza Università di Roma, Dipartimento di Informatica

e Sistemistica, Via Ariosto 25 00185 Roma, Italy. Email:

leon@dis.uniroma1.it
¶University of Liverpool, Department of Computer Science,

Ashton Building, Ashton Street, Liverpool L69 3BX, U.K. Email:

carmine.ventre@liverpool.ac.uk

shortest path, maximum (perfect) matching, and ma-
troid intersection. Our technique applies also to
multi-dimensional knapsack and multi-unit combina-
torial auctions. Our FPTASs compute a (1 + ε)-
approximate solution violating each budget constraint
by a factor (1 + ε). For a relevant sub-class of the
mentioned problems we also present a PTAS (not vi-
olating any constraint), which combines the approach
above with a novel monotone way to guess the heaviest
elements in the optimum solution.

Finally, we present a universally truthful Las Vegas
PTAS for minimum spanning tree with a single bud-
get constraint. This result is based on the Lagrangian
relaxation method, in combination with our monotone
guessing step and a random perturbation step (ensur-
ing low expected running time in a way similar to the
smoothed analysis of algorithms). All the mentioned re-
sults match the best known approximation ratios, which
however are obtained by non-truthful algorithms.

1 Introduction

A multi-objective combinatorial optimization problem
is characterized by a set S ⊆ 2U of feasible solutions
defined over a ground set U of m elements, and a set
of objective cost functions `i : U → Q+, i = 0, . . . , k.
In this paper we assume k = O(1). The aim is finding
a solution S ∈ S optimizing `i(S) =

∑
e∈S `i(e) for all

i, where optimizing means maximizing or minimizing,
depending on the objective. A typical way to deal with
multiple objectives is turning all the objectives but one
into budget constraints (see, e.g., [21] and references
therein for related approaches). More formally, let X
be the set of incidence vectors corresponding to S, and
Bi ∈ Q+, i = 1, . . . , k, a set of budgets. We consider a
problem P defined as:

best
∑
e∈U

`0(e)xe

s.t. x ∈ X (P)∑
e∈U

`i(e)xe �i Bi for i = 1, . . . , k.

Here, best ∈ {max,min} and �i∈ {≥,≤}. We refer
to cost functions different from `0(·) as lengths, and let
�0=≥ if best = max, and �0=≤ otherwise. We also let
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signi = +1 for �i=≥ and signi = −1 otherwise. For a
relation �, we say that a � b if a � b and a 6= b, and
use ≺ for 6� and � for 6�.

This framework naturally models network design
problems with resource constraints. For example, in
the budgeted minimum spanning tree problem (BMST)
U is the set of edges of a graph G = (V,E), S is the set
of spanning trees of G, best = min and there is a unique
budget constraint with �1=≤. Here `0(e) can be used
to model, e.g, the cost of establishing a link on e, and
`1(e) the delay on that edge. The budgeted shortest path
problem (BSP) is defined analogously, where spanning
trees are replaced by the paths between two given nodes.
Alternatively, (U ,S) might define the intersection of two
matroids.

In this paper we study this family of optimization
problems from a game theoretical point of view. We
are given a set of selfish agents, where agent f controls
element f ∈ U . The type `f = (`0(f), . . . , `k(f)) is
considered as private knowledge of f . Agent f can
lie by declaring a type `′f 6= `f , with the constraint
`i(f) �i `′i(f) for i = 1, . . . , k (while `′0(f) is arbitrary).
In the examples above, agent f might declare a larger
delay on f than the smallest possible `1(f) in order to
reduce her operational costs (while f is not able to offer
a delay smaller than `1(f)). Moreover, f might declare
a cost larger than `0(f) to maximize her revenue, or
a smaller cost to maximize her chances to be part of
the solution. (For further motivations on this model of
selfish agents please refer to Section 2.)

The main goal of (utilitarian) mechanism design is
forcing f to declare her true type. This is achieved
by defining a set of payments pf (·), f ∈ U . Payments,
type and computed solution define agents’ utility (please
see Section 2 for utility definition). Payments should
be defined such that saying the truth is a dominant
strategy, i.e. each agent maximizes her utility by
declaring her true type, independently of what the other
agents declare. In that case the mechanism is truthful.
At the same time, we wish to design mechanisms
which compute (efficiently) a solution approximating
the optimum in a standard sense, with respect to the
declarations. The objective of P is also called social
welfare in this context.

1.1 Related work A classical technique to de-
sign truthful mechanisms is the Vickrey-Clarke-Groves
(VCG) mechanism [24, 7, 12] which however requires
to solve optimally the underlying optimization prob-
lem. For NP-hard problems one can use the approach of
[5, 15], who show that, in order to obtain truthfulness, it
is sufficient to design an approximation algorithm which
is also monotone. Informally, an algorithm is monotone

if, assuming that it computes a solution containing an
element f for a given problem, then it computes a so-
lution containing f also in the case that we replace, for
some i ∈ {0, 1, . . . , k}, `i(f) with ¯̀

i(f) �i `i(f)1.
Efficient monotone algorithms are known only for a

few special cases of the framework above. For example
by setting best = max, �i=≤ for all i ≥ 1, and using
a trivial set of feasible solutions S = 2U , one can
model the multi-dimensional knapsack problem. For
this problem a monotone O(k1/B) approximation is
given in [5], where B is the smallest budget. Their
result extends to multi-unit combinatorial auctions for
unknown single-minded bidders. (See [3, 8, 9, 14] for
results on more general types of bidders). A monotone
PTAS is known for multiple knapsack [5], which can be
modeled in our framework by letting one agent control
a constant number of elements. This extends to multi-
unit unit-demand auctions for unknown multi-minded
bidders with the same valuation for each alternative.
For graph problems, monotone FPTASs are known for
BSP and for BMST in the special case of bounded-
treewidth graphs [5]. We note that these FPTASs do
not violate the budget constraint, but it is not clear
how to extend them to more than one budget. Another
related result is a bicriteria monotone algorithm for the
spanning arborescence problem [4].

1.2 Our contributions Our main contribution is
to show that two of the main tools for the design
of approximation schemes, namely approximate Pareto
curves and Lagrangian relaxation, can lead to monotone
and thus truthful algorithms.

Monotone construction of approximate Pareto
curves. Our first contribution is a family of monotone
multi-criteria FPTASs for the optimization problem P
considered here, whose exact version admits a pseudo-
polynomial-time algorithm A (see Section 3). We recall
that, for a given weight function ϕ : U → Q+ and target
B, the exact version of P consists of finding a feasible
solution S ∈ S of weight ϕ(S) =

∑
e∈S ϕ(e) = B, if any.

