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Abstract

One of the biggest problems that object-orienteckligpers face today is having to integrate at titerprise
level, object-oriented applications with widely &ipd and quality active relational databases. Tgaper
focuses on the issues of mapping object dynami@behinto active relational databases. We present
technique for expanding active relational databagiéls object-oriented behavior semantics, extradteth
state transition diagrams expressing object lifeley. We consider states as first class objects,distuss
state class and event inheritance.

1. Introduction

Software development with object orientation isdraimng increasingly popular, even in application cims
where traditionally procedural programming is thhoice paradigm, as for example in real-time and
administrative systems. To an extent this incréasgse can be traced to the reuse potential affesethe
encapsulation of structure and behavior in clagdespuilding blocks of object-oriented systemg] &m the
promise of new object-oriented CASE tools, whictoauate part of the software development cycle.

To foster the use of object orientation at the gmise level, however, where conventional and sssftd
applications are based on widely applied and quditeloped relational data bases, much workrstitlds to
be done. The integration of the object orientatiad relational paradigms is not easy [ Keller@®igl object-
oriented applications must find a way to represhatpersistence of some of its objects in activaticnal
databases. A general purpose method to integtgtectoorientation and active relational databasesfi
importance.

Steps in this direction are being taken, as fomgda in [Gargouri+94, Keller97, Silva97+], whichdrdss
the mapping of static object models (class andicglship diagrams) to relations. In this paperextend this
work by considering the mapping of object behavior active relational databases [Widom+96], via
transformation rules applied to object life-cyclagtams.

Life-cycle diagrams express object behavior, ardusually represented in development methods ar8ECA
tools by state transition diagrams [Harel88]. Ehdmgrams can incorporate transition guards, itianspre-
and post-conditions, actions to be taken duringtthesition, and actions to be taken when leavind/a
arriving at a state.

At the core of our approach lies the consideratibat the life-cycle rules of persistent objects mus
correspond to dynamic constraints expressed in ah@ve relational database management system.
Advantages of implementing such rules as databasstraints are for example the simplification of
applications, code reuse and correctness by catistn(M/idom+96].



The remainder of this paper is organized as follo®sction 2 discusses related work. Section 84mts the
model for expressing state-classes and the repedmm of life-cycle rules in active relational daases.
Section 4 discusses the problem of inheritancelasfses with state dependent behavior. Sectiore$epts
conclusions and future work.

2. Related Work

Modeling object behavior via active rules in actredational databases has been proposed in [Teds&di],
where the dynamic behavior of objects is expregsadconceptual model, IFO This model supplements the
static model, providing representations for eventsditions, transitions and actions. Events metvate
static model methods, and represent external, teathpar even events with no detailed specification.

The conceptual model incorporates an event algetiaying the representation of complex structurga,
event constructors. The relationship among eviergbtained through transition functions, which naepend
on conditions expressed in an algebraic languagen Ehe conceptual model, a few procedures cansbd u
for the derivation of Event-Condition-Action typeiles, similar to those found in the HIPAC project
[Chakravarthy+89] for the implementation of objeehavior in active databases.

Our approach differs from the above in that we psgpa meta model for the representation of dynaiject
aspects, which can be reused for any situation feddby a state transition diagram considering the
expression of dynamic semantics as database obj¥itts small alterations, the model proposed herelman
used to reflect the semantics of O Another meaningful difference is the represeéatatof states as
subclasses of application classes, and thus tlegitahce of dynamic behavior.

[Harel+96] extends the notation proposed in [Ha88I&ith dynamic object behavior, as expressed in
[Rumbaugh+94, Cook+94], via state diagrams and &tshThis work can be used to validate the model
proposed here, since it presents most situatiorsavttynamic modeling plays a part. In particulae, affer
solutions to the following O-chart representatiamst considered in the original description:

* behavior inheritance from classes representingstat

* event pre- and post-conditions.

[Schlaer+90] proposes a class modeling transitiagrdms exists in the system, and for each objaeing

this behavior an instance of this class is creatsdyansitions are loaded, and a proxy objeatresated to
keep track of the current state of the applicatibject. The State pattern [Gamma+95] can alsosed to
model transition diagrams: life-cycle states arpre@eented as sub-classes in a type hierarchy wioage
models a component of the application object, resjide for the state dependent behavior of theiegipbn

object. In contrast to [Schlaer+90] and [Gamma+8&] decided to use the state diagram modelingoaph

proposed in [Cook+94], where states are modelesblegial sub-classes of the class modeling the cgtjalin

object, because it is easily mapped into tablesiactive relational database.

