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1 Introduction

The finite sample properties of tests implied by Generalized Method of Moments (GMM, Hansen

(1982)) based models have been the object of a large literature in the last fifteen years. Several

papers report important differences between the finite sample distribution of several corresponding

GMM statistics and their (first order) asymptotic chi-squared distribution (cf. for instance the

papers by Altonji and Segal (1996), Burnside and Eichenbaum (1996) and Hansen, Heaton and

Yaron (1996) in the special issue of the Journal of Business and Economic Statistics). Attempts

to improve the finite sample properties of these tests have followed primarily two directions.

A first approach is based on a refinement of the asymptotic distribution of a GMM statistic. In

this case, finite sample accuracy is improved using bootstrap techniques applied to some asymp-

totically (first order) chi-squared distributed pivotal statistics (cf. for instance Brown and Newey

(1998), Hall and Horowitz (1996), Hall and Presnell (1999) and Hansen (1999)).

A second direction adopts test statistics that are derived either from the estimated objective

function or the studentized parameter estimates in some Generalized Empirical Likelihood (GEL)

estimation of moment condition models. These estimators minimize an information-theoretic con-

cept of closeness between the empirical distribution and an estimated least favorable distribution

(cf. Di Ciccio and Romano (1990)) that matches exactly the given moment conditions. Members

of this class are the Empirical Likelihood estimator (EL, Qin and Lawless (1994), Imbens (1997),

Imbens, Spady and Johnson (ISJ, 1998)), the Exponential Tilting estimator (ET, Kitamura and

Stutzer (1997), ISJ (1998), Imbens and Spady (2002)), the Euclidean Likelihood Estimator (EU,

see for instance Owen (2001) and Back and Brown (1993)), and the continuously updated GMM

estimator of Hansen, Heaton and Yaron (1996). To first order, standard GMM and GEL statistics

are asymptotically equivalent. To higher order, GEL estimators remove the bias of GMM that is

associated with the Jacobian term appearing in the optimal linear combination of instruments.

In particular, EL estimators also eliminate the bias due to estimation of the weighting matrix
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in an higher order bias approximation based on stochastic Taylor expansions (Newey and Smith

(2001)). For the exactly identified case some higher order direct Edgeworth expansions have been

used by Bravo (1999) to analyze the higher oder properties of empirical likelihood-ratio tests by

means of Mykland’s (1995) dual likelihood theory. In that paper empirical likelihood-ratio tests

are shown to be accurate up to an absolute order o (1/n), this accuracy being improvable to an

order O
¡
1/n2

¢
by means of a scale correction, as in standard parametric theory1 .

This paper bridges the gap between these two approaches to inference in moment conditions

models by making use of saddlepoint techniques applied to overidentified moment conditions

models. On the one side, saddlepoint techniques improve on Edgeworth expansions and related

techniques by providing very accurate approximations to the distribution of a statistic even in

small samples and in the tails of the distribution. On the other hand, these techniques motivate

and justify a new class of accurate dual likelihood statistics for testing parametric hypotheses. For

the new statistics proposed in this paper we apply saddlepoint techniques to derive higher order

asymptotics that show formally their higher finite sample accuracy.

The basic idea behind saddlepoint approximations goes back to Daniels (1954) seminal paper.

These methods provide approximations of the density of general M-estimators having relative

error of order O(1/n) (see for example Field and Hampel (1982), Field (1982), Tingley and Field

(1990), Field and Ronchetti (1990), Daniels and Young (1991), Jing and Robinson (1994), Fan

and Field (1995), Davison, Hinkley and Worton (1995), Gatto and Ronchetti (1996), Almudevar,

Field and Robinson (2001)). Notice that when using saddlepoint techniques, the accuracy of the

corresponding approximations is measured by relative errors, which are a more relevant and more

stringent measure of accuracy if we are interested in the tail of the distribution of a statistic.

To our knowledge, such relative error approximation results can be obtained only by means of

saddlepoint methods. By contrast, techniques based on a stochastic Taylor or a direct Edgeworth

1 General extensions of these results to the overidentified situation or to situations with nuisance parameters
are difficult because for these cases the higher order asymptotics of the empirical dual likelihood ratio statistics
changes dramatically as recently shown by Lazar and Mykland (1999).
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expansion (cf. for instance Bravo (1999), Hansen (1999) and Newey and Smith (2001)) can provide

approximations with absolute errors only.

The specific contributions of the paper to the literature are the following. First, we derive

a saddlepoint approximation to the density of a GMM estimator. This takes into account the

second order effects due to the estimation of (i) the Jacobian term appearing in the optimal lin-

ear combination of instruments and (ii) the weighting matrix of a GMM estimator, leading to

an approximation with relative error of order O (1/n). This result provides powerful analytical

approximations to the finite sample density of a GMM estimator. Second, we use the saddlepoint

approximation for the density of a GMM estimator to define a new dual likelihood ratio test statis-

tic in overidentified moment condition models which is asymptotically chi-squared distributed2

up to a relative error of order O(1/n). As a consequence, accurate new statistics for testing para-

metric constraints in moment conditions models are obtained. To our knowledge, higher order

asymptotic results based on relative errors are not available so far within overidentified moment

conditions models. Since the new statistics require the moment generating function of the given

orthogonality function, we introduce an empirical likelihood version of these tests which can be

applied in the fully nonparametric setting and which only requires a preliminary GMM parameter

estimation to be computed. Therefore, it can be also easily incorporated into available GMM

estimation packages. Finally, we provide some numerical Monte Carlo evidence on the accuracy

of the new statistics. In these experiments we find that empirical dual likelihood ratio tests pro-

vide a higher accuracy than standard GMM test statistics and some recent information theoretic

alternatives for a broad class of models.

The approach pursued in this paper is based on an interpretation of exponentially tilted empir-

ical likelihoods as dual likelihoods in the given tilting parameter. Testing parametric hypotheses in

moment condition models can be interpreted as a dual (exponentially tilted) likelihood ratio test of

2 The higher order asymptotic pivotality of the new statistic is particularly desiderable to obtain improved finite
sample critical values when using nonparametric bootstrap.
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the hypothesis of a zero tilting parameter (similarly to the dual empirical likelihood characteriza-

tion proposed by Mykland (1995)). Hence, we define a class of dual (exponentially tilted) empirical

likelihood ratio tests which are the nonparametric analogous to the standard log likelihood ratio

test in the parametric case. Precisely, we show that the exponentially tilted log dual likelihood is

in fact the exponent in the saddlepoint approximation of the density function of a (fully iterated)

GMM estimator. The first step to achieve the high accuracy of our statistics consists therefore

in modifying the results on saddlepoint density approximations for standard M-estimators to the

case of an overidentified moment conditions model. This provides saddlepoint approximations to

the finite sample density of a GMM estimator which are accurate up to a relative error of order

O(1/n). Extending results in Robinson, Ronchetti and Young (2003) to take overidentifying mo-

ment conditions into account, we are then in a position to derive a saddlepoint approximation

for the distribution of our dual likelihood ratio test statistics. These approximations mantain the

accuracy up to a relative error of order O(1/n) and are shown to yield an asymptotic chi-squared

distribution up to the same order. From these results, an empirical likelihood version of the new

statistics which can be expected to maintain high accuracy also in a general nonparametric GMM

setting is derived in a natural way.

The remainder of the paper is organized as follows. Section 2 introduces the standard (first

order) GMM setting. Section 3 derives saddlepoint approximations for the finite sample density of

a general GMM estimator. In Section 4, dual likelihood ratio test statistics are proposed. These

statistics are shown to be asymptotically chi-squared distributed to higher order. An empirical

likelihood version of our dual likelihood ratio test is then proposed. Section 5 analyzes the finite

sample accuracy of the new statistics by Monte Carlo simulation, while Section 6 concludes and

summarizes.
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2 First Order GMM Setting

Let (Xi)
n
i=1 be a sequence of i.i.d. random variables with values in RN and distribution function

F . We are interested in estimating a parameter ϑ0 ∈ Θ ⊂ Rk defined as the unique solution of a

set of orthogonality conditions

E [ψ (X1;ϑ)] = 0 , (1)

given an orthogonality function ψ : RN × Θ → RH , and an open set Θ such that Θ is compact.

We focus on the overidentified case H > k.

