
Authentication and location control via RFID analysis

Khalid Agourare
LACL, Paris 12th university

61 avenue du General de Gaulle
94000 Creteil, France

khalid.agourare@univ-paris12.fr

Fabrice Mourlin
LACL, Paris 12th university

61 avenue du General de Gaulle
94000 Creteil, France

fabrice.mourlin@wanadoo.fr

Abstract

To develop and demonstrate accurate allocation and
placement on network, we implemented a flexible
location framework which is able to use RFID sensors
for authentication and positioning adequate software
environment. This application is particularly useful in an
evolving network where a workstation is not dedicated to
a specific use or user. Each user has own RFID badge
and each workstation also. When a new user wants to
access to network, first, he has to be recognized by the
front server. The server loads information about user
work context and books a free workstation for this user.
This work context is export to the workstation by the use
of mobile agent. The new user will have to connect on
the particular workstation and will have access to all his
data and application. Mobile agents are also controllers
and observe and check what the user does.

1. Introduction

RFID systems have been used quite extensively for
various types of applications which involve tracking [1],
identification [2], access management [3], etc. These
applications have to exchange with different RFID
hardware devices such as readers and tags, to get
information.

RFID provides an efficient way of automatically
identify various objects. This property of the RFID
devices has enabled it to be used in many applications
concerning identification and tracking. One of the most
widely used applications is the access control systems,
where RFID based plastic cards are used to identify and
authenticate the card-holder's entry to the facility. The
RFID systems are extensively used in the warehouses
and shops for the supply chain management [4, 5],
inventory management [6] and movement management
[1, 7]. This has led to huge increase in the efficiency of
the warehouse operations and keeping the optimum
inventory in the stores. Here we discuss some RFID
based applications.

The context of our work is the management of access
of computing network. This resource is precisely

controlled because it is limited, costly and its planning is
supervised by administrator. The basic concept is
numerical analysis project which uses resources
(processor, memory, files, etc.). Input data files are huge
and are shared between projects. So, a numeric project
corresponds to time periods and a user has right to work
on one or more projects. However a user can have access
only to several source files, input data and his actions are
to be monitored.

These main constraints lead to create an identification
process for user and material resource. This is why; we
decided to assign RFID car for each user and a RFID tag
for each workstation. But every resource cannot receive
a transponder and an antenna. Also, our control approach
has to be completed with a software controller. In this
paper, we present our management strategy of
computing resources through the use of RFID tags. We
use two kinds of RFID tags, passive for the user and
active for the material. We also present features of RFID
tags that are useful for the development of our
management application. Our experience about mobile
agent technology [8, 9] allows us to couple RFID
identification with mobile agent exportation to a
workstation, where the user is assigned.

The rest of this paper is structured as follows. In
Section II, we detail the requirements for an RFID
infrastructure and our programming choices. Section III
provides an overview of mobile agent technology and
outlines the constraints imposed by the RFID features. In
Section IV, we describe our RFID platform called
MARFIDE. We continue by presenting some sample
applications that were developed with MARFIDE in
Section V. In Section VI, we show how our
implementation addresses the application needs and
technology constraints, and we review limitations of our
implementation and present future work. Then, we
conclude the document.

2. RFID programming approach

RFID transmits the identity of an object as a unique
serial number. This identity is stored in the tag chips and
can be retrieved by the Readers. The components of
RFID are: tag, reader. Tag, also called transponder is a

small device which contains a microchip. The chip is
used to store the data. The tag can be programmed with
specific items of information, such as an ID or serial
number or a user data. The tag identifies itself by
transmitting signals to the reader. There are two types of
Tags namely: Active Tag, Passive Tag.

A reader consists of one or more antennas that emit
and receive radio waves. The micro chip circuit present
in the tags is powered by this signal. When the tags
enters into the radio wave field, it transmits its unique
information (unique serial number or user data) to the
reader by modulating the signal. The reader converts the
signal obtained from the tag as digital information and
passes to the applications.

The first role of RFID card is to identify user. The
success of this step leads to look up information into
database and then to export agent through the network.
We have already worked about mobile agent and we
used Java language to realize mobile code. Our previous
experience involves the selection of Java language for
this new development. Java System RFID Software is an
RFID infrastructure framework that integrates data and
RFID-enabled devices into application systems.

2.1. Java and RFID: an open approach
This framework facilitated asset tracking, enforce

policy compliance, detect tampering, and prevent
anomaly It allows developer to gathers and filters
information from RFID readers; exchanges this
information as XML messages; stores the information to
relational databases; and manages RFID devices, events,
and components.