3. Modeling Object Behavior

In this section, we discuss the mapping of staagrdims, expressing the life-cycle of objects ofverm class,
into database mechanisms, as found in the EntitgtiRaship model [Chen76]. We briefly describetsta
diagrams, using a simpkying Object state diagram example (see Figure 1). Then, bas¢hdi®example, we
describe the static and dynamic relational viewstate diagrams. Next, we show how state diagrams a
implemented using database mechanisms. Finallydegeribe the integration of application classed wit
database objects.

3.1 State Diagrams

A state diagram represents the life history of otgén a class and shows the sequence of operdkiantakes
objects into several different states. It is a rayhose nodes are states of an object and whoseasgc



transitions between states caused by events aplgita that object. The graphical notation usedaatate
diagram is the Harel statecharts [Hare88]. Figushdws a state diagram describing the life-cycl&lging
Objects. A Flying Object can be in the following stateAtRest, Taxiing, Taking Off, Flying and Landing.

State diagrams can express, in relation to evésjects can receive:

» Transitions: represent state changes due to aatiesuted when objects of the class receive events.

» Guards: describe the situations under which ancblojay accept an event.

» Pre-conditions: describe what must be true afterement is accepted, but before its corresponding
transition actions take place.

» Actions: describe what must be executed when antéyaccepted and its pre-conditions are true.

» Post-conditions: describe what must be true after dctions corresponding to an accepted event are
executed.
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Figure 1: Flying Object State Diagram

As an example from Figure 1, when the evRedchCruiseAltitude produces a transition difying objects from
the TakingOff state to theé-lying state, provided the pre-conditiddoTurbulence is true. The corresponding
actions include the activation of thatomatic pilot.

3.2 A Static View of State Diagrams

In this paper, we represent the states of an oljgedirst class objects. That is, states are teasenormal
classes in the system and are represented as Ispatutdasses of the object’'s application classs Thodel
allows the expression of behavior along severaéabattributes, each having its own state diagtangach
state diagram there corresponds a state-classrdtigrarhis model also allows the nesting of stateested
states become subclasses of the nesting state-Eigsse 2 depicts a state-class hierarchy reptegethe
life-cycle of flying objects. We basically use OMibtation [Rumbaugh+91], and show a few attributes i
each class. State subclasses are indicated withgardhl line across its upper left corner, as imt&py
[Cook+94].



Flying
Object

id_FC

Name

Total Flying Hourg
automatic pilot

At Rest Taxiing Taking Off Landing IEIgri\?vgrd
. ) id_FC id_FC
id_FC id FC : i ;
armival date p&mission Take; off vgloclty Iand!ng strip _ id_FC
Next Fligh gate landing strip landing velocity Crusing Height
turbulence

Figure 2: Flying Object State-Class Hierarchy

The static aspects of state-class hierarchies eambdeled using the mapping techniques proposed in
[Keller97], where classes become tables and stetationships become attributes validated by damba
integrity constraints. The table correspondindgh® root class of the hierarchy has as fields tiébates of

the application class. Accordingly, each state-lgscbhecomes a table having as fields the spexifibutes

the object acquires when in that state. An idmatifon attribute, created in each table (id_FCQhmexample
above), implements the association between stdtelass and application class instances.

3.3 A Dynamic View of State Diagrams

The tables mentioned above can be used to maptabjented structure, in particular state attrilsten the
relational world. To complete the paradigm stitie dynamic aspects included in state diagrams atsstbe
considered. Such aspects represent rules of hwhavhich essentially drive state changes. We aise
dynamic meta-model, shown in Figure 3 with E-R tiota to map object behavior in active relational
databases. The different roles that a class mayiplthe system are represented as view type esitifihe
dynamic aspects governing state changes, sucteassetransitions, pre- and post-conditions, aprasented
as entities in the E-R model; Pre- and post-crmitare implemented as conditions and actionsafalthse
triggers.
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Figure 3: Dynamic M eta-M odel of State Diagrams
3.4 Implementing State Diagrams



In this section, we describe the implementatiorstate dependent behavior, as described abovetrase
step procedure: the creation of exclusion and 8ichu triggers, and the creation of stored procedures.
Triggers correspond to state pre- and post-conditiand stored procedures to transition actions.

Step 1. Create triggers for transition pre-conditions. For each state-subclass representing a state
originating a transition associated to a pre-coodjtcreate an exclusion trigger. This trigger te@ms, in its
body, statements verifying the pre-condition.

To exemplify, consider the transitidReachCruiseAltitute from stateTakingOff to Flying, in Figure 1 above.
Its pre-condition is the absence of turbulencee &kclusion trigger below verifies this conditi@amd cancels
the operation accordingly.