GMM estimators
³bϑn´

n∈N
for ϑ0 (cf. Hansen (1982)) are defined as the solutions of the

sequence of minimization problems

bϑn = arg inf
ϑ

"
1

n

nX
i=1

ψ (Xi;ϑ)

#0
W

"
1

n

nX
i=1

ψ (Xi;ϑ)

#
, n ∈ N , (2)

where W is a positive definite deterministic matrix. An efficient GMM estimator is obtained

when setting W = V −10 and in this case under standard conditions
³bϑn´

n∈N
is consistent and

asymptotically first order normally distributed

√
n
³bϑn − ϑ0

´
d→

n→∞ N
³
0,
¡
Γ00V

−1
0 Γ0

¢−1´
, (3)

where

Γ0 = E [∇ϑ0ψ (X;ϑ0)] , V0 = E
h
ψ (X;ϑ0)ψ (X;ϑ0)

0i
. (4)

A feasible version of an efficient GMM estimator is based on a two step procedure where in the

first step a consistent GMM estimator ϑn is obtained based on an arbitrary weighting matrix

such as for instance W = idRH×RH . ϑn is used to consistently estimate V
−1
0 through an optimal

weighting sequence (Wn)n∈N defined by

Wn =

"
1

n

nX
i=1

ψ
¡
Xi;ϑn

¢
ψ
¡
Xi;ϑn

¢0#−1
. (5)

In Section 3 we will develop a saddlepoint approximation for the finite sample density of the fully

6



iterated version of a two step GMM estimator bϑn (cf. Hansen, Heaton and Yaron (1996))3 .
For first order asymptotic testing purposes it is important that the normalized objective func-

tion of an efficient GMM estimator is first order asymptotically chi-squared distributed when

evaluated at the parameter estimate bϑn and at the correct parameter value ϑ0:
bξn ³bϑn´ := n ·

"
1

n

nX
i=1

ψ
³
Xi; bϑn´#

0

Wn

"
1

n

nX
i=1

ψ
³
Xi; bϑn´# d→

n→∞ X
2
H−k , (6)

and

bξn (ϑ0) := n ·
"
1

n

nX
i=1

ψ (Xi;ϑ0)

#0
Wn

"
1

n

nX
i=1

ψ (Xi;ϑ0)

#
d→

n→∞ X
2
H . (7)

In this paper we consider tests of parametric hypotheses of the form

H0 : g (ϑ) = 0 , (8)

for some smooth function g : Rk → Rq, q ≤ k. Several Likelihood-type statistics are available to

test (8) in a GMM setting. For instance, it is well known that a likelihood ratio-type GMM test

can be based on the statistic

bξLRn = bξn ³bϑcn´− bξn ³bϑn´ ,

where bϑcn is a constrained GMM estimator of ϑ0 under the null hypothesis (8). Under H0 the

statistic bξLRn is asymptotically first order chi-squared distributed:

bξLRn d→
n→∞ X

2
q . (9)

Thus, an asymptotic test of the parametric hypothesis (8) can be based on the empirical quantiles

of a X 2
q . Similar results hold for a Wald-type or a Lagrange multiplier-type GMM statistics for

testing (8) (see also Newey and West (1987) and Gourieroux and Monfort (1989)).

Asymptotic approximations of the form (3), (6), (7), (9) are implied by the central limit

theorem. By the Berry-Esseen Theorem the difference between the exact distribution Gn (say) of

3 Similar saddlepoint approximations can be obtained with the same methodology also for a two step GMM
estimator.
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the standardized statistic

W
− 1
2

n

"
1√
n

nX
i=1

ψ
³
Xi; bϑn´# ,

and its asymptotic standard normal limit Φ is uniformly bounded by the inequality

sup
x∈RN

|Gn (x)− Φ (x)| ≤ C√
n

, (10)

where C is some positive constant that depends on bϑn and F but not on n. Therefore, the

asymptotic approximation produces errors of order O (1/
√
n) that are absolute in nature.

In the next sections we construct GMM test statistics for testing (8) whose finite sample

distribution can be approximated by a chi-squared distribution up to a relative error of order

O (1/n).

3 Second Order GMM Estimation Setting

Powerful approximations of the finite sample density of a general M-estimator have been derived

by Field (1982) using saddlepoint techniques, extending Daniels (1954) original idea. The ba-

sic idea behind these approximations is to recenter the finite sample density of an M-estimator

at a given approximating point by means of a so-called conjugate density. In a second step a

multivariate Edgeworth expansion in used locally to obtain an approximation of the underlying

density at this point. By contrast with direct global Edgeworth expansions this approach yields

accurate approximations with relative errors of order O (1/n) over a broad support of the finite

sample density of an M-estimator. In this section we use these techniques to derive saddlepoint

approximations for the finite sample density of a general GMM estimator. Based on these ap-

proximations, we define in the next section a test statistic for testing (8) which is asymptotically

chi-squared distributed up to relative errors of order O (1/n).

3.1 GMM Estimators as Extended M-Estimators

We embed efficient, fully iterated, GMM estimators in the M-estimation setting (cf. Huber (1981)

for an overview), by means of an appropriate extended score function Ψ. The system of GMM
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estimating equations for ϑ0, Γ0, V0, is given by

1

n

nX
i=1

bΓ0n bV −1n ψ
³
Xi, bϑn´ = 0 ,

1

n

nX
i=1

h
Oϑ0ψ

³
Xi, bϑn´− bΓni = 0 ,

1

n

nX
i=1

h
ψ
³
Xi, bϑn´ψ0 ³Xi, bϑn´− bVni = 0 ,

see also Imbens (1997). Thus, we can interpret an efficient, fully iterated, GMM estimator of the

parameters ϑ0, Γ0, W0, as an M-estimator defined by the estimating equations

E
£
Γ0V −1ψ (X,ϑ)

¤
= 0 , (11)

E [Oϑ0ψ (X,ϑ)− Γ] = 0 , (12)

E
£
ψ (X,ϑ)ψ0 (X,ϑ)− V

¤
= 0 . (13)

We will obtain a saddlepoint approximation for the marginal density of bϑn in two steps:
(i) we first consider the joint estimation of ϑ0, Γ0 and V0, by means of bϑn, bΓn and bVn, respec-

tively, and define an appropriate exponentially tilted conjugate density;

(ii) we then marginalize bΓn, bVn, and obtain a saddlepoint approximation for the finite sample
density of bϑn.

Let us introduce some notation, in order to take into account separately the different blocks of

parameters and estimating equations in (11)-(13).

Notation: We define an extended parameter vector θ =
¡
θ01, θ

0
2, θ

0
3

¢0
by

θ1 = ϑ , θ2 = vec (Γ) , θ3 = vech (V ) ,
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and introduce an extended score function Ψ = (Ψ01,Ψ
0
2,Ψ

0
3)
0
: ΘΨ := Θ × R k(3k+1)+H(H−k)

2 ×

R
H(H+1)

2 → R
3k(k+1)+H(2H−(k−1))

2 by

Ψ1 (X, θ) = Γ0V −1ψ (X, θ1) , (14)

Ψ2 (X, θ) = vec [Oϑ0ψ (X, θ1)]− θ2 (15)

Ψ3 (X, θ) = vech
£
ψ (X, θ1)ψ

0 (X, θ1)
¤− θ3 . (16)

Finally, let bθn = ³bθ01n,bθ02n,bθ03n´0 be the M-estimator associated with Ψ, that is the solution to the
system of estimating equations

1

n

nX
i=1

Ψ
³
Xi,bθn´ = 0 . (17)

By construction, bθ1n = bϑn, the (fully iterated) efficient GMM estimator of ϑ0 associated to the

weighting matrix V −10 .

To derive a saddlepoint approximation for the finite sample density of bθ1n, we start from a tilting

procedure that recenters the density of bθn at the point where it has to be approximated. This is
obtained by embedding the joint density of X1, ..,Xn, into a particular exponential family, which

is defined through a tilting parameter that satisfies the given centering requirement.

3.2 Conjugate Densities

We make use of conjugate densities to tilt the finite sample density of the GMM estimator bθn. This
allows, in a second step, to develop Edgeworth approximations for the tilted marginal distribution

of bθ1n which have relative approximation error of order O ¡ 1n¢.
We tilt the distribution of bθn in a way that recenters only the first marginal component bθ1n.

This is a necessary procedure in order to make use of tilting families than can be numerically

computed in applications. Indeed, extending the tilting procedure also to bθ2n and bθ3n would
require solving high dimensional systems of implicit equations already for low dimensional models.

Moreover, we show below that the chosen tilting procedure is a natural one because it allows to

reinterpret the asymptotically optimal GMM estimating equations (17) under the initial measure
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F as a set of asymptotically optimal GMM estimating equations also under the corresponding

tilted distribution. In the sequel we denote by

MY (µ) = E [exp (iµ0Y )] , KY (µ) = log (MY (−iµ)) ,

where i2 = 1, the characteristic and the cumulant generating function of a random vector Y

(provided the latter exists), respectively.