Sun Java System RFID framework consists of four
modules. First, a RFID event manager is an event
processing framework that manages data coming from
all readers in the network. Secondly, a RFID
configuration manager is a GUI application which
allows developers to specify the set of devices connected
to the RFID Event Manager. Then a RFID management
console is a Web-based application used to modify
various read and write attributes of the RFID Event
Manager. Finally, a RFID information server is a J2EE
application that facilitates capturing and querying EPC-
related data and provides interfaces for back-end
systems.

The RFID Event Manager framework is a Jini-based
event processing framework that facilitates the capture,
filtering, and storage of EPC events generated by RFID
devices. The Jini services of the RFID Event Manager
framework are managed through Rio server, an open
source container of a component model called Jini
Service Beans (J.S.Bs).

The RFID Event Manager consists of a management
application called "Control Station" and one or more
workload handlers called "Execution Agents." Execution
Agents register with the Control Station application,
which uses them to gather and filter RFID information.

Each Execution Agent provides one or more specialized
Web services called "reader services." A reader service
communicates with the RFID device, processes the
information according to a configuration object, and
communicates an event client.

Figure 1. Event manager relationships

2.2. Configuration
Configuration Object components generate events to

communicate with each other. Every component is an
event producer and every component can register itself
with other components to consume their events.

The RFID Information Server is a J2EE application
that captures and queries EPC-related, low-level data and
translates it into higher-level business data. RFID
Information Server is typically deployed on a different
machine than the RFID Event Manager. The RFID
Information Server is built on Jini 2.1 (Java intelligent
network Interface), Project Rio 3.1, and the Sun Java
System Application Server 8.1. The impact of Jini
framework is essential because it is the basis of our
approach of mobile agent.

3. Mobile agent technology

Mobile agents are defined as active objects (or
clusters of objects) that have behavior, state and location.
Mobile agents are autonomous because once they are
invoked they will autonomously decide which locations
they will visit (their roadmap) and what instructions they
will perform (their task). This behavior is either defined
implicitly through the agent code (see e.g. [8]) or
alternatively specified by an itinerary at runtime
modifiable (see e.g. [9]). Mobile agents are mobile since
they are able to migrate between locations that basically
provide the environment for the agents' execution and

represent an abstraction from the underlying network
and operating system.

With the properties printed out above it has been
often argued that mobile agents provide certain
advantages compared to traditional approaches as the
reduction of communication costs, better support of
asynchronous interactions, or enhanced flexibility in the
process of software distribution.

The employment of mobile agents has been
particularly promising in application domains like
information retrieval in widely distributed heterogeneous
open environments (e.g. the World Wide Web), network
management, electronic commerce, or mobile
computing.

Several implementations already exist but few of
them hide technical features from their environment.
Data exchange is also a strong constraint in agent
community; data type has to be preserved from the
sender to the receivers. These main constraints helped us
to select a mobile agent framework. Because there is no
framework which respects these features, we developed
our own framework which was presented at the ESM
2005 conference [10].

3.1. Mobile agent framework with Jini
Our mobile agent framework consists of two main

components. The first component is mobile agent
(Figure 2 (A)); that is, entities with some task to do. A
real application contains several kinds of mobile agent.
Each kind has its own task and each agent has its own
road map. The task can be depending on the location
where the agent is.

The second component is the mobile agent host(s),
the service that provides the mobile agents' execution
platform. In a distributed environment, we can have one-
to-many agent hosts as well as one-to-many agents. To
be an active agent platform, a given node in the system
must have at least one active agent host. Figure 1
describes the framework components.

Both agent and agent host have to publish their
availability in public registry (Figure 2). This publication
contains a record of data, each field of this record qualify
a facet of the service: signature, scope, exception case,
permission control, etc.

To sum up, each node of the network of workstations
possesses at least one agent host and a public registry at
the beginning of an execution. The agent host has to
publish into the local public registry its ability to receive
agents. This service filters specific kinds of mobile
agent. It is also possible to overload the reception
service. Each of the services describes a precise process
of reception (control, propagation, or eventually
measure).

Our framework is based on Java language and Jini
technology [10]. The Jini networking system is a
distributed infrastructure built around the Java
programming language and environment. Jini is the

name for a distributed computing environment, that can
offer ``network plug and play''. A device or software
service like an agent can be connected to a network and
announce its presence, and clients that wish to use such a
service can then locate it and call it to perform tasks
[11]. Jini can be used for mobile computing tasks where
a service may only be connected to a network for a short
time, but it can more generally be used in any network
where there is some degree of change.

