Fabrizio Falchi

Fabrizio Falchi
Italian National Research Council | CNR · Institute of Information Science and Technology "Alessandro Faedo" ISTI

PhD in Computer Science

About

193
Publications
68,064
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,044
Citations
Additional affiliations
October 2009 - present
Italian National Research Council
Position
  • Researcher
Education
January 2009 - January 2010
Scuola Superiore Sant'Anna
Field of study
  • Management
January 2005 - May 2007
Masaryk University
Field of study
  • Informatics
January 2004 - May 2007
Università di Pisa
Field of study
  • Engineering

Publications

Publications (193)
Article
Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative syndrome whose clinical diagnosis remains a challenging task especially in the early stage of the disease. Currently, the presence of frontal and anterior temporal lobe atrophies on magnetic resonance imaging (MRI) is part of the diagnostic criteria for bvFTD. However, MRI da...
Preprint
Image-text matching is gaining a leading role among tasks involving the joint understanding of vision and language. In literature, this task is often used as a pre-training objective to forge architectures able to jointly deal with images and texts. Nonetheless, it has a direct downstream application: cross-modal retrieval, which consists in findin...
Preprint
Full-text available
Deepfake Generation Techniques are evolving at a rapid pace, making it possible to create realistic manipulated images and videos and endangering the serenity of modern society. The continual emergence of new and varied techniques brings with it a further problem to be faced, namely the ability of deepfake detection models to update themselves prom...
Preprint
Full-text available
With the increased accessibility of web and online encyclopedias, the amount of data to manage is constantly increasing. In Wikipedia, for example, there are millions of pages written in multiple languages. These pages contain images that often lack the textual context, remaining conceptually floating and therefore harder to find and manage. In thi...
Preprint
Full-text available
Features extracted from Deep Neural Networks (DNNs) have proven to be very effective in the context of Content Based Image Retrieval (CBIR). In recent work, biologically inspired \textit{Hebbian} learning algorithms have shown promises for DNN training. In this contribution, we study the performance of such algorithms in the development of feature...
Chapter
Full-text available
Deepfakes are the result of digital manipulation to forge realistic yet fake imagery. With the astonishing advances in deep generative models, fake images or videos are nowadays obtained using variational autoencoders (VAEs) or Generative Adversarial Networks (GANs). These technologies are becoming more accessible and accurate, resulting in fake vi...
Article
In recent years, Quantum Computing witnessed massive improvements in terms of available resources and algorithms development. The ability to harness quantum phenomena to solve computational problems is a long-standing dream that has drawn the scientific community’s interest since the late 80s. In such a context, we propose our contribution. First,...
Article
Full-text available
In this paper, we investigate Hebbian learning strategies applied to Convolutional Neural Network (CNN) training. We consider two unsupervised learning approaches, Hebbian Winner-Takes-All (HWTA), and Hebbian Principal Component Analysis (HPCA). The Hebbian learning rules are used to train the layers of a CNN in order to extract features that are t...
Article
In many working and recreational activities, there are scenarios where both individual and collective safety have to be constantly checked and properly signaled, as occurring in dangerous workplaces or during pandemic events like the recent COVID-19 disease. From wearing personal protective equipment to filling physical spaces with an adequate numb...
Preprint
Full-text available
Modern Unmanned Aerial Vehicles (UAV) equipped with cameras can play an essential role in speeding up the identification and rescue of people who have fallen overboard, i.e., man overboard (MOB). To this end, Artificial Intelligence techniques can be leveraged for the automatic understanding of visual data acquired from drones. However, detecting p...
Conference Paper
Full-text available
In this short paper, we report the activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR related to Public Administration. In particular, we present some AI-based public services serving the citizens that help achieve common goals beneficial to the society, putting humans at the epicenter. Through the...
Conference Paper
Full-text available
In this short paper, we report the activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR related to Industry. The massive digitalization affecting all the stages of product design, production, and control calls for data-driven algorithms helping in the coordination of humans, machines, and digital reso...
Conference Paper
Full-text available
In this work we report the activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR related to Healthcare and Wellbeing. By exploiting the advances of recent machine learning methods and the compute power of desktop and mobile platforms, we will show how artificial intelligence tools can be used to improv...
Conference Paper
Full-text available
In this short paper, we report the activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR related to Trustworthy AI. Artificial Intelligence is becoming more and more pervasive in our society, controlling recommendation systems in social platforms as well as safety-critical systems like autonomous vehic...
Conference Paper
Full-text available
In this short paper, we report the activities of the Artificial Intelligence for Media and Humanities (AIMH) laboratory of the ISTI-CNR related to Cy-bersecurity. We discuss about our active research fields, their applications and challenges. We focus on face recognition and detection of adversarial examples and deep fakes. We also present our acti...
Chapter
VISIONE is a content-based retrieval system that supports various search functionalities (text search, object/color-based search, semantic and visual similarity search, temporal search). It uses a full-text search engine as a search backend. In the latest version of our system, we modified the user interface, and we made some changes to the techniq...
Technical Report
Full-text available