We implicitly assume that it is possible to remove all the
solutions containing a given e ∈ U from S in polynomial
time such that the resulting problem is of the same
form as the original one (in this case we say that e is
discarded). This is trivially true for all the applications

1Sometimes in the literature a weaker notion of monotonicity
is considered, where only `0(e) can change. Typically it is much
simpler to adapt known approximation algorithms to achieve that
type of monotonicity. For example this holds for the primal-dual

algorithm in [10]. Also optimal solutions to linear programs are
monotone in this sense (see [1]). However, only the stronger type

of monotonicity guarantees truthfulness with respect to all the
`i(e)’s.
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considered in this paper. Our approximation schemes
compute, for any given ε > 0, a solution within a
factor (1+ε) of the optimum which violates each budget
constraint by a factor of at most (1 + ε). The running
time is polynomial in the size of the input and 1/ε.

Theorem 1.1. There is a truthful multi-criteria FP-
TAS for multi-objective problems P admitting a pseudo-
polynomial-time algorithm for their exact version.

Our result implies truthful FPTAS for a number
of natural games. For example this covers the men-
tioned budgeted minimum spanning tree and budgeted
shortest paths problems, and their generalizations with
multiple budgets (possibly with budget lower bounds as
well, which can be used to enforce, e.g., minimum qual-
ity standards). This generalizes the results in [5]. In
the relevant special case of the budgeted (perfect) match-
ing problem, where S is the set of matchings or perfect
matchings of a graph G, the unique pseudo-polynomial-
time exact algorithm known is Monte-Carlo [17] (a de-
terministic algorithm is known when G is planar [2]). In
particular, with small probability this algorithm might
fail to find an existing exact solution. In this case we
can still apply our technique, but the resulting FPTAS
is only probabilistically truthful. We recall that a ran-
domized mechanism is probabilistically truthful if saying
the truth is a dominant strategy with high probability
(see, e.g., [1]). Using the reduction to matching in [2],
we can achieve the same result for the budgeted cycle
packing problem: find a node-disjoint packing of cycles
of minimum cost and subject to budget constraints. The
Monte-Carlo algorithm in [6] implies a probabilistically
truthful FPTAS for the multi-budgeted version of the
problem of finding a basis in the intersection of two ma-
troids.

We remark that our approach also implies truthful
multi-criteria FPTASs for multi-dimensional knapsack
and for multi-unit combinatorial auctions for unknown
multi-minded bidders with same valuation for each
alternative and a fixed number of goods. This extends
and improves on the results in [5] (see Section 1.1).

Our monotone FPTAS builds up on the construc-
tion of approximate Pareto curves by Papadimitriou
and Yannakakis [19]. A Pareto solution S for a multi-
objective problem is a solution such that there is no
other solution S′ which is as good as S on all objec-
tives, and strictly better on at least one objective. The
(potentially exponentially big) set of Pareto solutions
defines the Pareto curve. [19] introduces the notion of
ε-approximate Pareto-curve, i.e. a subset of solutions
such that every Pareto solution is within a factor (1+ε)
on each objective from some solution in the approximate
curve. In the same paper the authors describe a general

framework to construct such a curve in polynomial time
in the size of the problem and 1/ε: a sufficient condition
to do that is the existence of a pseudo-polynomial-time
algorithm A for the exact version of the underlying fea-
sibility problem. Their approach implies a multi-criteria
FPTAS for the associated optimization problems where
all the objectives but one are turned into budget con-
straints.

In this paper we show how to make monotone the
FPTAS above. To that aim, we need to solve different
subproblems, and extract the best solution obtained.
Unfortunately, even if we use a monotone algorithm
to solve each subproblem, the overall algorithm is not
necessarily monotone. A similar issue is addressed
in [5, 16], by defining a property strictly stronger
than monotonicity: bitonicity. Roughly speaking, a
monotone algorithm is bitonic if the cost of the solution
improves when the set of parameters improves and vice
versa. [5] shows that a proper combination of bitonic
algorithms is monotone and we use the same basic
approach.

Monotone Lagrangian relaxation. The approach
above relies on the existence of a pseudo-polynomial-
time exact algorithm and violates budget constraints by
a (1+ε) factor. The second contribution of this paper is
a technique based on the Lagrangian relaxation method
which achieves (strict) budget feasibility but which
cannot be used as a black-box as the FPTAS above
(i.e., it requires the development of complementary,
problem-specific, techniques). Using this alternative
approach, we design a monotone randomized PTAS
for the budgeted minimum spanning tree problem.
This implies a universally truthful mechanism for the
corresponding problem (see Section 4). We recall that a
randomized mechanism is universally truthful if saying
the truth is a dominant strategy for every outcome of
the random bits. Universal truthfulness is the strongest
form of truthfulness for randomized mechanisms [9, 18].

Theorem 1.2. There is a universally truthful Las Ve-
gas PTAS for BMST.

For a comparison, [5] gives a truthful FPTAS for the
same problem on bounded-treewidth graphs, while the
deterministic PTAS in [20] is not truthful.

The basic idea is combining our framework based
on the composition of bitonic algorithms with the (non-
monotone) PTAS of Goemans and Ravi [20]. The au-
thors consider the Lagrangian relaxation of the problem
with respect to the optimal Lagrangian multiplier (see,
e.g. [13] and references therein for the Lagrangian re-
laxation method). Among the solutions of optimal La-
grangian cost, they return a feasible solution S− which
is adjacent to an infeasible solution S+ (still of optimal
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Lagrangian cost). The authors show that `0(S−) ex-
ceeds the cost of the minimum spanning tree at most by
the cost of one edge. In order to get a PTAS, they sim-
ply guess the 1/ε most expensive edges of the optimal
solution in a preliminary step, and reduce the problem
consequently.2

Standard guessing is not compatible with mono-
tonicity (and hence with bitonicity). To see that, con-
sider the case that the modified element f is part of the
guess, and hence the edges of cost larger than f (other
than guessed edges) are removed from the graph. Then,
decreasing the cost of f too much, leads to an infeasible
problem where all non-guessed edges are discarded. In
order to circumvent this problem, we developed a novel
guessing step, where, besides guessing heavy edges, we
also guess approximately their cost. This might seem
counter-intuitive since one could simply consider their
real cost, but it is crucial to prove bitonicity. We also
remark that this has no (significant) impact on the run-
ning time and approximation factor of the algorithm,
since the number of guesses remains polynomial and at
least one of them correctly identifies the heaviest edges
and their approximate cost. As far as we know, this is
the first time that guessing is implemented in a mono-
tone way: this might be of independent interest.

However, this is still not sufficient to achieve our
goal. In fact, with Ravi and Goemans approach,
several candidate solutions might be output. This
introduces symmetries which have to be broken in order
to guarantee bitonicity. One possibility is choosing,
among the candidate solutions, the one with the largest
cost. Also in this case, choosing the worst-cost solution
might seem counter-intuitive. However, it is crucial to
achieve bitonicity, and it has no impact on the (worst-
case) approximation factor. The desired solution can
be found by exploring exhaustively the space of the
solutions of optimal Lagrangian cost. In fact, these
solutions induce a connected graph which can be visited,
starting from any such solution, in polynomial time in
the size of the graph. The difficulty here is that this
graph can be exponentially big. We solve this problem
by means of randomization, in a way pretty close to the
smoothed analysis of (standard) algorithms [23]. More
specifically, we randomly perturb the input instance
by multiplying each cost by a random, independent
factor (close to one, to preserve the approximation
ratio). After this perturbation, with high probability
there will be only two optimal Lagrangian solutions.