The exponential family defining a tilting procedure for the M-estimator defined by (11)-(13)

is introduced in the next definition.

Definition 1 Let dF (n) (x1, .., xn) :=
Qn

i=1 dF (xi) be the product measure of F and define for fix

θ1 ∈ Θ and µ ∈ RH the tilted measure H(n)
θ1,µ

by

dH
(n)
θ1,µ

(x1, .., xn) =
nY
i=1

exp
£
µ0ψ (xi, θ1)−Kψ(X,θ1) (µ)

¤ · dF (n) (x1, .., xn) . (18)

Assumption 1 in the Appendix implies the existence of a well defined tilting procedure (18).

Precisely, in Assumption 1, (i), we assume the existence of the cumulant generating function of

ψ (X, θ1). This condition is generally satisfied by GMM estimators based on a bounded orthogo-

nality function ψ (cf. for instance Singleton (2000) and Ronchetti and Trojani (2001)) and ensures

the existence of an equivalent measure H(n)
θ1,µ

. Assumption 1, (ii), can be weakened to handle mul-

tiple roots. It simplifies the arguments in the proof of Proposition 1 below. For a discussion on

how to handle multiple roots see Field (1982), Section 3. Finally, Assumption 1, (iii), ensures the

existence of a well-defined Fourier inversion, under F (n) and H
(n)
θ1,µ

as well.

Under Assumption 1, we can now express the density p(n) of bθn under F (n) in terms of the
density q

(n)
θ1,µ

of bθn under H(n)
θ1,µ

. This result is given in the next proposition and is the starting

point for defining a tilting procedure that recenters the density of bθn at the point where it has to
be approximated. All proofs of the paper are given in the Appendix.

Proposition 1 Let Assumption 1 be satisfied and fix θ1 ∈ Θ and µ ∈ RH . It then follows for any
θ∗ ∈ ΘΨ such that θ∗1 = θ1:

p(n) (θ∗) = Cµ (θ1)
−nDµ (θ

∗) · q(n)θ1,µ
(θ∗) , (19)
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where

Cµ (θ1) = exp
¡−Kψ(X,θ1) (µ)

¢
Dµ (θ

∗) = EHθ1
,µ

"
exp

Ã
−

nX
i=1

µ0ψ (Xi; θ1)

!¯̄̄̄
¯bθn = θ∗

#
.

We make use of Proposition 1 to determine a specific tilting parameter µ (θ1) that can be used

to recenter q(n)θ1,µ
at a specific point θ∗ where an approximation for p(n) has to be produced. In

this case, the factors Cµ(θ1) (θ1), Dµ(θ1) (θ
∗) define the mapping by which we can switch from p(n)

to q
(n)
θ1,µ(θ1)

and vice-versa. Moreover, performing an Edgeworth expansion of q(n)θ1,µ(θ1)
at θ = θ∗

will typically produce a very good local approximation because we are approximating the density

q
(n)
θ1,µ(θ1)

at its center.

In principle, we could produce a saddlepoint approximation for the density of the whole esti-

mator bθn by defining a corresponding recentering procedure with respect to all components θ1, θ2,
θ3. However, our main focus is clearly on the first marginal bθ1n, given the nuisance parameters
bθ2n, bθ3n. Therefore, we make use of tilting procedures that recenter the underlying density with
respect to the first component θ1 only. Intuitively, this can be obtained by selecting µ (θ1) so that

under the distribution H
(n)
θ1,µ(θ1)

the GMM orthogonality condition (1) has expectation zero.

Definition 2 Define the saddlepoint µ (θ1) as the implicit solution of the saddlepoint equation

E [ψ (X, θ1) exp (µ
0ψ (X, θ1))] = 0 . (20)

We call the density given by q
(n)
θ1

:= q
(n)
θ1,µ(θ1)

the tilted conjugate density of the GMM estimatorbθn implied by the extended score function Ψ.
In the sequel we assume uniqueness of the saddlepoint defining the tilted conjugate density in

Definition 2 (cf. Assumption 2 in the Appendix).

By construction, under the tilted distribution H(n)
θ1

:= H
(n)
θ1,µ(θ1)

the GMM estimating equation

induced by Ψ1 has expectation zero, so that under q
(n)
θ1
the GMM estimator bθ1n has been recentered

at θ1. Precisely, under q
(n)
θ1

one can associate to the GMM estimator induced by (11)-(13) the

tilted estimating equations

E
H
(n)
θ1

[Ψ (X, θ)] = 0 . (21)
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The finite sample distribution of the extended GMM estimator induced by (21) is precisely q
(n)
θ1
.

Moreover, notice that under H(n)
θ1

the GMM estimators bVn and bΓn have been recentered at
Vθ1 := E

H
(n)
θ1

£
ψ (X, θ1)ψ

0 (X, θ1)
¤

, Γθ1 := E
H
(n)
θ1

[∇ϑψ (X, θ1)] , (22)

respectively. Therefore, under the tilted distribution H(n)
θ1

the score function Ψ defines an efficient

optimal GMM estimator of θ1.

In the next section we develop accurate saddlepoint approximations for the finite sample density

of bθ1n.
3.3 Saddlepoint Approximations for the Finite Sample Density of a

GMM Estimator

We now derive a local approximation of the GMM estimator bθn under the tilted conjugate measure
H
(n)
θ1

in a neighborhood of a point θ∗ ∈ ΘΨ given by

θ∗1 = θ1 , θ∗2 = vec (Γθ1) , θ∗3 = vech (Vθ1) . (23)

We then compute an Edgeworth expansion for the marginal density4 q
(n)
θ1

of bθ1n. Since, by

construction, the distribution of bθn has been recentered at θ∗, i.e., EH
(n)
θ1

³bθn´ = θ∗, a local (low

order) approximation of the density of bθ1n under H(n)
θ1

will produce accurate results. An accurate

saddlepoint approximation of the finite sample density of bθ1n under F (n) is then obtained using
Proposition 1.

Assumption 3 in the Appendix mimics the set of assumptions in Bhattacharya and Ghosh

(1978) and Field (1982) for the existence of a formal Edgeworth expansion for the density of the

estimator bθn under an arbitrary tilted distribution H
(n)
θ1
, θ1 ∈ Θ. It implies the existence of a

formal Edgeworth expansion for q(n)θ1
with errors that are uniform over compact subsets of Θ and

is generally satisfied by robust GMM models based on a bounded orthogonality function ψ (cf.

Ronchetti and Trojani (2001)).

4 By a slight abuse of notations whe use the symbols p(n) and q(n)θ1
to denote at the same time joint and marginal

densities under F (n) and H
(n)
θ1
, respectively. No confusion should arise.
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To obtain the desired saddlepoint approximation for the finite sample density of bθ1n we need
a preliminary technical, but important, Lemma.

Lemma 1 Under Assumption 1-3 we have

Dµ(θ1) (θ
∗) = 1 +O

µ
1

n

¶
, (24)

with Dµ (θ
∗) defined in Proposition 1.

Lemma 1 enables us to approximate the mapping (19) between densities under F (n) and H(n)
θ1
, re-

spectively, without having to calculate exactly the conditional expectationDµ(θ1) (θ
∗), an unattrac-

tive task in applications. The approximation (24) maintains relative errors of order O
¡
1
n

¢
in the

final approximation of the finite sample density of bθ1n under F (n). After integrating over θ∗2 and
θ∗3, Proposition 1 and Lemma 1 give the relation between the finite sample densities of bθ1n under
F (n) and H

(n)
θ1
, respectively.

Proposition 2 Under Assumption 1-3 we have for any θ1 ∈ Θ

p(n) (θ1) = Cµ(θ1) (θ1)
−n q(n)θ1

(θ1)

µ
1 +O

µ
1

n

¶¶
, (25)

with the constant Cµ(θ1) (θ1) defined in Proposition 1.

We now compute a local Edgeworth approximation for q(n)θ1
(θ1), which will produce relative errors

of order O
¡
1
n

¢
because q(n)θ1

has been centered at θ1. Combining this approximation with (25) we

obtain the desired saddlepoint approximation for the density p(n) of an efficient GMM estimator.

The next proposition gives the corresponding result in terms of the GMM estimator bϑn for the
initial parameter of interest ϑ.