Figure 2. agent platform architecture
The basic communication model is based on the

semantic model of the Java RMI (Remote Method
Invocation) system, in which objects in one Java virtual
machine communicate with objects in another by
receiving a proxy object that implements the same
interface as the remote object. This communication
model is the core feature for moving agents. The proxy
object deals with all communication details between the
two processes. The proxy object can introduce new code
into the process to which it is moved. This is possible
because Java byte codes are portable, and it is safe
because of the Java environment's built-in verification
and security.

To this underlying communication model the Jini
system adds some basic infrastructure and parts of a
programming model. The infrastructure provides a
mechanism by which clients and services can join into
the Jini network while the programming constructs
encapsulate mechanisms that allow reliable distributed
systems to be built. Java provides the Jini system with a
mechanism to move mobile objects, including their code,
safely and efficiently from a service to a client of that
service. The Java type system forms the basis for
identifying services, and its polymorphic nature lets it
treat requests for service as requests for something that
implements at least a certain type, although the service
might offer more. However, the requirement for the Java
language and platform is only at the network level;
mobile agent programmers can use our Mobile Agent

Framework to implement a mobile agent system that can
live in the Jini environment.

3.2. RFID impact
The first role of mobile agent happens when a user

wants to have a connection to the network. When the
user RFID tag is read by the server, his identifier is
checked regarding a database. Next, his working features
are extracted for the configuration of a mobile agent.
Then a workstation is assigned for the user connection
and because there is an agent host on that workstation,
the mobile agent is received. On its arrival, it configures
the workstation for future user activities and then is
waiting for the connection of the user.

This user has to type his information connection
(login, password, key code). These data are checked by
the mobile agent and data are exchanged with the RFID
tag of the workstation. This marking corresponds to the
start point of a user working period. When the user will
stop his connection, the spent time for the user activities
will be computed with reference to the start point [12].

We use a mobile agent community for the control of
user activities. Each class of agent has its own task, for
instance, the initial exportation of working environment,
the control of connection data, the cleaning of the
workstation at the end of connection, etc. Our framework
is open and new mobile agent can be developed and used
by any agent host. For the communication with RFID
devices, we developed new classes of mobile agent
depending on the communication protocol of the
devices. This work is a part of the framework
MARFIDE.

4. MARFIDE Platform

MARFIDE stands for Mobile Agent for RFID
Exchange. This work is an extension of a project called
JIMA (JIni mobile Agent) which we developed for the
effective software management on a network. A mobile
agent community realizes the observation of all the
activities of used software. A new set of agents is
deployed when new software installed over the network.
These agents give us information about the load, the use,
as wall about what it is not used [11]. MARFIDE
completes this approach with the tracking of users. Now,
we cover not only the software use but also the user
activities and their dependencies. First we defined
deployment architecture and the key constraints led the
software architecture of our control software.

4.1. Deployment architecture
We consider (figure 3) an example with three

workstations and a server which is able to scan a user
card. The server contains mobile agent server and a
public registry where all the available agents are
declared. Each user card has a passive tag which uses the
radio frequency from the reader of the reader to transmit

its signal. The passive tag has data permanently burned
into the tag when it is made, and each user has own card.
It takes part into the first authentication step [13].

Figure 3. material architecture.

On a workstation, an agent host is running with a
local public registry. The remote features of the agent
host are declared into this registry (like figure 2). It has
also static agent to exchange data with the local RFID
tag of the workstation. This is an active tag which has
on-board battery for power to transmit their data signal
over a greater distance and power random access
memory (RAM) giving them the ability to store up to
32,000 bytes of data. Two kinds of data exchange are
useful: first between the passive tag of the user card and
the reader of the server, secondly between the active tag
of the workstation and a local static agent.

Now we explain how RFID gives workstations the
capability to track not only what but also where an item
or person is.

4.2. Handling Application-level RFID events
Sun Java System RFID offers an abstraction of

Application-level Events (called ALE) defined by the
EPCglobal specification in the specific interface, called
com.sun.autoid.ale.AleAPI. Classes implementing this
interface embody support for handling Application-level
Events. Sun provides a default implementation of the
AleAPI interface in the package
com.sun.autoid.ale.client called, ALEClient class. Our
application needs to be programmed to handle the XML
messages that are received containing the requested
information. Also, this client class is used to receive and
transform an XML stream.