2The PTAS in [20] is presented to return an infeasible solution

adjacent to a feasible one. The guessing is then done on the
longest edges of the optimal solution. The two approaches are

actually equivalent approximation-wise but not for monotonicity.
(It is easy to provide a counterexample for the original one.)

As a consequence, the running time of the algorithm is
polynomial in expectation (the algorithm is Las-Vegas).
For our mechanism viewed as a probability distribution
over deterministic mechanisms (one for each possible
value of the perturbation) to be universally truthful we
have to prove that each of these deterministic algorithms
is monotone (in fact bitonic). We prove this by a
kind of sensitivity analysis of 2-dimensional packing
linear programs that correspond to the lower envelope
of lines representing spanning trees in the Lagrangian
relaxation approach of [20]. This analysis differs from
the standard packing LP sensitivity analysis (see, e.g.,
[22]) in that we also change an entry of the LP matrix
and not only the right-hand-side constants.

We can combine the monotone guessing step above
with a slight variant3 of the truthful FPTAS described
before to obtain truthful PTASs for problems which
are inclusion-closed, i.e. such that removing any ele-
ment from a feasible solution preserves feasibility. These
PTASs assume that we can remove in polynomial time
all the solutions in S not containing a given element
e ∈ U . An application of inclusion-closed problems sat-
isfying this assumption is, for example, the problem of
computing a (possibly non-perfect) matching of maxi-
mum cost, subject to budget upper bounds. The proof
of the following theorem will be given in the full version
of the paper.

Theorem 1.3. There is a (probabilistically) truthful
PTAS for inclusion-closed multi-objective problems P
admitting a pseudo-polynomial-time (Monte-Carlo) al-
gorithm A for their exact version.

2 Preliminaries and notation

As noted above, in this work we consider the case
in which the type `f = (`0(f), `1(f), . . . , `k(f)) of
each agent f is private information. We consider the
general framework of generalized single-minded agents
introduced in [5]. For a given algorithm A, let S′ be
the solution given in output by A on input declarations
(`′f )f∈U . Agent f with type `f evaluates solution S′

according to the valuation function described in Figure
1. A mechanism augments algorithm A with a payment
function p. The mechanism (A, p) on input (`′f )f∈U
computes solution S′ and awards agent f a payment
pf ((`′f )f∈U ) which is non-positive if best = max and
non-negative when best = min. Agent f derives utility

uf ((`′f )f∈U , `
f ) = vf (S′, `f ) + pf ((`′f )f∈U ).

3A similar approach is used to obtain a non-monotone ran-
domized PTAS for the multi-budgeted matching problem in [11].
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vf (S′, `f ) =

 `0(f)sign0 if f ∈ S′ ∧ki=1 `
′
i(f) �i `i(f),

−∞ if f ∈ S′ ∧ `′i(f) 6�i `i(f) for some i ∈ {1, . . . , k},
0 otherwise.

Figure 1: Valuation function of generalized single-minded agents.

The mechanism is truthful if, for each agent f , the
utility is maximized by truthtelling, i.e.,

uf ((`f , `′−f ), `f ) ≥ uf ((`′f )f∈U , `
f )

for each `′f and `′−f with `′−f denoting the declarations
of all agents but f . [5, 15] show that designing a
monotone algorithm is sufficient to obtain a truthful
mechanism for agents with valuation functions as above.
We recall that algorithm A is monotone if f ∈ S′ implies
that f ∈ S̄′ with S̄′ denoting the solution computed by
A on input (¯̀′f , `′−f ) for any ¯̀′f such that ¯̀′

i(f) �i `′i(f)
for some i ∈ {0, 1, . . . , k}.

Proposition 2.1. ([5, 15]) For generalized single-
minded agents, a monotone algorithm A admits a
payment function p such that (A, p) is a truthful
mechanism for P.4

Generalized single-minded agents adapt well to our
setting. Consider again the case in which P models
BMST problem and `0(f) and `1(f) are respectively
the cost and the delay experienced when using edge
f . As noted, agent f cannot lie promising a delay
smaller than her true one (or otherwise the mechanism
can a posteriori verify that the agent lied). In the
valuation function above, this is reflected by a valuation
of −∞ for declarations in which agents underbid the
delay. (In other words, an agent would incur an
infinite cost to provide the service with a smaller delay.)
More generally, the valuation functions that we consider
model optimization problems P in which budgeted
parameters are somehow verifiable (thus implying that
certain lies are irrational for a selfish agent).

Valuation function in Figure 1 connects with two
different research areas in Algorithmic Mechanism De-
sign. Mechanisms with verification, introduced by [18],
exploit the observation that the execution of the mech-
anism can be used to verify agents misreporting their
types (i.e., the entire type must be verifiable). On the
contrary, in our framework this assumption is only made
for budgeted parameters, i.e., `0(·)’s can model unveri-
fiable quantities (e.g., costs). Valuation function of Fig-
ure 1 expresses the valuation of single-minded bidders in

4The results in [5, 15] also require the algorithm to be exact.

However, in our context any algorithm for P is exact due to the
constraint xe ∈ {0, 1}.

a Combinatorial Auction (considered the paradigmatic
problem in Algorithmic Mechanism Design) using ex-
act5 allocation algorithms. Indeed, it is enough to con-
sider the budgeted parameter as the demand set (i.e.,
a bidder evaluates −∞ a set which is not a superset of
her unique demand set).

We conclude that generalized single-minded agents
is a general framework motivated by Combinatorial
Auctions that well encompasses the multi-objective op-
timization problems we consider. However, observe that
if we would allow unrestricted ways of lying on bud-
geted parameters then even a VCG mechanism (using
an exponential-time optimal algorithm) would not be
truthful for a multi-objective optimization problem P.
To see this, consider again the BMST problem and take
as instance a triangle graph with delay budget L. Name
the three edges of the graph e1, e2 and e3 and assume the
true types are `e1 = (ε, ε), `e2 = (0, 0) and `e3 = (0, H)
for some 0 < ε ≤ L and H > L. When agents are
truthtelling the VCG mechanism would select the only
feasible tree comprised of edges e1 and e2. The util-
ity of edge e3 is in this case 0. Now consider edge e3
misreporting her type as follows `′e3 = (0, L). In this
case the VCG mechanism would select the tree com-
prised by edges e2 and e3 (i.e., the minimum cost tree
among the seemingly feasible ones) and pay agent e3 an
amount of ε > 0. Since the true cost of e3 is 0 then e3
has a strict improvement of her utility by lying. (Note
that on the contrary in our generalized single-minded
setting the valuation of e3 would be −∞ in this case.)
VCG fails since there is a part of agents’ type (namely,
the delay) whose lies are not reflected in the objective
function considered by VCG (which is only the sum of
the costs). Note, however, that overbidding the delay
can only shrink the set of seemingly feasible solutions
and thus gives no advantages to unselected agents. In-
deed, as observed above VCG is truthful (though not
efficient) in our generalized single-minded setting. Fi-
nally, we remark that the example described above can
be tweaked to show that no algorithm with polynomi-
ally bounded approximation guarantee can be used to
obtain a truthful mechanism satisfying a strict form of
voluntary participation (i.e., a mechanism in which se-

5In CA’s terminology, an allocation algorithm is exact if it
allocates to each bidder the declared set or none.
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lected agents always have a strictly positive utility). It is
enough to consider the same instance with `e1 = (M, ε)
and `e2 = (1, 0). Any M -approximation algorithm in
input `e1 , `e2 and `′e3 must select the tree comprised of
edges e2 and e3.