Proposition 3 Under Assumption 1-3 it follows:

(i) An asymptotic expansion for the density of bϑn under H(n)
ϑ is given by

q
(n)
ϑ (ϑ) =

³ n

2π

´ k
2 ¯̄
det

¡
Γ0ϑV

−1
ϑ Γϑ

¢¯̄ 1
2

µ
1 +O

µ
1

n

¶¶
,

where
Γϑ = E

H
(n)
ϑ

[∇ϑ0ψ (X,ϑ)] , Vϑ = E
H
(n)
ϑ

£
ψ (X,ϑ)ψ (X,ϑ)0

¤
.
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(ii) An asymptotic expansion for the density of bϑn under F (n) is given by
p(n) (ϑ) =

³ n

2π

´ k
2

Cµ(ϑ) (ϑ)
−n ¯̄det ¡Γ0ϑV −1ϑ Γϑ

¢¯̄ 1
2

µ
1 +O

µ
1

n

¶¶
. (26)

Even if this is not the primary goal of the paper, the approximation (26) can be used to ap-

proximate the finite sample density of a GMM estimator and to compute corresponding tail area

approximations. In this case, the integrating constant
¡
n
2π

¢ k
2 will not be used in numerical work.

Instead, a normalization constant will be computed numerically, following the practice advocated

by Hampel (1973).

Under a compactness assumption on Θ the approximation (26) is uniform in ϑ; if Θ is not

compact, the approximation is locally uniform on compact subsets of Θ. This implies, that tail

areas approximations over compact sets will maintain O
¡
1
n

¢
relative errors, under a continuity

assumption on the function Cµ(·) (·); cf. Field (1982).

The next section makes use of Proposition 3 to develop versions of a GMM statistic for testing

parametric hypotheses, which under the null hypothesis are X 2
q distributed up to relative errors

of order O
¡
1
n

¢
.

4 Second Order GMM Testing Setting

We now consider the problem of testing a simple parametric hypothesis of the form

H0 : ϑ = ϑH0 , (27)

for some ϑH0 ∈ Θ, based on a statistic whose finite sample distribution can be accurately approx-

imated by a X 2
k distribution up to relative errors of order O

¡
1
n

¢
. We focus on a simple hypothesis

H0 only for brevity. Using the saddlepoint approximation for the density of a GMM estimator in

the last section, also the general nuisance parameters case can be treated along the same lines as

in Robinson, Ronchetti and Young (2003) within overidentified moment conditions models.
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4.1 Dual Likelihoods and Dual Hypotheses Associated with GMM Es-
timators

We obtain an accurate test of (27) by reinterpreting (27) as a null hypothesis with respect to

a dual parameter implied by the natural dual likelihood (cf. Mykland (1995)) associated to a

score process Mϑ :=
¡
Mϑ

i

¢
i∈N := (ψ (Xi;ϑ))i∈N, ϑ ∈ Θ. Dual likelihoods are likelihood-type

objects that are associated with martingale score statistics. By construction, dual likelihoods

induce the same efficiency properties as those implied by the original score statistics. Moreover,

as conjectured by Mykland (1995), they should produce higher accuracy in finite samples because

of their link to saddlepoint approximations. For the given overidentified GMM setting we provide

in the next section a proof of this conjecture by definining a class of dual likelihood test statistics

that are implied by the family of score processes
©
Mϑ;ϑ ∈ Θª. These tests are related to the

saddlepoint approximation (26) and induce statistics that are X 2
k distributed up to relative errors

of order O
¡
1
n

¢
.

Definition 3 A dual likelihood associated with the score processes
©
Mϑ;ϑ ∈ Θª, is a function

L :M ⊂ RH ×Θ×RN → R+ such that

(i) For any ϑ ∈ Θ the function lϑ (µ;x) := lnL (µ, ϑ, x) is a log likelihood in the dual parameter
µ,

(ii) For any ϑ ∈ Θ
ψ (X;ϑ) = ∇µlϑ (0;X) , F − a.s. . (28)

In our setting, a test of the null hypothesis (27) can be interpreted as a test of the martingale

difference property for Mϑ0 . Thus, H0 can be also equivalently expressed as

H0 : E
£∇µlϑH0

(0;X)
¤
= 0 . (29)

More specifically, given a GMM estimator bϑn converging a.s. under H0 to ϑH0
= ϑ0, a test of

(27) is equivalent to a test of the dual parametric hypothesis

H0 : µ (ϑ0) = 0 , (30)
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where µ (ϑ0) is the dual parameter associated to ϑ0. Therefore, we can treat ϑ0 as a nuisance

parameter and test by a version of a dual quasi likelihood ratio test based on the dual quasi

likelihood Lbϑn (·;x) the parametric dual hypothesis (30).
4.2 Saddlepoint Approximations for Dual Quasi Likelihood Ratio Tests

Induced by GMM Estimators

In the GMM setting a natural dual likelihood associated to
©
Mϑ;ϑ ∈ Θª is provided by the tilted

exponential family (18) in Definition 1, yielding

L (µ, ϑ;x) = exp
¡
µ0ψ (x;ϑ)−Kψ(X;ϑ) (µ)

¢
. (31)

The natural dual parameter associated with ϑ0 is the maximizer of the expected dual log likelihood

objective

µ (ϑ0) = arg sup
µ

©
µ0E [ψ (X;ϑ0)]−Kψ(X;ϑ0) (µ)

ª
=
H0

arg sup
µ

©−Kψ(X;ϑ0) (µ)
ª

, (32)

which for the specific dual likelihood (31) is the saddlepoint solution in the saddlepoint approxi-

mation of the density of bϑn (cf. (20) and (26)). Since Kψ(X;ϑ) (0) = 0, the dual likelihood ratio

statistic for testing (30) is

LRD
ϑ := −2 ·Kψ(X;ϑ) (µ (ϑ)) . (33)

Therefore, the dual quasi likelihood ratio statistic associated with a GMM estimator bϑn is
LRDbϑn = −2 ·Kψ(X;bϑn)

³
µ
³bϑn´´ .

The next proposition derives accurate X 2
k approximations for the finite sample distribution of

n · LRDbϑn , having relative errors of order O
¡
1
n

¢
.

Proposition 4 Under Assumption 1-3 an asymptotic expansion for the tail probabilities of the
statistic LRDbϑn under the null hypothesis (27) (or equivalently either (29) or (30)) is given by

PH0

³
n · LRDbϑn > a

´
=
¡
1− X 2

k (a)
¢µ
1 +O

µ
1

n

¶¶
, (34)

where X 2
k (·) is the distribution function of a chi-squared distributed random variable with k degrees

of freedom.
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The computation of LRDbϑn requires the cumulant generating function Kψ(X;ϑ) (µ), which in

the parametric setting can be computed either explicitly (rarely) or using an indirect inference

approach. In the fully nonparametric GMM setting empirical p−values of LRDbϑn can be computed
by some version of a nonparametric bootstrap. Notice that by Proposition 4, LRDbϑn is pivotal up
to relative errors of order5 O

¡
1
n

¢
. Therefore, we can expect bootstrap approximations of the

asymptotic distribution of LRDbϑn to be very accurate as well.
4.3 Empirical Dual Likelihood Tests

In practice, the distribution F underlying the data sample X1, ..,Xn is tipically unknown. In this

case an empirical exponential likelihood may be used to provide empirical versions of the dual

likelihood ratio test based on LRDbϑn . To do this for the simple hypothesis H0 we need to consider
the tilted empirical moment generating function of ψ under H0:

bKψ(X;ϑ) (µ) := log

"
nX
i=1

exp (µ0ψ (Xi;ϑ)) ·
Ã

exp
¡
µn (ϑ0)

0 ψ (Xi;ϑ0)
¢Pn

i=1 exp
¡
µn (ϑ0)

0
ψ (Xi;ϑ0)

¢!# ,

where µn (ϑ0) is the solution of the empirical saddlepoint equation,

nX
i=1

ψ (Xi;ϑ0) exp (µ
0ψ (Xi;ϑ0)) = 0 , (35)

under the null hypothesis H0. Thus, bKψ(X;ϑ) (µ) is the empirical cumulant generating function of

ψ under the tilted empirical distribution bFH0 defined by

d bFH0 (Xi) =
exp

¡
µn (ϑ0)

0
ψ (Xi;ϑ0)

¢Pn
i=1 exp

¡
µn (ϑ0)

0
ψ (Xi;ϑ0)

¢dFn (Xi) ,

where Fn is the empirical distribution of X1, ..,Xn. Precisely, bFH0 is the (exponentially tilted)

empirical likelihood estimator of the underlying distribution F under the null hypothesis H0.