The ALEClient class constantly searches for all
readers on the system and maintains an up-to-date list of
physical and logical names. The code just below,
illustrates how to use the ALEClient class to support the
ALE specification. This code connects to the ALE
service specified by its url parameter: This class is the
core use of the reader of the server (figure 3).

ALEClient aleClient = new
ALEClient("http://server:80/rfidWS");

Another important Java class is the Java ReaderClient
APIs to control devices, program RFID tags, read and
write user memory and tag identification on RFID
transponders (tags) using the Java library bundled with
the RFID Software 3.0. Our application communicates
directly with the RFID Event Manager by using Java
RMI (Java Remote Method Invocation) without the need
to convert between protocols and data representation.

We chose to use ALE to obtain tag information, and
then use the device access web services to get user data
and program tags. We wanted to mix and match web
service and Java APIs. For example, we use the Java
ReaderClient API to communicate with RFID devices in
our local network and use the ALE Java library or the
device access web services to communicate with an
RFID Event Manager in a remote network across the
world.

Figure 4. Configuration during connection
Once, the user is in front of the chosen workstation,

he can enter his information and work about his project.
User actions are now under control of the mobile agent.
This one comes from the server with the features of user
context. A set of permissions is built per project and a

member of the team has permissions which give rights to
do activities on that project.

Because permissions can be added during users’
activities, the set of user’s permissions is checked
constantly. This is realized by the use of web services.
So, on the server, there are a web server and a set of web
services. All of them are developed under JAX-RPC
(Java API for XML-based RPC).

The Sun Java RFID Software implements an ALE
Web service using JAX-RPC. This service acts as an
intermediary to a Jini RMI service contained within the
RFID Event Manager. Requests and messages sent to
this Web service are referred to as "report requests" and
"report messages" respectively, and are implemented as
Plain old Java objects (POJOs). The ALE Web service
supports three basic modes of interaction with clients:
subscription, polling predefined ECSpecs, and polling a
new ECSpec. This allows asynchronous data exchange.
We use JMS (Java Message Service) API for the
definition of each mode. The subscription mode is used
for the administration of our application. This means to
build a map of all activities on the network.

4.3. Administration RFID system
Monitoring tasks are essential for a precise

management. The following monitoring tasks on a
regularly scheduled basis will assist administrators in
keeping MARFIDE server applications and
infrastructure operationally ready

The daily monitoring tasks are: the review of all open
alerts, the control that the server computer is
communicating with all the workstation, the use of the
administration console to investigate orchestration, port,
and message failures. It provides access to the current
real-time state of the system, accessing data in the
message box database. It is possible to observe all
service instances such as orchestrations, ports, and
messaging, along with their associated messages. A look
into the message box database allows viewing the
current data and the real-time state of the system.

Weekly Monitoring Tasks are the review of the event
logs. The reason for this task is to prevent issues, such as
service interruption. However, some of these errors can
indicate a bigger issue (for example, too many
workstations or an excessive load server, performance
issues on the SQL database, etc).

Others tasks can be done as-needed such that the
modification of the permission rules to customize a
project by replacing a member or the declaration of a
new secure policy. Other modifications are about the
material architecture (new workstation, new service, new
project, etc.). Each task is defined by a set of classes and
MARFIDE is open and a new developer can define new
tasks through a new development. This is a way to
interface an external tool such that performance tool or
simulation tool for a heavy load on a server, network or

object to test its strength or to analyze overall
performance under different load types

5. MARFIDE applications

Our first application with MARFIDE framework is
the tracking of user activities. Other domain can be
concerned by this kind of control such that document
access. While the document is moving around there was
often no way the requester, could easily know where it
was, who was (or was supposed to be) working on it at
any given time, or when it might be completed.

5.1. User activity control
The basis for wearable computing is the detection of

the user’s context. With the appropriate RFID sensors
and algorithms, context-based information delivery
becomes feasible: the user receives adequate information
automatically when he needs it, without having to
explicitly ask for it. Context-based information delivery
can improve productivity in some work environments,
for instance for test sequences by loading particular input
data. Next figure highlights the states of the working
user context. A local access controller checks user
permissions for all user commands.

Figure 5. user workspace statechart

Permission refers to an action that the application is
allowed to perform. Each permission consists of a type,
that indicates the resource type this permission refers to,
a name that specify the resource this permission refers
to, and the action that can be performed on this resource.
As an example, permission could be:
(marfide.security.ProjectPermission, 129.175.*.*,
project1). This permission allows the Java application to

set up a project connection with the remote host
129.175.*.*.