The Artificial Intelligence for Media and Humanities laboratory (AIMH) has the mission to investigate and advance the state of the art in the Artificial Intelligence field, specifically addressing applications to digital media and digital humanities, and taking also into account issues related to scalability. This report summarize the 2021 activiti...
Article
Anomalies are ubiquitous in all scientific fields and can express an unexpected event due to incomplete knowledge about the data distribution or an unknown process that suddenly comes into play and distorts the observations. Usually, due to such events' rarity, to train deep learning (DL) models on the anomaly detection (AD) task, scientists only r...
Article
Despite the evolution of deep-learning-based visual-textual processing systems, precise multi-modal matching remains a challenging task. In this work, we tackle the task of cross-modal retrieval through image-sentence matching based on word-region alignments, using supervision only at the global image-sentence level. Specifically, we present a nove...
Preprint
Although convolutional neural networks (CNNs) showed remarkable results in many vision tasks, they are still strained by simple yet challenging visual reasoning problems. Inspired by the recent success of the Transformer network in computer vision, in this paper, we introduce the Recurrent Vision Transformer (RViT) model. Thanks to the impact of re...
Preprint
Full-text available
Space exploration has always been a source of inspiration for humankind, and thanks to modern telescopes, it is now possible to observe celestial bodies far away from us. With a growing number of real and imaginary images of space available on the web and exploiting modern deep Learning architectures such as Generative Adversarial Networks, it is n...
Article
We propose to address the issue of sample efficiency, in Deep Convolutional Neural Networks (DCNN), with a semi-supervised training strategy that combines Hebbian learning with gradient descent: all internal layers (both convolutional and fully connected) are pre-trained using an unsupervised approach based on Hebbian learning, and the last fully c...
Preprint
Full-text available
Deepfakes are the result of digital manipulation to obtain credible videos in order to deceive the viewer. This is done through deep learning techniques based on autoencoders or GANs that become more accessible and accurate year after year, resulting in fake videos that are very difficult to distinguish from real ones. Traditionally, CNN networks h...
Preprint
Full-text available
In recent years, Quantum Computing witnessed massive improvements both in terms of resources availability and algorithms development. The ability to harness quantum phenomena to solve computational problems is a long-standing dream that has drawn the scientific community's interest since the late '80s. In such a context, we pose our contribution. F...
Preprint
Full-text available
This paper presents a novel solution to automatically count vehicles in a parking lot using images captured by smart cameras. Unlike most of the literature on this task, which focuses on the analysis of single images, this paper proposes the use of multiple visual sources to monitor a wider parking area from different perspectives. The proposed mul...
Article
Full-text available
Deep learning has achieved impressive results in many machine learning tasks such as image recognition and computer vision. Its applicability to supervised problems is however constrained by the availability of high-quality training data consisting of large numbers of humans annotated examples (e.g. millions). To overcome this problem, recently, th...
Preprint
Full-text available
Cross-modal retrieval is an important functionality in modern search engines, as it increases the user experience by allowing queries and retrieved objects to pertain to different modalities. In this paper, we focus on the image-sentence retrieval task, where the objective is to efficiently find relevant images for a given sentence (image-retrieval...
Article
Full-text available
The recent advances in language modeling significantly improved the generative capabilities of deep neural models: in 2019 OpenAI released GPT-2, a pre-trained language model that can autonomously generate coherent, non-trivial and human-like text samples. Since then, ever more powerful text generative models have been developed. Adversaries can ex...
Article
Full-text available
This paper describes in detail VISIONE, a video search system that allows users to search for videos using textual keywords, the occurrence of objects and their spatial relationships, the occurrence of colors and their spatial relationships, and image similarity. These modalities can be combined together to express complex queries and meet users' n...
Preprint
Full-text available
Emotions play a central role in the social life of every human being, and their study, which represents a multidisciplinary subject, embraces a great variety of research fields. Especially concerning the latter, the analysis of facial expressions represents a very active research area due to its relevance to human-computer interaction applications....
Preprint
Full-text available
We propose to address the issue of sample efficiency, in Deep Convolutional Neural Networks (DCNN), with a semisupervised training strategy that combines Hebbian learning with gradient descent: all internal layers (both convolutional and fully connected) are pre-trained using an unsupervised approach based on Hebbian learning, and the last fully co...
Preprint
Full-text available
Facial expressions play a fundamental role in human communication. Indeed, they typically reveal the real emotional status of people beyond the spoken language. Moreover, the comprehension of human affect based on visual patterns is a key ingredient for any human-machine interaction system and, for such reasons, the task of Facial Expression Recogn...
Chapter
Deep learned models are now largely adopted in different fields, and they generally provide superior performances with respect to classical signal-based approaches. Notwithstanding this, their actual reliability when working in an unprotected environment is far enough to be proven. In this work, we consider a novel deep neural network architecture,...
Chapter
Soccer analytics is attracting increasing interest in academia and industry, thanks to the availability of data that describe all the spatio-temporal events that occur in each match. These events (e.g., passes, shots, fouls) are collected by human operators manually, constituting a considerable cost for data providers in terms of time and economic...