Thus, the empirical dual likelihood ratio statistic for testing (29) is

dLRDbϑn = −2 · bKψ(X;bϑn)
³bµ³bϑn´´ ,

5 To our knowledge, no other statistic for testing H0 has such an higher order pivotality property.
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where bµ³bϑn´ is the solution of the tilted empirical saddlepoint equation
nX
i=1

³
ψ
³
Xi; bϑn´ exp³µ0ψ ³Xi; bϑn´´ · exp ¡µn (ϑ0)0 ψ (Xi;ϑ0)

¢´
= 0 ,

or, equivalently:

bµ³bϑn´ = arg sup
µ

n
− bKψ(X;bϑn) (µ)

o
.

The bootstrap p−value of this empirical dual likelihood statistic is given by

p∗ = P
³dLRDbϑ∗n >dLRDbϑn

´
,

where bϑ∗n if the GMM estimator of ϑ implied by a bootstrap sample X∗1 , ..,X
∗
n from bFH0 ; cf.

Brown and Newey (1998) for a similar bootstrap procedure. The p−value p∗ can be estimated in

a Monte Carlo simulation by bootstrapping the original sample X1, ..,Xn. However, we can expect

the results of Theorem 4 to yield accurate estimates of p∗ also by means of a direct approximation

based on a X 2
k distribution, as demonstrated for instance in Example 1 of Robinson, Ronchetti

and Young (2003) for the exactly identified case. In fact, in all Monte Carlo simulations in the

next section empirical dual likelihood tests are shown to provide accurate finite sample inferences

also in overidentified moment conditions models.

5 Monte Carlo Investigation

In this section we analyze the accuracy of empirical dual likelihood ratio tests based on the

asymptotic approximation (34) in some Monte Carlo simulations. We compute empirical rejection

rates based on a X 2
k approximation for dLRDbϑn and for likelihood-ratio− and Wald−type GMM

statistics in the relevant model settings. We also compute empirical rejection rates using a X 2
k

approximation for one of the statistics proposed in ISJ (1998) and adapted by Imbens and Spady

(2002) to obtain accurate interval estimation procedures. These statistics are based on the value

of the tilting parameter in an empirical likelihood estimation of the unknown parameter ϑ0. We

make use of an easily computable version of such statistics (that avoids as fordLRDbϑn a complete
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empirical likelihood estimation of ϑ0) which computes the desired tilting parameter with respect

to the GMM estimate bϑn. Tests based on statistics of this type are asymptotically first order

X 2
k distributed and have been shown to provide accurate finite sample inference in several Monte

Carlo experiments; see for instance ISJ (1998) and Imbens and Spady (2002). The ISJ statistic

used in our experiments is defined by

bξISJn := n
³
µn

³bϑn´− µn (ϑH0
)
´0
AnB

−1
n An

³
µn

³bϑn´− µn (ϑH0
)
´

d→
n→∞ X

2
k ,

where µn
³bϑn´ and µn (ϑH0) are solutions of the empirical saddlepoint equation (35) for bϑn and

ϑH0 , respectively, and AnB
−1
n An is a sandwich covariance matrix estimator as given for instance

in Imbens and Spady (2002), p. 92.

We consider five basic simulation settings. The first three settings imply the existence of

the moments generating function of ψ, an assumption required to prove both the higher order

asymptotic properties of LRDbϑn and the first order asymptotic properties of bξISJn ; cf. Assumption

1 in the Appendix and Theorem 3.1 in Newey and Smith (2001) for the first and the second

statistic, respectively. In the last two Monte Carlo experiments the moment generating function

of ψ does not exist. Even if this fact does not seem to be crucial for the empirical version of our

dual likelihood ratio statistic (in this case the underlying distribution is a discrete one), these last

examples illustrate the accuracy of tests based on dLRDbϑn when the moment generating function
of ψ does not exist. For brevity we denote in the sequel by ξLR, ξW , ξISJ and ξRT the different

statistics under scrutiny.

5.1 Model 1: Burnside-Eichenbaum

The first Monte Carlo simulation focuses on a model setting of the type considered by Burnside and

Eichenbaum (1996), ISJ (1998) and Imbens and Spady (2002) among others. The orthogonality

function is given by

ψ (X,ϑ) =

µ
X1 − ϑ X2 − ϑ X3 − ϑ

¶0
.
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For all simulations (X1, ..,X3)
0 is a vector of independent X 2

1 distributed random variables. We

test the correct hypothesis ϑ = 1. Therefore H = 3 and k = 1. Table Ia reports results for sample

sizes n = 100, 400.

Insert Table Ia about here

In this example ξISJ and ξRT perform quite similarly (with a slight advantage for ξISJ) and better

than the classical GMM tests, especially in the lowest quantiles of the distribution. Notice, that

in this example the numerical differences between ξLR and ξW are very small. This causes the

corresponding empirical quantiles to coincide.

An alternative way of testing the hypothesis ϑ = 1 in this setting consists in treating ϑ as a

scale, rather than a location, parameter. We do this by means of an orthogonality function given

by

ψ (X,ϑ) =

µ
X1/ϑ− 1 X2/ϑ− 1 X3/ϑ− 1

¶0
.

The results obtained by using this orthogonality function are collected in Table Ib.

Insert Table Ib about here

In this second setting, the GMM Likelihood ratio type test based on ξLR is the most accurate one.

The statistic ξRT performs slightly better than ξW , while ξISJ produces some excess oversize in

the low tails of the distribution even when compared with ξW .

5.2 Model 2: Overidentified Linear Regression Model

The second Monte Carlo simulation is based on a linear regression model of the form

Y = ϑX + U ,
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with U standard normal distributed andX beta distributed with parameters α and β. We estimate

ϑ by means of an overidentified orthogonality function given by

ψ (Y,X, ϑ) =


Y − ϑX

(Y − ϑX)X

(Y − ϑX)2 − 1

 . (36)

Thus, H = 3 and k = 1. The simulations are performed for sample sizes n = 80, 140 with

parameter choices ϑ0 = 1, α = 1, β = 1 (uniform distribution for X). We test the parametric

hypothesis ϑ = 1.

Insert Table II about here

From Table II we see that the accuracy of ξRT is slightly better than the one of ξLR in the

lowest tails of the distribution’s support. The statistics ξW and ξISJ are oversized, especially in

the lowest distribution quantiles. Similar patterns arise for the case α = 2, β = 2 (symmetric

distribution for X with mode at 0.5) and α = 2, β = 3 (asymmetric distribution for X).

5.3 Model 3: Overidentified Nonlinear Regression Model

The third Monte Carlo simulation is based on a nonlinear regression model of the form

Y = Xϑ + U ,

with U standard normal distributed andX beta distributed with parameters α and β. We estimate

ϑ by means of an overidentified orthogonality function given by

ψ (Y,X, ϑ) =

 Y −Xϑ

¡
Y −Xϑ

¢
Xϑ ln (X)

 .

Thus, H = 2 and k = 1. The simulations are performed for sample sizes n = 500, 1000, with

parameter choices ϑ0 = 0, α = 1, β = 1 (uniform distribution for X). We test the parametric

hypothesis ϑ = 0.

Insert Table III about here
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From Table III we see that the accuracy of ξRT is very similar to the one of ξW . The statistics

ξISJ and ξLR are clearly oversized, especially in the lowest distribution quantiles. Similar patterns

arise for the cases α = 2, β = 2.

5.4 Model 4: Exponential Distribution with two Moments

The fourth Monte Carlo experiment focuses again on a low-dimensional model with two orthogo-

nality conditions and one parameter. The orthogonality function is

ψ (X,ϑ) =

 X − ϑ

X2 − 2ϑ2

 ,

and in all simulations X is exponentially distributed with mean ϑ0 = 1. We test the hypothesis

ϑ = 1. This simulation setting induces an asymmetric finite sample distribution of the standard

GMM estimators through a very high skewness of the second component of ψ (cf. Imbens and

Spady (2002)). Table IVa reports results for sample sizes n = 200, 300.

Insert Table IVa about here

In this model ξISJ gives the most accurate empirical sizes, followed by ξRT . By contrast, both

likelihood-type GMM statistics are strongly oversized.

An alternative way of testing the hypothesis ϑ = 1 also in this setting (cf. Model 1 above)

consists in treating ϑ as a scale, rather than a location, parameter. We do this by means of an

orthogonality function given by

ψ (X,ϑ) =

 X/ϑ− 1

(X/ϑ)2 − 2

 .

The results obtained by using this orthogonality function are collected in Table IVb.

Insert Table IVb about here

In this second setting the statistic ξLR provides the most accurate inferences, followed by ξRT .