Permission depends on the project, the user and also
on a precise location. When permission is missing, an
exception is raised and anomaly is traced into a local log
file. Next a mobile agent creates an alert and propagates
it to the server. This messenger is useful if the user is
connected on other workstations, this can involve the
closing of every connection and others alerts.

Our access controller is history based because it does
not simply allow the execution of an action by exploiting
authorization rules that take into account only static
factors, but it monitors the behavior of the project user,
i.e. the sequence of actions performed by the project.
Hence, to decide whether an action can be executed, the
whole trace of execution of the application is evaluated.
In this way, some dependencies among the actions
performed by the user can be imposed by the policy.

Team members can understand through local log
files, the work they are to perform and how that work fits
into the road map of the project. This information helps
them make good decisions in their day-to-day work.
Local log files are collected at the end of the work
session. The whole content is moved from the
workstation to the server where it is parsed and saved. Its
format is checked by the use of an XML schema which
allows us to transform easily the structure to another one.
This is essential because a same project can be used by
another user on another workstation and a first activity
can have consequences onto another one. The first
repository is placed on the server. This means, project
lifecycle is managed only on a specific computer.

5.2. Project activity control
Team members get more done if they can easily find

the information that they need because it was clearly
outlined from the start. Good communication also
prevents duplication of effort, which hurts project
schedules. So, each new member is declared on the
server and user role in the project corresponds to
permissions. So resources, source files are available
under control of this user role.

When team members have the information they need,
they make fewer mistakes. When problems do arise,
informed team members can quickly identify them and
collaborate to fix them. This kind of alert is created on
the workstation where the user works. A mobile agent
moves with this alert to the server where the alert is
treated. This means change of a project configuration
(state MemberManagement on figure 6), change of
member configuration such that suppression of
permissions, etc.

By studying information about every project that a
company executes, project teams can copy the best
practices while avoiding the mistakes of previous
projects. This activity is done by analysis of log files
which belong to a project. A rule engine applies practice

rule to detect global anomalies. Then, project managers
can limit the impact of complications by identifying both
potential risks and what can be done to manage them.

Figure 6. user workspace statechart

A focus on collaboration and communication make

user a more effective project member and help all team
members and stay focused on results. We work on

5.3. Workflow approach based on mobile service
The operations on software project, we described in

previous sections can be compared to document
workflow except that these operations have impact on to
the resources of the project. For instance, the input data
are key resources for numerical application. Because
these data are only available during a short period, we
developed TimerPermission class to control the accesses.

Mobile agent is a key feature in our framework. A
mobile agent is a composition of computer software and
data which is able to migrate from one workstation to
another autonomously and continue its execution on the
destination computer. More specifically, our mobile
agents are processes that can transport their state from
one environment to another, with its data intact (for
instance an alert or a project command), and be capable
of performing appropriately in the new environment. We
can compare mobile agent concern with web service. In
the first case, the instructions or code move over the
network. In web service case, these are data which are
encoded into XML format and then move over the
network.

The underlying mechanisms are quite similar.
Movement is evolved from RPC methods. Just as a user
directs an Internet browser to "visit" a website (the
browser merely downloads a copy of the site or one
version of it in the case of dynamic web sites). Mobile
agents react autonomously to changes. Multiple mobile

agents have the unique ability of distributing themselves
among the hosts in the network to maintain the optimal
configuration for solving a particular problem such that a
new workstation, a change in the interconnection. If a
workstation is being shut down, all agents executing on
that machine are warned and given time to dispatch and
continue their operation on another workstation in the
network

6. Main results

The project monitoring means to keep a careful check
on project activities over a period of time. All collected
data are used by a project manager to provide boards. To
work to its full potential, any kind of project needs to set
out rules and constraints. Then our monitoring system
should be worked out to keep a check on all the various
activities, including project management, resource
availability. This helps project staff to know how things
are going, as well as giving early warning of possible
problems and difficulties. We build representation from
XML data and convert them to SVG format (Scalable
Vector Graphic).

6.1. User activities
Our project manager client allows building graphical

views about each project. These data comes directly
from concrete activities of team member. Several kinds
of views can be built for user per project during a time
period (figure 7). More details can be represented if
project operations are filtered; it means update,
checkout, etc. Then, complex graphics is obtained and
the analysis can be possible by a project manager.

Figure 7. project board per user
User activity metric can be computed depending of

operation sequences length or operation frequency, its
goal is to improve the team activity and to create new
management rules.