Notation. For notational convenience, we assume
that our algorithms, in case they are not able to find a
solution, anyway return a special null solution N , whose
cost is −∞ for best = max, and +∞ otherwise. For
ease of presentation, we will assume that costs, lengths,
and budgets are strictly positive, and the optimum
solution OPT is not empty. These assumptions can
be removed at the cost of more technical algorithms
and analysis. We will denote by f the element whose
cost/length is modified as by monotonicity condition,
and by e a generic element. We use an upper bar to
denote quantities in the modified problem.

Composition of bitonic algorithms. Consider a cost
function c : 2U → Q+, and let � be a corresponding
order relation. In the following we will always assume
�=�0, while the choice of c(·) depends on the context.
For a given algorithm A, let P be the original problem.
By P̄ we denote a problem in which f declares ¯̀

i(f) �i
`(f) for some i = 0, . . . , k. We let S and S̄ to be
the solutions returned by A on problems P and P̄,
respectively.

Definition 2.1. Algorithm A is bitonic with respect to
c(·) if the following properties hold:

(i) If f ∈ S, then f ∈ S̄ and c̄(S̄) � c(S).

(ii) If f /∈ S, then either f ∈ S̄ or c̄(S̄) � c(S).

Observe that a bitonic algorithm is monotone, while the
vice versa is not necessarily true.

As shown in [5], bitonic algorithms can be combined
to get a monotone algorithm.

Theorem 2.1. (Composition Theorem) [5] Con-
sider a procedure M which generates a (potentially infi-
nite) family of subproblems P1, P2, . . ., solves each sub-
problem Pi with a procedureMi and returns the solution
Si to problem Pi minimizing (resp., maximizing) ci(Si),
for given cost functions ci(·). (The best solution with
largest index i in case of ties). If each procedure Mi is
bitonic with respect to ci(·), then M is monotone.

3 Approximate Pareto curves and monotone
multi-criteria FPTASs

In this section we restrict our attention to multi-
objective optimization problems P whose exact ver-
sion admits a pseudo-polynomial-time algorithm A.

For these problems we describe a monotone multi-
criteria FPTAS multi. Our approach is in-
spired, approximation-wise, by the construction of ε-
approximate Pareto curves in [19], and crucially exploits
the combination of bitonic procedures to achieve mono-
tonicity.

3.1 Algorithm Algorithm multi is described in Fig-
ure 2. The basic idea is generating a family of sub-
problems P1, . . . ,Pq. Each subproblem Pj is solved by
means of a procedure feasible, hence obtaining a solu-
tion Sj and a cost function `0,j(·) (Step M1). This pro-
cedure is designed in order to be bitonic with respect to
`0,j(·) on subproblem Pj . Eventually multi returns the
solution Sh optimizing `0,h(Sh), the best solution with
largest index h in case of ties (Step M2).

In more detail, let `0,min and `0,max be the smallest
and largest cost `0, respectively. We define B0,1 �0

. . . �0 B0,q to be all the (positive and/or negative)
powers of (1 + ε) between proper boundary values. For
each B0,j , Pj is the feasibility problem obtained by
considering the set of constraints of the original problem
P, plus the constraint

∑
e∈U `0(e)xe � B0,j .

For a given subproblem Pj , procedure feasible

assumes B0 := B0,j . The aim of the procedure is
computing an ε-feasible solution to Pj , i.e. a solution
Sj ∈ S such that, for all i ≥ 0, `i(Sj) �i Bi/(1+ε)signi .
Moreover, feasible returns a cost function `0,j(·) such
that the behavior of feasible is bitonic with respect
to function `0,j(·) on subproblem Pj (more details in
the proof of Lemma 3.2). In order to achieve this
goal, feasible first constructs an auxiliary feasibility
problem P ′j , with lengths `′i(e) and budgets B′i which
are polynomially-bounded in m/ε (Steps F1 and F2).
The definitions of those auxiliary lengths and budgets
are such that any feasible (w.r.t. `i(·), i ≥ 1) solution
for Pj is feasible for P ′j , and every feasible solution to
P ′j is ε-feasible (w.r.t. `i(·), i ≥ 1) for Pj (more details
in the proof of Lemma 3.1). Then feasible finds a
feasible solution for P ′j by encoding this problem in a
proper family of exact problems, which are solved by
means of A (Step F3). Each exact problem is indexed
by a vector z = (z0, . . . , zk) in a proper domain ×ki=0Ii.
Consider the length vector Λ(·) = (`′0(·), . . . , `′k(·)). The
solution Sz returned for the exact problem indexed by
z, if non-null, satisfies Λ(Sz) = z. The domain ×ki=0Ii
is defined by the set of vectors z such that zi �i B′i for
all i. Hence, if there is a feasible solution to P ′j , i.e. a
solution Sj with `′i(Sj) �i B′i for all i, this solution will
be found by feasible. Eventually (Step F4), among
the feasible solutions Sz obtained, feasible returns the
solution optimizing in lexicographic sense z, with the
lexicographic order� induced by the�i’s. Choosing the
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multi(P, ε)

M1: Let B0,1 � . . . � B0,q be the powers of (1 + ε) between `0,min
1

m(1+ε)
and m`0,maxdm(1+ε)

ε
e. For j = 1, . . . , q,

let (Sj , `0,j(·)) = feasible(Pj , ε, B0,j).

M2: Return the solution S∗ = Sh optimizing `0,h(Sh), the best solution with largest index h in case of ties.

feasible(P, ε, B0)

F1: For all e ∈ U :

F1a: If �0=≥: B′0=dm
ε
e, I0={B′0, B′0 + 1, . . . ,mB′0}. `0(e) := min{`0(e), B0}. Let `′0(e) = bB

′
0

B0
`0(e)c.

F1b: If �0=≤: B′0=dm(1+ε)
ε
e, I0={0, 1, . . . , B′0}. Discard all {e : `0(e) > B0}. Let `′0(e) = dB

′
0

B0
`0(e)e.

F2: For i = 1, . . . , k, for all e ∈ U :

F2a: If �i=≥: B′i=dm(1+ε)
ε
e, Ii={B′i, B′i + 1, . . . ,mB′i}. `i(e) := min{`i(e), Bi}. Let `′i(e) = dB

′
i

Bi
`i(e)e.