By contrast, both ξW and ξISJ yield strongly oversized inferences.
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5.5 Model 5: Linear Regression Model with Squared Normal Regres-
sors

The last Monte Carlo simulation is based on a linear regression model of the form

Y = ϑX2 + U ,

with U and X both standard normally distributed . We estimate ϑ by means of an overidentified

orthogonality function given by

ψ (Y,X, ϑ) =


Y − ϑX2

¡
Y − ϑX2

¢
X2

¡
Y − ϑX2

¢2 − 1

 . (37)

Thus, H = 3 and k = 1. The simulations are performed using a parameter choice ϑ0 = 1 and we

test the parametric hypothesis ϑ = 1. Table V reports results for sample sizes n = 200, 300.

Insert Table V about here

In this last setting the statistic ξLR provides quite accurate inferences, while the other tests under

scrutiny are strongly oversized.

6 Conclusion

We computed a class of saddlepoint approximations of a general GMM estimator which motivate

a new set of accurate dual likelihood ratio tests of parametric constraints in overidentified moment

conditions models. By means of saddlepoint techniques, these statistics are shown to be asymp-

totically chi-squared distributed to higher order, with a relative error of order O(1/n). Since they

require the knowledge of the moment generating function of the given orthogonality function we

introduced an empirical likelihood version of the new tests which is can be applied to the fully

nonparametric setting and which only requires a preliminary GMM parameter estimation to be

computed. Monte Carlo evidence shows that the new empirical dual likelihood ratio tests pro-
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vide a higher accuracy than standard GMM test statistics and some recent information theoretic

alternatives for a broad class of GMM models.
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7 Appendix
Assumption 1 We assume the following conditions to be satisfied:

(i) Kψ(X,θ1) (·) exists for any θ1 ∈ Θ.
(ii) The system of equations

nX
i=1

Ψ (Xi, θ) = 0 ,

has a unique solution F (n)− almost surely.
(iii) For any θ ∈ ΘΨ the joint density of the random vector

S := (S01, S
0
2)
0
:=

Ã
nX
i=1

ψ (Xi, θ1)
0
,bθ0n
!0

with respect to dF (n) exists. Furthermore, for any θ1 ∈ Θ and µ ∈ RH the Fourier transform
of S under F (n) and under H(n)

θ1,µ
, respectively, is integrable with respect to Lebesgue measure,

that is: Z
|E [exp (iu0S)]| du <∞ ,

Z ¯̄̄̄
E
H
(n)
θ1,µ

[exp (iu0S)]
¯̄̄̄
du <∞ . (38)

Assumption 2 For any θ1 ∈ Θ the saddlepoint equation (20) has a unique solution µ (θ1).

Let be a multi-index α = (α01, α02, α03) such that αi is a multi index of the same dimension as θi.

The following multi-index notation is used to express Assumption 3 below:

|α| = |α1|+ |α2|+ |α3| =
3X
i=1

dim(θi)X
j=1

αij ,

α! = α1! · α2! · α3! =
3Y
i=1

dim(θi)Y
j=1

αij ! ,

∂αΨ (x; θ) =
∂αΨ (x; θ)

∂θα11 ∂θα22 ∂θα33
=

∂αΨ (x; θ)Q3
i=1

Qdim(θi)
j=1 ∂θ

αij
i

,

for s = 1, .., dim (ΘΨ).

Assumption 3 We assume the following conditions to be satisfied.

(i) The derivatives
∂αΨ (X; θ) ; |α| ≤ 4, θ ∈ ΘΨ ,

exist F−almost surely. Moreover, for any compact set K ⊂ ΘΨ, any θ ∈ ΘΨ and some ε > 0

sup
|α|<4

sup
θ0∈K

E
H
(n)
θ0

h
k∂αΨs (X; θ)k4

i
< ∞ . (39)

sup
|α|=4

sup
θ0∈K

E
H
(n)
θ0

Ã sup
kθ∗−θ0k<ε

k∂αΨs (X; θ∗)k
!4 < ∞ . (40)
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(ii) For any θ ∈ ΘΨ the matrices
ΓΨ (θ) := E

H
(n)
θ1

[∇θ0Ψ (X; θ)] , VΨ (θ) = E
H
(n)
θ1

£
Ψ (X; θ)Ψ (X; θ)

0¤
are non singular.

(iii) For any |α| , |α∗| < 4 the functions
θ 7−→ ΓΨ (θ) , (41)

θ 7−→ E
H
(n)
θ1

h
∂αΨs (X; θ) ∂

α∗Ψs (X; θ)
0i

, (42)

are continuous.

(iv) For any |α| < 4 the function ∂αΨ (·; θ) is continuously differentiable with respect to the first
argument, F− almost surely.

Proof of Proposition 1. Denote the density of

Z := (Z 01, Z
0
2, Z

0
3)
0
= (Z01, S

0)0 =

Ã
nX
i=1

Ψ1 (Xi, θ) , S
0
!0

under F (n) and H
(n)
θ1,µ

, by g(n) and g
(n)
θ1,µ

, respectively, and define ek = k + H + dim (ΘΨ). By

Fourier inversion we have

g(n) (z) = (2π)−
ek Z exp (−iu0z)MZ (u) du

= (2π)
−ek

Cµ (θ1)
−n
exp (−µ0z2)

Z
exp (−iu0z)MZ (u) exp

¡
µ0z2 − nKψ(X,θ1) (µ)

¢
du

= (2π)−
ek Cµ (θ)

−n exp (−µ0z2)

×
Z
exp (−iu0z)MZ (u1,−iµ+ u2, u3) exp

¡−nKψ(X,θ1) (µ)
¢
du

Now,

MZ (u1,−iµ+ u2, u3) =

Z
exp (iu0z + µ0z2) g(n) (z) dz

=

Z
exp (iu0z) exp (µ0z2) g(n) (z) dz

= exp
¡
nKψ(X,θ1) (µ)

¢ Z
exp (iu0z) g(n)θ1,µ

(z) dz

= exp
¡
nKψ(X,θ1) (µ)

¢
Mθ1,µ

Z (u) ,

where Mθ1,µ
Z is the Fourier transform of Z under H(n)

θ1,µ
. By Fourier inversion this gives

g(n) (z) = Cµ (θ1)
−n

g
(n)
θ1,µ

(z) exp (−µ0z2) .

27



Integrating the RHS and the LHS with respect to z1, z2, on the set z3 = θ∗, proves the proposition.

Proof of Lemma 1. Under the given assumptions, we have from the proof of Lemma 1 in

Fan and Field (1995) for our case

bθn − θ∗ = −A (θ∗)−1Ψ+O
H
(n)
θ

µ
1

n

¶
,

where

Ψ =
1

n

nX
i=1

Ψ (Xi; θ
∗) , A (θ∗) = E

H
(n)
θ1

"
1

n

nX
i=1

∇θ0Ψ (Xi; θ
∗)

#
.

Computing A (θ∗) explicitly, it first follows

Oθ0Ψ (X, θ∗) =


Oθ01Ψ1 (X, θ∗) Oθ02Ψ1 (X, θ∗) Oθ03Ψ1 (X, θ∗)

Oθ01Ψ2 (X, θ∗) Oθ02Ψ2 (X, θ∗) Oθ03Ψ2 (X, θ∗)

Oθ01Ψ3 (X, θ∗) Oθ02Ψ3 (X, θ∗) Oθ03Ψ3 (X, θ∗)


where

Oθ01Ψ1 (X, θ∗) = Γ0θ1V
−1
θ1
Oθ01ψ (X, θ1) ,

Oθ02Ψ1 (X, θ∗) =
£
Ik ⊗ V −1θ1

ψ (X, θ1)
¤ ∂vec (Γθ1)

∂θ02
,

Oθ03Ψ1 (X, θ∗) =
£
ψ0 (X, θ1)⊗ Γ0θ1

¤ ∂vech ¡V −1θ1

¢
∂θ03

,

Oθ02Ψ2 (X, θ∗) = −iddim(θ2)×dim(θ2) ,

Oθ03Ψ2 (X, θ∗) = 0dim(θ2)×dim(θ3) ,

Oθ03Ψ3 (X, θ∗) = −iddim(θ3)×dim(θ3) .