Create trigger Flying_|
for insert on flying
as
update FlyingObject FO,
set automaticPilot = “y”
from FlyingObject FO,
inserted |

) where FO.idfo = l.idfo;
Step 2: Createtriggersfor

For each state-subclass répresormmgoocommmmameror oo Sition associated to a post-canmtitreate an
inclusion trigger. This trigger contains, in itsdy, actions and statements verifying the post-itmmd

Again using the transition above, the action Adé¥automaticPilot is verified by the inclusion triggs body:

Create trigger TakingOff D
for delete on TakingOff
as
begin
Declare @var char(1);
Select @var = (select turbuleBtate from deleted)
If (@var ="'y’) then

begin
raiserror ( “ Unable tonisition to Flying “)
rollback
Step 3: Create: end
For eachevent end ng essentiélthieofollowing

code:
1. select all objects modeled by state-classes whigimate transitions corresponding to the evenénesd;
2. for each such object:

» eliminate the object from the current state;

» insert the object in a destination state.

! We use the SYBASE SYSTEM XI T-SQL language triggerchanism.



Note that the initial creation of an object withtst dependent behavior results from two insertidmsfirst in
its application-class table and the second in thte-slass table corresponding to the initial statbus, when
an object changes state, only the properties exelts the old state are lost.

3.5 Integrating Application Classes with Database Objects

From the steps presented in sub-section 3.4, tegeitith the dynamic meta-model expressed in Fi@rene
can envision the use of an active relational datalzes a tool for implementing object behavior . d5sifive
aspect of this approach is that we reduce the aaxitpl of object oriented applications, by reduciting
amount of code necessary to enforce object dyndmaf@vior. In addition, the use of a database in the
implementation of state transition diagrams, praadow cost of application’s maintenance considgthe
facility of data updates in active relational datsds.

The integration between OO applications and theadyjo meta-model implemented over active relational
database is presented in Figure 4, where the ti@m$iom the source stafakingoff to Flying is represented.
The diagram comprehends the communication betwsei®O application and support classes and database
management system objects, like tables, storededwoes and triggers. At the application side, we the
proposal in [Reese97, Silva97] where the Peer fPatte used to separate the persistent behaviornof a
application domain class into a correspondent fieer) class. On the database side, the storeckquoe
execution engine, generalized here as DBMS, reseiveequest to execute the stored procedure which
implements the actual transition. Its executionrafes on the state subclasses related with thaiticam
implemented as tables in the database. In Figurgedshow how the correspondéfityingObject tuple is
deleted from tableTakingOff and inserted into tabl€lying. Both operations stimulate the correspondent
triggers, which performs the necessary validatilus actions.
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Figure4: Integrating of OO Application Classeswith Active Relational Database Tables

It is important to note that all the dynamic beloavis encapsulated into the active mechanisms ef th
database. Once an event is detected by the appfigtst sole responsibility is to inform the databaf such.

It is of the latter the responsibility to proceeilhapre- and post- conditions verification and ans execution,
according to the dynamic behavior.

The following Java classes exemplify the applicattmde needed for the application domain side ef th
integration. TheFlyingObject is a problem domain class with dynamic behaviodggicted in Figure 1. It's
response to events are expressed as the execttithre @orrespondent method, as is the case with the
ReachCruiseAltitude method/event. The peer cldarsistentFlyingObject is responsible for implementing the
persistent behavior associated with EgingObject class. As seen in its body, the special treatments needed
to execute the stored-procedsgpereachCruiseAltitude link the OO application side with the database.side

Public class FlyingObject {
String name;
Int totalFlyingHours;
Boolean automaticPilot; 6
Boolean turbulenceState;
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One can conceive that the whole dynamic behavibeiisg held by the active relational database. The
transition validations, i.e. pre- and post- cordi, implemented over triggers, free the applicatio
programmers from enforcing them. The actions exaxtas part of thansert trigger, solves the indirection
problem associated with the update of persistetat lojathe OO application, by reproducing cascading
updates on the data in the database.

By the end of the execution of the database sidkeo&pplication, the transition has been executed,
validated, and the actions, if any, have updatesigtent data. Now the situation points to the @ggibn
objects which may need to be synchronized withdditabase. We are currently working to attend suckeal.

4. Handling Object State Inheritance

With the state model adopted in our approach, giliGgiion-class may have subclasses of two natures:
application-subclasses, reflecting type relatiopshin the domain, and state-subclasses, reflectymgmic
behavior. We need to define precisely how an eti@tidime specialization of an application objeadng its
type hierarchy, affects its dynamic behavior, alsth diow this is understood in the active relatiothatiabase
where the object persists. Figure 5 depicts thisatbn, showing type and state inheritance for the
FlyingObject example.
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Figure5: Type Specialization from FlyingObject

In this example, ahlelicopter is aFlyingObject, inheriting via type specialization all attributesd behavior
of aFlyingObject. Since &lyingObject has state dependent behavior, as shown in FiguhésXehavior is
inherited byHelicopter. This means that objects of this class:

* Respond td-lyingObject events, executing transition actions as definatienFlyingObject class;

» May refineFlyingObjects states producing subclasses states and conseguemdydetailed transitions;
* May accept events specific to the Helicopter clagsgcuting actions defined in this class;

Figure 6 illustrates type and state hierarchied-fgimgObject andHelicopter.
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Figure 6: Combined Type and State Hierarchies

A database viewHelicopter H corresponding to a join between tRéyingObject and Helicopter tables
implements attribute inheritancélelicopter H objects are created according to bdityingObject and
Helicopter, and are retrieved as exemplified in the SQL2isecthown below.