6.2. Project metric
Measurement is an essential element of project

management. Project activity metric can be computed,
its goal is to improve the team activity. They should be
visible at least to the entire team, and perhaps beyond
[15].

A team is more than a collection of individuals.
Efficient teams create synergy, which enables them to
accomplish much more than the sum of individual
efforts. But for inefficient teams, even the smallest
problem can have dramatic negative effects. Therefore, it
is important to continually monitor the team

Primary measurements are about time, and size, for
instance how much time is spent on different project
operations or on specific commitment. A more complex
question could be: are our process and application of
software development techniques effective? To build an
answer to these questions, data transformation has to be
built and graphical observer also.

All the views are created in a SVG format because we
want to have available observation from the server on
client workstation. This data format allows team member
to download view easily at any time during the lifecycle
of the project.

7. Conclusion

In novel RFID application domains, such as project
management, there are many RFID readers distributed
across the network. The data the readers capture need to
be disseminated to a variety of workstation. This
introduces the need for an RFID infrastructure that hides
proprietary reader device interfaces, provides
configuration and system management of the reader
devices, and filters and aggregates the captured RFID
data.

In this paper, we discuss real application requirements
in detail. We also contend that the characteristics of
passive RFID technology are useful for the user but
active RFID technology is better for the material. The
paper shows that the current MARFIDE implementation,
which is based on a set of specifications developed by
the EPCglobal community, addresses the majority of the
application requirements. Our work also discusses
limitations of the existing implementation. We highlight
the role of mobile agent for the data propagation and
then mobility is a key feature to adapt a task execution in
an environment which is not stable. Finally the data
collection allows building enough data on the server
which is the source of a set of transformations. Each
transformation provides a graphical view or bulletin
board for a project manager.

References

[1] A. Brewer, N. Sloan, and T.L. Landers. Intelligent
Tracking in Manufacturing. Journal of Intelligent
Manufacturing, 10:245�250, March 1999.

[2] H. Vogt. Multiple object identi�cation with passive
RFID tags. IEEE International Conference on Systems,
Man and Cybernetics, October 2002.

[3] M.R. Rieback, G.N. Gaydadjiev, B. Crispo, R.F.H.
Hofman, and A.S. Tanenbaum. A Platform for RFID
Security and Privacy Administration. Proceedings of the
20th conference on Large Installation System
Administration Conference-Volume 20, pages 89-102,
December 2006.

[4] Z. Asif and M. Mandviwalla. Integrating the Supply
Chain with RFID: A Technical and Business Analysis.
Communications of the Association for Information
Systems, Volume 15:393-427, 2005.

[5] M. Karkkainen. Increasing Effciency in the Supply
Chain for Short Shelf Life Goods using RFID Tagging.
International Journal of Retail & Distribution
Management, pages 529-536, October 2003.

[6] J.H. Bowers and T.J. Clare. Inventory system using
articles with RFID tags, 1999.

[7] Federal Trade Commision. Radio Frequency
Identification: Applications and Implications for
Consumers. Technical report, Federal Trade Commision,
March 2005.

[8] R. S. Gray. "AgentTcl: A Transportable Agent System",
Proc. CIKM'95 Workshop on Intelligent Information
Agents, 1995.

[9] Fowler, Martin, Refactoring: Improving the Design of
Existing Code. Addison Wesley, 2000.

[10] Maamoun Bernichi and Fabrice Mourlin, "A New
Behavioural Pattern for Mobile Code ",In ESM 2005,
University of Porto, Porto, Portugal, 24-26 October 2005

[11] Maamoun Bernichi et Fabrice Mourlin, "Java mobile
agents for monitoring mobile activities ", In Eurocon'05
conference, Serbia & Montenegro, Belgrade, November
22-24, 2005

[12] B. Fabian, O. G¨unther, S. Spiekermann, Security
analysis of the object name service for RFID, in:
Security, Privacy and Trust in Pervasive and Ubiquitous
Computing, 2005.

[13] Y Hu, S Sundara, T Chorma, and J Srinivasan.
Supporting RFID-based item tracking applications in
oracle DBMS using a bitmap datatype. In Proceedings of
the 31st International Conference on Very Large Data
Bases, 2005.

[14] H Gonzalez, J Han, X Li, and D Klabjan. Warehousing
and analyzing massive RFID data sets. In The 22nd
International Conference on Data Engineering, 2006.

[15} William A. Florac and Anita D. Carleton, Measuring the
Software Process. Addison-Wesley, 1999, ISBN 0-201-
60444-2.