Since by construction under the tilted distribution H
(n)
θ1

the orthogonality function ψ (X, θ1) has

expectation 0 we obtain

E
H
(n)
θ1

[Oθ0Ψ (X, θ∗)] =


E
H
(n)
θ1

£
Oθ01Ψ1 (X, θ∗)

¤
0 0

0 E
H
(n)
θ1

£
Oθ02Ψ2 (X, θ∗)

¤
0

0 0 E
H
(n)
θ1

£
Oθ03Ψ3 (X, θ∗)

¤

 ,
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where

E
H
(n)
θ1

£
Oθ01Ψ1 (X, θ∗)

¤
= Γ0θ1V

−1
θ1

E
H
(n)
θ1

£
Oθ01ψ (X, θ1)

¤
= Γ0θ1V

−1
θ1
Γθ1 ,

E
H
(n)
θ1

£
Oθ02Ψ2 (X, θ∗)

¤
= −iddim(θ2)×dim(θ2) ,

E
H
(n)
θ1

£
Oθ03Ψ3 (X, θ∗)

¤
= −iddim(θ3)×dim(θ3) ,

implying
bθ1n − θ1

bθ2n − vech (Γθ1)

bθ3n − vech (Vθ1)

 = −


¡
Γ0θ1V

−1
θ1
Γθ1
¢−1
Ψ1

Ψ2

Ψ3

+O
H
(n)
θ1

µ
1

n

¶

= −


¡
Γ0θ1V

−1
θ1
Γθ1
¢−1
Γ0θ1V

−1
θ1

ψ

Ψ2

Ψ3

+O
H
(n)
θ1

µ
1

n

¶
,

where

Ψk =
1

n

nX
i=1

Ψk (Xi, θ
∗) , ψ =

1

n

nX
i=1

ψ (Xi, θ1) .

Therefore we get

Γ0θ1V
−1
θ1

ψ = − ¡Γ0θ1V −1θ1
Γθ1
¢ ³bθ1n − θ1

´
+O

H
(n)
θ1

µ
1

n

¶
,

that is

bθ1n − θ∗1 = −
¡
Γ0θ1V

−1
θ1
Γθ1
¢−1
Γ0θ1V

−1
θ1

ψ +O
H
(n)
θ1

µ
1

n

¶
.

This last result implies that for some vector Mθ1 ∈ Rk we can have

µ0 (θ1)
nX
i=1

ψ (Xi, θ1) =M 0
θ1

³bθ1n − θ∗1
´
+O

H
(n)
θ1

µ
1

n

¶
.

Indeed, by writing the system

µ0 (θ1) = − 1
n
M 0

θ1

¡
Γ0θ1V

−1
θ1
Γθ1
¢−1
Γ0θ1V

−1
θ1

,

it follows

Mθ1 = −n · Γ0θ1µ (θ1) .
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This last result finally implies

Dµ (θ
∗) = EHθ1

,µ

"
exp

Ã
−

nX
i=1

µ0ψ (Xi; θ1)

!¯̄̄̄
¯bθn = θ∗

#

= EHθ1 ,µ

·
exp

µ
−M 0

θ1

³bθ1n − θ∗1
´
−O

H
(n)
θ1

µ
1

n

¶¶¯̄̄̄bθn = θ∗
¸

= 1 +O

µ
1

n

¶
,

concluding the proof of the Lemma.

Proof of Proposition 3. From the proof of Lemma 1 we have

bθ1n = θ1 −
¡
Γ0θ1V

−1
θ1
Γθ1
¢−1
Γ0θ1V

−1
θ1

ψ +O
H
(n)
θ1

µ
1

n

¶
, (43)

where

ψ =
1

n

nX
i=1

ψ (Xi, θ1) .

Notice that under H(n)
θ1

equation (43) is centered at θ1, up to the first order. Thus, we can apply

an Edgeworth expansion to approximate the H(n)
θ1
− density of bθ1n, to obtain (cf. also Field (1982),

Theorem 1)

qθ1 (θ1) =
³ n

2π

´ k
2 ¯̄
det

¡
Γ0θ1V

−1
θ1
Γθ1
¢¯̄ 1

2

µ
1 +O

µ
1

n

¶¶
,

using the relation

E
H
(n)
θ1

£
Oθ01Γ

0
θ1V

−1
θ1

ψ (X, θ1)
¤
= Γ0θ1V

−1
θ1
Γθ1 = E

H
(n)
θ1

£
Γ0θ1V

−1
θ1

ψ (X, θ1)ψ (X, θ1)
0 V −1θ1

Γθ1
¤

obtained in the proof of Lemma 1. The second statement in the proposition now follows from

Lemma 1.

Proof of Theorem 4.

The proof uses arguments along the lines of Robinson, Ronchetti and Young (2003), applied

to the saddlepoint approximation for the densitiy of a GMM estimator in Proposition 3. Let

p = PH0

³
n · LRDbϑn > a

´
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be the p−value of the test under scrutiny and define

h (ϑ) = −Kψ(X,ϑ) (µ (ϑ)) ,

where LRD
ϑ is given in (32) and (33), and µ (ϑ) is defined by (20). Without loss of generality we

can assume the existence of ϑ0 = 0 such that H0 is satisfied and ∂2h
∂ϑ∂ϑ0 (ϑ0) = idk. Denote by A

the set

A =
©
ϑ | n · LRD

ϑ > a
ª
= {ϑ | 2n · h (ϑ) > a} .

Then, by means of the saddlepoint approximation of the density of bϑn given by Proposition 3 (ii),
we obtain

p =

Z
A

³ n

2π

´ k
2

Cµ(ϑ) (ϑ)
−n
q
det

¡
Γ0ϑV

−1
ϑ Γϑ

¢µ
1 +O

µ
1

n

¶¶
dϑ

=

Z
A

³ n

2π

´ k
2

exp (−nh (ϑ))
r
det

³ eD (ϑ)´µ1 +O

µ
1

n

¶¶
dϑ

=

Z
eA cnn

− 1
2 exp

³
−nh

³
zn−

1
2

´´r
det

³ eD ³zn− 1
2

´´µ
1 +O

µ
1

n

¶¶
dz (44)

where eD (ϑ) = Γ0ϑV −1ϑ Γϑ, eA =
n
z | 2n · h

³
zn−

1
2

´
> a

o
, and cn is the normalizing constant

(to make the integrand a proper density). We now perform two transformations

z
f17−→

 r

s

 f27−→

 u

s

 .

f1 is the polar transformation defined by r = kzk (the radial component) and s ∈ Sk, the

k−dimensional unit sphere. f2 is defined by u = 2nh
³
zn−

1
2

´
. The Jacobians J1, J2, respectively,

of these two transformations are J1 = rk−1 and

J2 :=

¯̄̄̄
∂u

∂r

¯̄̄̄−1
=

r

2n
1
2
∂h
∂ϑ0

³
zn−

1
2

´
z

,

respectively. Therefore, we can rewrite (44) as

p =

Z ∞
a

Z
Sk

cnn
− 1
2 e−

u
2

r
det

³ eD ³zn− 1
2

´´
J1J2

µ
1 +O

µ
1

n

¶¶
dsdu

=

Z ∞
a

cne
−u

2

·Z
Sk

δ (u, s)

µ
1 +O

µ
1

n

¶¶
ds

¸
du
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where

δ (u, s) =

rk
r
det

³ eD ³zn− 1
2

´´
2n ∂h

∂ϑ0

³
zn−

1
2

´
z

=
1

n

(z0z)
k
2

r
det

³ eD ³zn− 1
2

´´
2 ∂h
∂ϑ0

³
zn−

1
2

´
z

=: ∆ (z) .

We now first expand ∆ (z) around z = 0. For any component eDij of eD it follows

eDij

³
zn−

1
2

´
= eDij (0) + n−

1
2
∂ eDij (0)

∂ϑ0
z +O

¡
n−1

¢
.

Therefore, when computing the determinant of the matrix

h eDij (0)
i
1≤i,j≤k

+ n−
1
2

"
∂ eDij (0)

∂ϑ0

#
1≤i,j≤k

z

we see that up to orders O
¡
n−1

¢
we obtain

det
³ eD ³zn− 1

2

´´
= det

³ eD (0)´³1 + n−
1
2 ξ1 (z) +O

¡
n−1

¢´
and r

det
³ eD ³zn− 1

2

´´
=

r
det

³ eD (0)´³1 + n−
1
2 ξ2 (z) +O

¡
n−1

¢´
where ξ1 (z) and ξ2 (z) are linear functions of z, implying

R
Sk

ξidz = 0, i = 1, 2. We further

expand u in ∆ (z) at z = 0. This gives,

u = 2nh
³
zn−

1
2

´
= 2n

µ
h (0) + n−

1
2
∂h

∂ϑ
(0) z +

1

2
n−1z0

∂2h

∂ϑ∂ϑ0
(0) z +

1

6
n−

3
2 ρ (z) +O

¡
n−2

¢¶
= z0z

µ
1 +

1

3
n−

1
2
ρ (z)

z0z
+O

¡
n−1

¢¶
,

and

z0z = u

µ
1− 1

3
n−

1
2
ρ (z)

z0z
+O

¡
n−1

¢¶
,

since h (0) = 0, ∂h∂ϑ (0) = 0 and, by assumption,

∂2h

∂ϑ∂ϑ0
(0) = Γ00V

−1
0 Γ0 = idk .