Preprint
Full-text available
Facial Expression Recognition(FER) is one of the most important topic in Human-Computer interactions(HCI). In this work we report details and experimental results about a facial expression recognition method based on state-of-the-art methods. We fine-tuned a SeNet deep learning architecture pre-trained on the well-known VGGFace2 dataset, on the Aff...
Preprint
Full-text available
Deep learning demonstrated major abilities in solving many kinds of different real-world problems in computer vision literature. However, they are still strained by simple reasoning tasks that humans consider easy to solve. In this work, we probe current state-of-the-art convolutional neural networks on a difficult set of tasks known as the same-di...
Chapter
This paper presents the second release of VISIONE, a tool for effective video search on large-scale collections. It allows users to search for videos using textual descriptions, keywords, occurrence of objects and their spatial relationships, occurrence of colors and their spatial relationships, and image similarity. One of the main features of our...
Article
Full-text available
Deep learning demonstrated major abilities in solving many kinds of different real-world problems in computer vision literature. However, they are still strained by simple reasoning tasks that humans consider easy to solve. In this work, we probe current state-of-the-art convolutional neural networks on a difficult set of tasks known as the same-di...
Article
Full-text available
Deep Learning methods have become state-of-the-art for solving tasks such as Face Recognition (FR). Unfortunately, despite their success, it has been pointed out that these learning models are exposed to adversarial inputs – images to which an imperceptible amount of noise for humans is added to maliciously fool a neural network – thus limiting the...
Technical Report
Full-text available
The Artificial Intelligence for Media and Humanities laboratory (AIMH) has the mission to investigate and advance the state of the art in the Artificial Intelligence field, specifically addressing applications to digital media and digital humanities, and taking also into account issues related to scalability. This report summarize the 2020 activiti...
Preprint
Full-text available
Recent work has shown that biologically plausible Hebbian learning can be integrated with backpropagation learning (backprop), when training deep convolutional neural networks. In particular, it has been shown that Hebbian learning can be used for training the lower or the higher layers of a neural network. For instance, Hebbian learning is effecti...
Preprint
Previous work has shown that it is possible to train neuronal cultures on Multi-Electrode Arrays (MEAs), to recognize very simple patterns. However, this work was mainly focused to demonstrate that it is possible to induce plasticity in cultures, rather than performing a rigorous assessment of their pattern recognition performance. In this paper, w...
Preprint
Full-text available
Anomalies are ubiquitous in all scientific fields and can express an unexpected event due to incomplete knowledge about the data distribution or an unknown process that suddenly comes into play and distorts the observations. Due to such events' rarity, it is common to train deep learning models on "normal", i.e. non-anomalous, datasets only, thus l...
Preprint
Deep learned models are now largely adopted in different fields, and they generally provide superior performances with respect to classical signal-based approaches. Notwithstanding this, their actual reliability when working in an unprotected environment is far enough to be proven. In this work, we consider a novel deep neural network architecture,...
Article
Full-text available
Face Recognition is among the best examples of computer vision problems where the supremacy of deep learning techniques compared to standard ones is undeniable. Unfortunately, it has been shown that they are vulnerable to adversarial examples - input images to which a human imperceptible perturbation is added to lead a learning model to output a wr...
Chapter
Deep Learning models proved to be able to generate highly discriminative image descriptors, named deep features, suitable for similarity search tasks such as Person Re-Identification and Image Retrieval. Typically, these models are trained by employing high-resolution datasets, therefore reducing the reliability of the produced representations when...
Chapter
Efficient indexing and retrieval in generic metric spaces often translate into the search for approximate methods that can retrieve relevant samples to a query performing the least amount of distance computations. To this end, when indexing and fulfilling queries, distances are computed and stored only against a small set of reference points (also...
Conference Paper
Full-text available
Soccer analytics is attracting increasing interest in academia and industry, thanks to the availability of data that describe all the spatio-temporal events that occur in each match. These events (e.g., passes, shots, fouls) are collected by human operators manually, constituting a considerable cost for data providers in terms of time and economic...
Article
Full-text available
Pedestrian detection through Computer Vision is a building block for a multitude of applications. Recently, there has been an increasing interest in convolutional neural network-based architectures to execute such a task. One of these supervised networks' critical goals is to generalize the knowledge learned during the training phase to new scenari...
Preprint
Full-text available
Despite the evolution of deep-learning-based visual-textual processing systems, precise multi-modal matching remains a challenging task. In this work, we tackle the problem of accurate cross-media retrieval through image-sentence matching based on word-region alignments using supervision only at the global image-sentence level. In particular, we pr...
Preprint
Full-text available
Pedestrian detection through Computer Vision is a building block for a multitude of applications. Recently, there was an increasing interest in Convolutional Neural Network-based architectures for the execution of such a task. One of these supervised networks' critical goals is to generalize the knowledge learned during the training phase to new sc...