F2b: If �i=≤: B′i=dmε e, Ii={0, 1, . . . , B
′
i}. Discard all {e : `i(e) > Bi}. Let `′i(e) = bB

′
i

Bi
`i(e)c.

F3: Let M = m maxi≥0{B′i}+ 1 and ϕ(·) =
∑k
i=0M

i`′i(·). For all z = (z0, z1, . . . , zk) ∈ ×ki=0Ii:

• Let Bz =
∑k
i=0M

izi. Use A to compute a solution Sz ∈ S with ϕ(Sz) = Bz. (The solution with
lexicographically largest incidence vector in case of ties.) If no feasible solution exists, Sz = N .

F4: Let S∗z 6= N be the solution Sz with lexicographically best z (S∗z = N if no such solution exists). Return
(S∗z ,

B0
B′0
`′0(·)).

Figure 2: Algorithm multi.

best z in lexicographic sense, besides providing a good
approximation ratio (due to the fact that we optimize
z0 first), is crucial to enforce bitonicity.

Note that in Step F3, in case of multiple solutions
of target value B, the algorithm returns the solution
of largest incidence vector. This tie breaking rule is
also crucial to achieve bitonicity. It is easy to modify
a given exact algorithm A to enforce this property.
Let e1, e2, . . . , em be the elements, and B′ = B. For
i = 1, . . . ,m, we add a very large (but still polynomial)
value L to ϕ(ei), and ask for a solution of target value
L + B′. For L large enough, any such solution must
contain ei. If no such solution exists, we discard ei.
Otherwise, we set B′ ← B′ + L. In both cases we
proceed with next edge. Here we exploit the assumption
that discarding one element does not change the nature
of the considered problem.

3.2 Analysis Let us bound the running time and
approximation factor of multi.

Lemma 3.1. Algorithm multi computes a (1 + ε)2-
approximate solution, violating each budget constraint
at most by a factor (1 + ε). The running time of the
algorithm is polynomial in the size of the input and 1/ε.

Proof. Consider the running time of feasible on a
given subproblem Pj . Lengths `′i(·) and budgets B′i
are polynomially bounded in m/ε. Consequently, the

number of exact problems generated to solve P ′j is

O((m/ε)k) = O((m/ε)O(1)) since k is constant. Also,
the fact that k = O(1) implies that the values of f(·) and
B of each exact problem satisfy the same bound. Since
A is a pseudo-polynomial-time algorithm, it follows
that each exact problem can be solved in O((m/ε)O(1))
time. Altogether, the running time of feasible is
O((m/ε)O(1)). The number of subproblems generated

by multi is O(log1+ε
m `0,max

ε`0,min
), which is polynomial in

the size of the input and 1/ε. The running time bound
follows.

Consider now the approximation factor. We ini-
tially observe that, for any solution S returned for some
subproblem P ′j , and for any i ≥ 1,

`i(S) =
Bi
B′i

∑
e∈S

B′i
Bi
`i(e) �i

Bi
B′i

∑
e∈S

(`′i(e)− signi)

�i Bi −Bi
signi
B′i

m �i
Bi

(1 + ε)signi
.

In particular, the solution S∗ returned by the algorithm
violates each budget constraint at most by a factor
(1 + ε). We next show that Sh := S∗ is (1 + ε)2-
approximate.

Let OPT be an optimum solution to the original
problem instance and let j be the largest index such
that `0(OPT ) �0 B0,j(1 + ε)sign0 . In particular,
`0(OPT ) ≺0 B0,j+1(1 + ε)sign0 = B0,j(1 + ε)2sign0 .
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Observe that there is one such value B0,j , since `0,min ≤
`0(OPT ) ≤ m`0,max. Note that OPT is feasible for P ′j ,
i.e., `′i(OPT ) �i B′i for i ≥ 0. To see this consider
an execution of (Sj , `0,j(·)) = feasible(Pj , ε, B0,j) in

algorithm multi. Observe that `′0(·) = `0,j(·)
B′0,j
B0,j

,

B0 = B0,j , and B′0 = B′0,j . For any i ≥ 1,

`′i(OPT ) =
∑

e∈OPT
`′i(e) �i

∑
e∈OPT

B′i
Bi
`i(e)

�i
B′i
Bi
Bi = B′i.

Moreover,

`′0(OPT ) =
∑

e∈OPT
`′0(e) �0

∑
e∈OPT

B′0
B0

`0(e)− sign0

�0 B
′
0(1 + ε)sign0 − sign0m �0 B

′
0.

This implies that a solution Sj is returned for subprob-
lem Pj . By the optimality of Sh, `0,h(Sh) �0 `0,j(Sj).
It follows that

B0,h

B′0,h
`′0,h(Sh) =`0,h(Sh) �0 `0,j(Sj) =

B0,j

B′0,j
`′0,j(Sj)

�0B0,j �0
`0(OPT )

(1 + ε)2sign0
.

The cost of S∗ = Sh then satisfies

`0(Sh) =
B0,h

B′0,h

∑
e∈Sh

B′0,h
B0,h

`0(e) �0
B0,h

B′0,h

∑
e∈Sh

`′0,h(e)

=
B0,h

B′0,h
`′0,h(Sh) �0

`0(OPT )

(1 + ε)2sign0
.

�

We next prove the bitonicity of feasible: via the
Composition Theorem 2.1 this will imply the mono-
tonicity of multi.

Lemma 3.2. Procedure feasible is bitonic with respect
to `0,j(·) on subproblem Pj.

Proof. To fix notation, consider an execution of
(Sj , `0,j(·)) = feasible(Pj , ε, B0,j) in algorithm multi.

Observe that `′0(·) = `0,j(·)
B′0,j
B0,j

, B0 = B0,j , and B′0 =

B′0,j . Let also S̄j be the solution output by feasible

for problem P̄j .
Since `0,j(·) = B0

B′0
`′0(·), it is sufficient to prove

bitonicity with respect to `′0(·). Suppose we modify
`s(f) to ¯̀

s(f) �s `s(f) for some s ∈ {0, . . . , k}. Observe
that this implies ¯̀′

s(f) �s `′s(f). Consider the case

¯̀′
s(f) = `′s(f): here Sj = S̄j and so the algorithm is

trivially bitonic. Then assume ¯̀′
s(f) �s `′s(f). By F we

denote the set of feasible solutions to P ′j computed by

A. Note that F ⊆ F̄ , since every feasible solution to
P ′j is feasible for P̄ ′j as well. Moreover, every solution

in F̄ \ F must contain f .
Consider first the case f ∈ Sj . We will show that

f ∈ S̄j and Λ̄(S̄j) � Λ(Sj) (which implies ¯̀′
0(S̄j) �0

`′0(Sj)). Note that Λ̄(Sj) � Λ(Sj) since ¯̀′
s(f) �s `′s(f).