Notice, that ρ (z) is a linear combination of terms of the form zizjzw, 1 ≤ i, j, w ≤ k, where

z = (z1, z2, .., zk)
0, so that

R
Sk

ρ (z) dz = 0. In a similar way as for the expansion of u, it also
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follows

2
∂h

∂ϑ0
³
zn−

1
2

´
z = 2n−

1
2 z0z +O

¡
n−1

¢
= 2n−

1
2u
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1
2
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z0z
+O

¡
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¢¶
.

Collecting these results, we thus obtain

∆ (z) = n−
1
2

r
det

³ eD (0)´u k
2−1

³
1 + n−

1
2 b (z) +O

¡
n−1

¢´
,

where b is an odd function of z, implying
R
Sk

b (z) dz. When inserting this last result in the

expression for p we finally get

p =

Z ∞
a

cne
−u

2

·Z
Sk

δ (u, s)

µ
1 +O

µ
1

n

¶¶
ds

¸
du

= cnn
− 1
2
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det

³ eD (0)´Ck

Z ∞
a

e−
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2 u
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2−1
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1 +O

µ
1

n

¶¶
du ,

where Ck is the surface of Sk. The statement of the theorem now follows by noting that

cnn
− 1
2

r
det

³ eD (0)´Ck has to be the normalizing constant of the density of a X 2
k distribution.
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8 Tables

Table Ia: Empirical Size of the Tests: Model 1 (Burnside-Eichenbaum) with X 2
1 -

distribution, H = 3, k = 1, sample sizes n = 100, 400. 10000 replications.

Size
(n = 100)

ξLR ξW ξISJ ξRT

0.100 0.1778 0.1778 0.1696 0.1707

0.050 0.1127 0.1127 0.0978 0.1009

0.025 0.0727 0.0727 0.0609 0.0631

0.010 0.0443 0.0443 0.0340 0.0359

0.005 0.0326 0.0326 0.0212 0.0230

0.001 0.0149 0.0149 0.0071 0.0089

Size
(n = 400)

ξLR ξW ξISJ ξRT

0.100 0.1264 0.1264 0.1202 0.1220

0.050 0.0676 0.0676 0.0618 0.0642

0.025 0.0373 0.0373 0.0334 0.0343

0.010 0.0190 0.0190 0.0142 0.0153

0.005 0.0113 0.0113 0.0070 0.0085

0.001 0.0025 0.0025 0.0017 0.0020
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Table Ib: Empirical Size of the Tests: Model 1 (Burnside-Eichenbaum) with scaled

X 2
1 -distribution, H = 3, k = 1, sample sizes n = 100, 400. 10000 replications.

Size
(n = 100)

ξLR ξW ξISJ ξRT

0.100 0.1312 0.1436 0.1477 0.1425

0.050 0.0735 0.0833 0.0895 0.0819

0.025 0.0415 0.0489 0.0588 0.0473

0.010 0.0183 0.0264 0.0337 0.0260

0.005 0.0116 0.0167 0.0235 0.0156

0.001 0.0027 0.0078 0.0114 0.0055

Size
(n = 400)

ξLR ξW ξISJ ξRT

0.100 0.1120 0.1143 0.1124 0.1133

0.050 0.0550 0.0598 0.0605 0.0568

0.025 0.0300 0.0324 0.0325 0.0309

0.010 0.0129 0.0139 0.0154 0.0135

0.005 0.0053 0.0083 0.0095 0.0066

0.001 0.0013 0.0017 0.0023 0.0017
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Table II: Empirical Size of the Tests: Model 2, regression model with, H = 3, k = 1,

sample sizes n = 80, 140. α = 1, β = 1 (uniform distribution). 10000 replications.

Size
(n = 80)

ξLR ξW ξISJ ξRT

0.100 0.1138 0.1286 0.1366 0.1173

0.050 0.0598 0.0686 0.0768 0.0612

0.025 0.0334 0.0398 0.0479 0.0320

0.010 0.0169 0.0191 0.0262 0.0136

0.005 0.0097 0.0118 0.0167 0.0075

0.001 0.0044 0.0047 0.0082 0.0023

Size
(n = 140)

ξLR ξW ξISJ ξRT

0.100 0.1046 0.1123 0.1150 0.1083

0.050 0.0544 0.0601 0.0622 0.0554

0.025 0.0300 0.0328 0.0343 0.0288

0.010 0.0129 0.0146 0.0155 0.0117

0.005 0.0070 0.0080 0.0089 0.0061

0.001 0.0012 0.0017 0.0031 0.0010
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Table III: Empirical Size of the Tests: Model 3, nonlinear regression model with,

H = 2, k = 1, sample sizes n = 500, 1000, α = 1, β = 1. 10000 replications.

Size
(n = 500)

ξLR ξW ξISJ ξRT

0.100 0.1233 0.1144 0.1142 0.1182

0.050 0.0778 0.0596 0.0657 0.0656

0.025 0.0479 0.0353 0.0422 0.0346

0.010 0.0297 0.0187 0.0266 0.0178

0.005 0.0222 0.0121 0.0190 0.0122

0.001 0.0129 0.0073 0.0103 0.0063

Size
(n = 1000)

ξLR ξW ξISJ ξRT

0.100 0.1035 0.0991 0.1014 0.1008

0.050 0.0576 0.0518 0.0538 0.0511

0.025 0.0351 0.0260 0.0299 0.0278

0.010 0.0171 0.0133 0.0159 0.0127

0.005 0.0117 0.0076 0.0105 0.0063

0.001 0.0050 0.0025 0.0040 0.0020
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Table IVa: Empirical Size of the Tests: Model 4, Exponential Distribution with two

Moments, H = 2, k = 1, sample sizes n = 200, 300. 10000 replications.

Size
(n = 200)

ξLR ξW ξISJ ξRT

0.100 0.1660 0.1523 0.1257 0.1366

0.050 0.1101 0.0951 0.0652 0.0781

0.025 0.0782 0.0616 0.0347 0.0447

0.010 0.0526 0.0348 0.0139 0.0215

0.005 0.0398 0.0248 0.0078 0.0130

0.001 0.0225 0.0109 0.0022 0.0043

Size
(n = 300)

ξLR ξW ξISJ ξRT

0.100 0.1505 0.1391 0.1158 0.1273

0.050 0.0933 0.0814 0.0608 0.0683

0.025 0.0611 0.0495 0.0309 0.0380

0.010 0.0378 0.0281 0.0139 0.0196

0.005 0.0289 0.0201 0.0078 0.0105

0.001 0.0158 0.0087 0.0022 0.0027
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Table IVb: Empirical Size of the Tests: Model 4, Scaled Exponential Distribution

with two Moments, H = 2, k = 1, sample sizes n = 200, 300. 10000 replications.

Size
(n = 200)

ξLR ξW ξISJ ξRT

0.100 0.1115 0.1341 0.1419 0.1215

0.050 0.0581 0.0813 0.0932 0.0684

0.025 0.0325 0.0501 0.0630 0.0378

0.010 0.0145 0.0271 0.0403 0.0179

0.005 0.0088 0.0187 0.0307 0.0111

0.001 0.0040 0.0088 0.0182 0.0035

Size
(n = 300)

ξLR ξW ξISJ ξRT

0.100 0.1069 0.1248 0.1301 0.1146

0.050 0.0541 0.0673 0.0755 0.0603

0.025 0.0274 0.0400 0.0462 0.0320

0.010 0.0122 0.0226 0.0284 0.0148

0.005 0.0071 0.0143 0.0206 0.0093

0.001 0.0021 0.0060 0.0103 0.0023
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Table V: Empirical Size of the Tests: Model 5, linear regression model with H = 3,

k = 1, sample sizes n = 200, 300. 10000 replications.

Size
(n = 200)

ξLR ξW ξISJ ξRT

0.100 0.1222 0.1276 0.1320 0.1072

0.050 0.0699 0.0731 0.0744 0.0512

0.025 0.0394 0.0417 0.0449 0.0246

0.010 0.0196 0.0214 0.0246 0.0092

0.005 0.0115 0.0118 0.0157 0.0044

0.001 0.0042 0.0048 0.0056 0.0005

Size
(n = 300)

ξLR ξW ξISJ ξRT

0.100 0.1144 0.1174 0.1182 0.1063

0.050 0.0642 0.0662 0.0649 0.0514

0.025 0.0329 0.0348 0.0348 0.0232

0.010 0.0144 0.0150 0.0168 0.0078

0.005 0.0087 0.0090 0.0107 0.0039

0.001 0.0026 0.0030 0.0035 0.0006
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