CREATE VIEW Helicopter_H
AS
SELECT FO.Name,FO.Object_type,FO.Total_flying_hours,H.number_odid3a
H.Type of propeller
FROM Flying Object FO,
Helicopter H

WHERE

FO.id_FO =H.id_FO

State-subclasses corresponding to the applicatibolass [elicopter, in the running example) can be either
specialization of corresponding application-susessistates or new states, specific to the apiolicat
subclass. In the first case, by adopting nestedsstes in [Cook+94], we need to define the initate for
each view created in each class. A state trangitiay be represented in several levels in the agipdic class
type hierarchy. These transitions automaticallyuodmm the execution of insertion triggers copesding to
destination states and exclusion triggers cormeding to origin states. Both types of triggers ban
generated from the dynamic meta-model describadlmsection 3.3.

The insertion triggers execute the following steps:

1. Verify the existence of subclasses of the applicatiass

2. For each sub-class specializing a view sufferitiguasition in the super-class, create a tuple éntéole
corresponding to the subclass’ initial state.

For instance, let us assume that the initial sihtheHelicopter view is FlyingForwards, as the transition
according to this view is taken FyingObject, from the stat§akingOff to the statd-lying, actions
corresponding to the same transition are takehamitlicopter class. Exclusion triggers, as described above,
execute similarly, eliminating tuples accordingly.

For those states with sub-class specializationsitians occur only in their most specialized levidie
example below, whereRyingObject specializes into &lelicopter, illustrates this situation. Consider the
eventPullBackStick in the example below, which causes Helicopter withO to change states, from
FlyingForwards to FlyingBackwards. The referred instance would accept the eventhlayging over the
Helicopter sub-classes, while the instance correspondinigg@tiper-class would remain untouched.

objl : Flying Object
id FO: 10
name: esquilo-p13
object Type : Helicopter
total Flying Hours: 10.000
automaticPilot : ‘N’
FO_state: flying

Helicopter
id FO: 10

number of blade®
type of propeller: j2

When considering state sub-classes that areetbflirough more specific state sub-classes, onbezefit
from the previous outline procedure by following tbubsequent steps:

1. Represent sub-classes as specialization entitibe iBER diagram;

2. Implement the sub-classes hierarchies as tabkeeiactive relational database;

3. Represent the hierarchy structure as instancdwedflass self-relationship in the dynamic meta-rhotle



Figure 3;
4. For each accepted event over an object with dynaetiavior, consult the dynamic meta-model verifying
the existence of more specific sub-classes andrgenimsert and delete triggers.

It is important to note that, when executing aestednsition, the delete operation over the sotrasesition

table stimulates a delete trigger which verifies éxistence of the same object below in the stateclass
hierarchy, promoting its exclusion. The insert @tien on the table representing the destinatiote stbthe
transition, proceeds analogously.

5 Conclusion

In this article, we presented a technique for irdéigg and implementing object behavior to actigitional
databases. In addition to using integrity consrdd check object static relationships betweeraibj our
approach implements database dynamic constraiirtg triggers and stored procedures, to validateadyn
object behavior.

We use state diagrams to represent dynamic obgwvior and store them in the database. From tte st
diagram, we describe several steps to generatgetsgand stored procedures. By using a peer pattern
access the database executing a stored procedutérenan event causes an object to change sitiesn
the stored procedure executes, insertion and dal&iggers simulates the object transition, valitapre and
post conditions and executing actions that areiipeédn the state diagram. State inheritance Has been
addressed, allowing the database to handle hiéearofiobject behavior.

The advantages of this approach are that bottt statl dynamic aspects of objects are integratedraapped
to the database. In addition, the amount of codbetavritten inside object methods is reduced, sicg
dynamic constraint validation for persistent objeist now done by the database. Moreover, maintenanc
increased, considering the facility of data updaiesctive relational databases.

Therefore, we believe our approach is well suidlie integration of object behavior with actiegational
databases, because of its simplicity and the glbditleal with the complexity of hierarchies oftsts. We are
currently developing a CASE tool that will not ordlytomate the generation of stored proceduresraguets
that implement object behavior, but also mainthadbject model synchronized with the database.
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