Moreover, because Sj ∈ F ⊆ F̄ and the algorithm
returns in Step F4 lexicographically best solution we
have Λ̄(S̄j) � Λ̄(Sj). As a consequence, Λ̄(S̄j) �
Λ̄(Sj) � Λ(Sj). On the other hand, for any f /∈ S′ ∈ F ,
Λ̄(S′) = Λ(S′) � Λ(Sj) (where � again follows from
Step F4), and hence S′ 6= S̄j . We can conclude that
f ∈ S̄j .

Suppose now f /∈ Sj and f /∈ S̄j . We will show
that S̄j = Sj (which implies ¯̀′

0(S̄j) �0 `
′
0(Sj)). Since

all the solutions in F̄ \ F contain f , S̄j ∈ F . Then
Λ̄(S̄j) = Λ(S̄j) � Λ(Sj) = Λ̄(Sj) � Λ̄(S̄j) (where we
referred to Step F4 twice), which implies Λ̄(S̄j) = Λ(Sj).
Therefore the set of solutions not containing f which
optimize the length vector Λ is exactly the same in
the two problems. This implies that S̄j = Sj by the
lexicographic optimality of the solutions computed. �

Lemma 3.3. Algorithm multi is monotone.

Proof. Consider the variant ideal of multi which spans
all the (infinitely many) powers of (1 + ε). Observe
that ideal and multi output exactly the same solution
(both in the original and in the modified problem). In

fact, consider the case �0=≥. For B0 <
`0,min

m , we
have `′0(e) = B′0 for all e, which leads to a solution of
`0,j cost at most B0

B′0
mB′0 < `0,min. On the other hand,

for B0 > m`0,maxdm(1+ε)
ε e, we have `′0(e) = 0 for all

e, which leads to a solution of `0,j cost zero. Observe
that in both cases the solutions computed by ideal only
are not better than the solutions computed by multi.
The case �0=≤ is symmetric. For B0 < `0,min all the
edges are discarded and the problem becomes infeasible.

For B0 > m`0,maxdm(1+ε)
ε e, we have `′0(e) = 1 for all

e, which leads to a solution of `0,j cost at least B0

B′0
>

m`0,max. Also in this case the solutions computed by
ideal only are not better than the solutions computed
also by multi. By Lemma 3.2 and the Composition
Theorem 2.1, ideal is monotone. We can conclude that
multi is monotone as well. �

Theorem 1.1 follows from Lemmas 3.1 and 3.3, by
applying the results in [5, 15].
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4 Lagrangian relaxation and budgeted
minimum spanning tree

In this section we investigate a different approach to the
design of truthful mechanisms, based on the classical
Lagrangian relaxation method. With this approach,
we obtain a monotone randomized PTAS bmst for the
budgeted minimum spanning tree problem (BMST).
This implies a universally truthful mechanism for the
corresponding game.

Let us start by introducing some preliminary no-
tions. For notational convenience, let c(·) = `0(·),
`(·) = `1(·) and L = B1. By cmin and cmax we de-
note the smallest and largest cost, respectively. BMST
can be defined as follows:

min
∑
e∈E

c(e)xe

s.t. x ∈ X∑
e∈E

`(e)xe ≤ L

Here X denotes the set of incidence vectors of spanning
trees of the input graph G = (V,E). For a Lagrangian
multiplier λ ≥ 0, the Lagrangian relaxation of the
problem is (see [20])

LAG(λ) = min
∑
e∈E

c(e)xe + λ · (
∑
e∈E

`(e)xe − L)

s.t. x ∈ X

The problem above is essentially a standard minimum
spanning tree problem, with respect to the Lagrangian
costs c′(e) = c(e) + λ `(e). Observe that, for any λ ≥ 0,
LAG(λ) ≤ OPT . We let λ∗ (optimal Lagrangian mul-
tiplier) be a value of λ ≥ 0 which maximizes LAG(λ).
In case of a tie, we let λ∗ be the smallest such value.
If λ∗ = ∞, there is no feasible solution. We remark
that λ∗ can be computed in strongly-polynomial-time
O(mO(1)), using, say, Megiddo’s parametric search tech-
nique (see, e.g., [20]).

Function LAG(λ) has a natural geometric interpre-
tation. For any spanning tree S with incidence vector
x(S), cλ(S) :=

∑
e∈E c(e)xe(S) +λ · (

∑
e∈E `(e)xe(S)−

L) is a linear function of the multiplier λ. In particular,
the slope of cλ(S) is positive if S is infeasible, and non-
positive otherwise. LAG(λ) is the lower envelope of the
lines cλ(S), for λ ≥ 0 and S ∈ S. Observe that LAG(λ)
is concave and piecewise linear. When no confusion is
possible, we use the notion of spanning tree and line
interchangeably. We observe the following useful fact.

Lemma 4.1. Consider the lower envelope LE of a set of
solutions. Let S1, S2, . . . , Sq be the solutions intersect-
ing LE, sorted in decreasing order of length (breaking
ties arbitrarily). Then, for i < j, c(Si) ≤ c(Sj).

Proof. It is sufficient to show that, for any i =
1, 2, . . . , q − 1, c(Si) ≤ c(Si+1). If Si(λ) and Si+1(λ)
overlap, the claim is trivially true. Otherwise, let λ′

be the value of λ for which Si(λ′) = Si+1(λ′) (the two
lines cannot be parallel, since they both intersect LE).
Recall that `(Si) ≥ `(Si+1) by assumption. Then

c(Si) =cλ′(S
i)− λ′(`(Si)− L)

≤cλ′(Si)− λ′(`(Si+1)− L)

≤cλ′(Si+1)− λ′(`(Si+1)− L) = c(Si+1).

�

4.1 Algorithm Algorithm bmst is described in Fig-
ure 3. The first step of the construction is a random
perturbation of the costs (Step B1). The factor T = 2m

in the perturbation is simply an upper bound on the
number of spanning trees. Our perturbation will ensure,
with high probability, that no more than 2 lines corre-
sponding to spanning trees intersect at a given point.

Then (Step B2), the algorithm generates a poly-
nomial set of subproblems P1,P2, . . . ,Ph. Intuitively,
each subproblem corresponds to a guess of the most
expensive edges in the optimum solution OPT , and
to a guess of their approximate cost. More precisely,
each subproblem j is labeled by a pair (Fj , gj(·)), where
Fj is a subset of 1/ε edges, and gj : Fj → C, where
C = {c1, . . . , cq} is a proper set of rounded costs.
Given a pair j = (Fj , gj(·)), subproblem Pj is obtained
by removing Fj and all the edges of cost larger than
mine∈Fj

{gj(e)}, and decreasing L by `(F ).
Each subproblem Pj is solved by means of a proce-

dure lagrangian, based on the Lagrangian relaxation
method. In particular, following [20], among the solu-
tions intersecting LAG at λ∗, we select two adjacent
solutions S− and S+, of non-positive and positive slope
respectively, and return Sj = S−. We recall that two
spanning trees S− and S+ are adjacent in the spanning
tree polytope if there are edges e+ and e− such that
S− = S+ \ {e+} ∪ {e−}. As mentioned in the intro-
duction, in case of ties we select the pair (S−, S+) with
maximum c(S−).

Eventually (Step B3), bmst returns the (feasible)
solution Fj ∪ Sj of minimum cost c(Fj ∪ Sj) = c(Fj) +
c(Sj) (and largest index j in case of ties).

We remark that the values te in the perturbation
are independent from edge costs and lengths, and hence
we can assume that they are the same in the original
(Pj) and modified (P̄j) problems. In other words, each
choice of the te’s specifies one deterministic algorithm.
We will show that each such algorithm is monotone.
Note also that monotonicity on the perturbed instance
implies monotonicity on the original instance, since the

581 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



bmst(P, ε)
B1: For all e ∈ E, independently generate an integer te uniformly at random in {1, . . . , 2T 4}, T = 2m,

and replace c(e) with c(e)(1 + ε te
2T4 )

B2: Let c1 ≤ . . . ≤ cq be the powers of (1 + ε) between cmin/(1 + ε) and cmax(1 + ε). Let 1, . . . , h denote
all the pairs (F, g(·)) with F ⊆ E, |F | = 1

ε
, and g : F → {c1, . . . , cq}. For a given pair j = (Fj , gj(·)),

define subproblem Pj by removing from G, Fj and all the edges of value larger than mine∈Fj{gj(e)}
and decreasing B by `(Fj). Compute Sj = lagrangian(Pj).

B3: Return the solution Fj ∪ Sj minimizing c(Fj) + c(Sj), and maximizing j in case of ties.

lagrangian(Pj)
L1: Compute the optimal Lagrangian multiplier λ∗, the smallest one in case of ties.

L2: If λ∗ = 0, return the solution S− of minimum-slope intersecting LAG at λ∗.

L3: If λ∗ = +∞, return N .

L4: Compute a pair of adjacent solutions S− and S+, of non-positive and positive slope, respectively. In
case of ties, the pair where c(S−) is maximized and, as a second choice, the incidence vector of S− is
minimized. Return S−.

Figure 3: Algorithm bmst.

perturbation does not change the sign of the difference
between modified and original costs/lengths. As a con-
sequence, the resulting mechanism will be universally
truthful. The random perturbation has the following
property.

Lemma 4.2. After the perturbation, with probability at
least 1 − 1/T , all the spanning trees correspond to
different lines, and at most two lines intersect at a given
point.

Proof. Consider any two lines S1(λ) and S2(λ), and
let `i and ci be the length and perturbed cost of Si,
respectively. The two lines overlap if and only if c1 = c2
and `1 = `2. Let us condition over the cost of all the
edges of S1 and of all the edges of S2 but one. Then c2
is a random variable which takes one value uniformly at
random in a set of 2T 4 distinct values. Hence the event
{c1 = c2} happens with probability at most 1/2T 4.

Consider now any three lines S1(λ), S2(λ) and
S3(λ). With the same notation as above, these three
lines intersect at the same point if and only if{

c1 + λ(`1 − L) = c2 + λ(`2 − L)

c1 + λ(`1 − L) = c3 + λ(`3 − L)

If `1 = `2, it must be c1 = c2 which happens with
probability at most 1/2T 4 by the same argument as
before. Otherwise it must be c3 = c1 + λ(`1 − `3) with
λ = (c1 − c2)/(`2 − `1): this happens with probability
at most 1/2T 4 by a similar argument.

Since there are at most T 2 pairs and T 3 triples of
the kind above, by the union bound the probability that

the property of the claim is not satisfied is at most
T 2/(2T 4) + T 3/(2T 4) ≤ 1/T . �

Lemma 4.2 immediately implies that, with high prob-
ability, there are exactly two solutions of optimal La-
grangian cost. This will be crucial to prove that the
running time of bmst is polynomial in expectation.

4.2 Analysis The following lemma shows approxi-
mation guarantee and efficiency of algorithm bmst.

Lemma 4.3. For any fixed ε ∈ (0, 1], Algorithm bmst

is (1 + 5ε)-approximate and its expected running time is
polynomial.

Proof. The perturbation can be performed in
O(m log(2T 4)) = O(m2) time. Algorithm bmst

runs O((m log1+ε
cmax

cmin
)1/ε) instances of lagrangian,

which is polynomial in the input size for any constant
ε > 0. The running time of lagrangian is dominated,
modulo polynomial factors, by the number of spanning
trees of optimal Lagrangian cost for the instance
considered. This number is at most T deterministically,
and it is exactly 2 with probability at least (1 − 1/T )
by Lemma 4.2. Hence the expected running time of
lagrangian is polynomial.

Let OPT be the optimum solution to the perturbed
instance, and F the 1/ε most expensive edges in OPT .
Consider the assignment g : F → {c1, . . . , cq} such
that, for each e ∈ F , g(e) ≥ c(e) ≥ g(e)/(1 +
ε). Let OPT ′ and OPT ′′ be the optimum solution
to the subproblems induced by j = (F, g(·)) and
(F, c|F (·)), respectively. Observe that c(OPT ′′) =
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c(OPT ) − c(F ). Moreover, c(OPT ′) ≤ c(OPT ′′) since
mine∈F {c(e)} ≤ mine∈F {g(e)} (intuitively, for a given
guess F we prune more edges with c(·) than with g(·)).
Altogether c(OPT ′) ≤ c(OPT )−c(F ). Note also that in
subproblem Pj each edge e costs at most ε(1+ε)c(OPT ).
If λ∗ = 0, c(S−) = c(OPT ′). Otherwise

c(S−) = c(S+) + c(e−)− c(e+) ≤ LAG(λ∗) + c(e−)

≤ c(OPT ′) + c(e−)

≤ c(OPT ′) + ε(1 + ε)c(OPT ).

It follows that c(F )+c(S−) ≤ c(OPT )+ε(1+ε)c(OPT ).
It is easy to see that the initial perturbation increases
the cost of the optimal solution at most by a factor (1+ε)
(deterministically). Thus the overall approximation
factor is (1 + ε)(1 + ε(1 + ε)) ≤ 1 + 5ε. �

Before presenting the proof of the bitonicity of
algorithm lagrangian, let us give some intuitions about
bitonicity in case (i) of Definition 2.1; the other case is
similar. Let (λ∗, LAG(λ∗)) and (λ̄∗, LAG(λ̄∗)) be the
optimal Lagrangian point in the original and modified
problems respectively.

A high level intuition in this case is that when
an agent f decreases her `(f) or her c(f) then the
original output line S− either rotates down (with its c-
point fixed) or translates down. Because of concavity
of LAG(λ∗) this can move λ∗ only to the left, thus
λ̄∗ ≤ λ∗. This implies monotonicity, because all non-
positive slope lines in the modified problem intersecting
(λ̄∗, LAG(λ̄∗)) must contain f .

For bitonicity, consider the optimal Lagrangian
multiplier λ∗ and recall that we output a line S−

adjacent to line S+, where both lines intersect
(λ∗, LAG(λ∗)), and c(S−) is highest among such lines
S− . We have two main different cases: λ̄∗ = λ∗

and λ̄∗ < λ∗. Since we consider that f ∈ S− and in
case λ̄∗ = λ∗ it must be the case that also some pos-
itive slope line, say S′, with (λ∗, LAG(λ∗)) ∈ S′, con-
tains f , and so S̄′ will belong to the new optimal point
(λ̄∗, LAG(λ̄∗)). Now, the lines S+ from (λ∗, LAG(λ∗)),
such that f 6∈ S+, are not translated to (λ̄∗, LAG(λ̄∗)),
and thus we lose some of the previous adjacent pairs
(S−, S+). But, the new output such adjacent pair
(S̄−, S̄+) can only have smaller value of c(S̄−) (because
in the original problem (λ∗, LAG(λ∗)) we output such
line with maximum c(S−)). In the second case when
λ̄∗ < λ∗, we can observe that there can be some new
non-positive slope lines in (λ̄∗, LAG(λ̄∗)), but their c-
cost can only be lower than the previous c(S−). This
follows by the concavity of LAG.

Lemma 4.4. Algorithm lagrangian is bitonic with re-
spect to c(·).

Proof. By the concavity of LAG, if λ∗ = 0, then observe
that λ̄∗ = 0 and the solution returned in the original
and modified problems is exactly the same. On the
other hand, for λ∗ = +∞ no solution is returned for
the original problem. We note also that if cost and
length of f are unmodified then the algorithm returns
the same solution in the original and modified problems.
In all these cases lagrangian is trivially bitonic. Hence
assume that 0 < λ∗ < +∞ and that f modifies either
cost or length. We distinguish two cases:
(i) Case f ∈ S−: We have to show that f ∈ S̄−

and c̄(S̄−) ≤ c(S−). Note that c̄λ∗(S
−) is either equal

to cλ∗(S
−) − ∆ < c̄λ∗(S

−) or to cλ∗(S
−) − λ∗∆ <

c̄λ∗(S
−), depending on whether the cost or length of

f is modified (decreased) by ∆, respectively. For any
S 63 f , c̄λ∗(S) = cλ∗(S) ≥ cλ∗(S−). (The last inequality
follows from the fact that point (λ∗, cλ∗(S

−)) belongs to
the lower envelope LAG and that the lower envelope is
defined as the point-wise minimum of all lines cλ(S)
for all spanning trees S.) Hence LAG intersects at λ∗

only solutions containing f in the modified problem:
since S− is one of those solutions, the concavity of LAG
implies that λ̄∗ ≤ λ∗.

Suppose first λ̄∗ = λ∗. Note that in this case
all the solutions intersecting LAG at λ∗ contain f ,
and hence f ∈ S̄−. Moreover, those solutions are
exactly the solutions containing f which intersect LAG
at the same value of the Lagrangian multiplier as in the
original problem. By construction S̄− is adjacent to
a positive-slope solution S̄+ intersecting LAG at λ∗. It
follows that (S+

0 , S
−
0 ) is a candidate pair for the original

problem as well, where lines (S+
0 , S

−
0 ) correspond to

lines (S̄+, S̄−) for the original (unmodified) cost/length
of f . The maximality of S− implies c(S−) ≥ c(S−0 ) ≥
c(S̄−) ≥ c̄(S̄−).

Suppose now λ̄∗ < λ∗. Under this assumption,
S+ 63 f , since otherwise we would have λ̄∗ ≥ λ∗ by the
same argument as before. This implies that the lower
envelope LAG6f of the lines not containing f intersects
S+ at λ∗ (since LAG6f is sandwiched between LAG
and S+). It follows from the concavity of LAG6f that
LAG6f is defined only by positive-slope lines for λ < λ∗,
and consequently the (non-positive-slope) solution S̄−

returned for the modified problem must contain f . Since
S̄− intersects LAG at λ̄∗ < λ∗ in the modified problem,
the slope of S̄− is larger than the slope of S− (in both
problems), unless S− and S̄− correspond to the same
spanning tree. In the former case, we can conclude
by Lemma 4.1, applied to the lower envelope LAGf of
the lines containing f in the modified problem, that
c̄(S̄−) ≤ c̄(S−) ≤ c(S−). And if S− and S̄− correspond
to the same spanning tree, we have c̄(S̄−) = c̄(S−) ≤
c(S−).
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(ii) Case f /∈ S−: If f ∈ S̄−, there is nothing to show.

So assume f /∈ S̄−: we have to show that c̄(S̄−) ≥
c(S−). For λ > λ∗, the solutions of non-positive
slope not containing f have Lagrangian cost larger than
LAG(λ∗) ≥ LAG(λ∗) ≥ LAG(λ̄∗). Therefore λ̄∗ ≥ λ∗.
We can conclude by the same argument as in Case
(i) that the slope of S̄− is not larger than the slope
of S−. Hence, by Lemma 4.1 applied to the lower
envelope LAG6f = LAG6f of the lines not containing
f , c̄(S̄−) = c(S̄−) ≥ c(S−). �

Corollary 4.1. The procedure which returns Fj ∪ Sj
for a given problem Pj is bitonic with respect to c(·).

Proof. If f ∈ Fj , then Pj = P̄j and hence Sj = S̄j . In
this case the procedure is trivially bitonic. Otherwise
(f /∈ Fj), suppose f ∈ Fj ∪ Sj (i.e., f ∈ Sj). By
Lemma 4.4, f ∈ S̄j and c̄(S̄j) ≤ c(Sj). It follows that
c̄(Fj ∪ S̄j) = c(Fj) + c̄(S̄j) ≤ c(Fj) + c(Sj) = c(Fj ∪Sj).
It remains to consider the case f /∈ Fj∪Sj . If f ∈ Fj∪S̄j
there is nothing to show. Hence assume f /∈ Fj ∪ S̄j ,
which implies f /∈ S̄j . By Lemma 4.4, c̄(S̄j) ≥ c(Sj)
which implies c̄(Fj ∪ S̄j) ≥ c(Fj ∪ Sj). �

Lemma 4.5. Algorithm bmst is monotone.

Proof. Analogously to the proof of Lemma 3.3, we de-
fine a variant ideal of bmst which considers all the
powers of (1 + ε) for any guess. Also in this case the
solution computed by ideal and bmst is the same. In
fact, when mine∈Fj

{gj(e)} < cmin, all the edges are re-
moved and the problem becomes infeasible. Vice versa,
for mine∈Fj{gj(e)} > cmax, no edge is discarded and
one obtains exactly the same subproblem by replacing
each gj(e) with min{gj(e), cmax}. Algorithm ideal is
monotone by the Composition Theorem 2.1 and Corol-
lary 4.1. It follows that bmst is monotone as well. �

Theorem 1.2 follows from Lemmas 4.3 and 4.5, by
applying the results in [5, 15].
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