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Abstract

One of the biggest problems that object-oriented developers face today is having to integrate at the enterprise
level, object-oriented applications with widely applied and quality active relational databases. This paper
focuses on the issues of mapping object dynamic behavior into active relational databases. We present a
technique for expanding active relational databases with object-oriented behavior semantics, extracted from
state transition diagrams expressing object life-cycles. We consider states as first class objects, and discuss
state class and event inheritance.

1.  Introduction

Software development with object orientation is becoming increasingly popular, even in application domains
where traditionally procedural programming is the choice paradigm, as for example in real-time and
administrative systems.  To an extent this increase in use can be traced to the reuse potential offered by the
encapsulation of structure and behavior in classes, the building blocks of object-oriented systems, and to the
promise of new object-oriented CASE tools, which automate part of the software development cycle.

To foster the use of object orientation at the enterprise level, however, where conventional and successful
applications are based on widely applied and quality developed relational data bases, much work still needs to
be done.  The integration of the object orientation and relational paradigms is not easy [ Keller96], and object-
oriented applications must find a way to represent the persistence of some of its objects in active relational
databases.  A general purpose method to integrate object orientation and active relational databases is of
importance.

Steps in this direction are being taken, as for example in [Gargouri+94, Keller97, Silva97+], which address
the mapping of static object models (class and relationship diagrams) to relations.  In this paper we extend this
work by considering the mapping of object behavior to active relational databases [Widom+96], via
transformation rules applied to object life-cycle diagrams.

Life-cycle diagrams express object behavior, and are usually represented in development methods and CASE
tools by state transition diagrams [Harel88].  These diagrams can incorporate transition guards, transition pre-
and post-conditions, actions to be taken during the transition, and actions to be taken when leaving and/or
arriving at a state.

At the core of our approach lies the consideration that the life-cycle rules of persistent objects must
correspond to dynamic constraints expressed in the active relational database management system.
Advantages of implementing such rules as database constraints are for example the simplification of
applications, code reuse and correctness by construction[Widom+96].
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The remainder of this paper is organized as follows.  Section 2 discusses related work.  Section 3 presents the
model for expressing state-classes and the representation of life-cycle rules in active relational databases.
Section 4 discusses the problem of inheritance of classes with state dependent behavior.  Section 5 presents
conclusions and future work.

2.  Related Work

Modeling object behavior via active rules in active relational databases has been proposed in [Teisseire+94],
where the dynamic behavior of objects is expressed in a conceptual model, IFO2.  This model supplements the
static model, providing representations for events, conditions, transitions and actions.  Events may activate
static model methods, and represent external, temporal, or even events with no detailed specification.

The conceptual model incorporates an event algebra, allowing the representation of complex structures, via
event constructors.  The relationship among events is obtained through transition functions, which may depend
on conditions expressed in an algebraic language. From the conceptual model, a few procedures can be used
for the derivation of Event-Condition-Action type rules, similar to those found in the HIPAC project
[Chakravarthy+89] for the implementation of object behavior in active databases.

Our approach differs from the above in that we propose a meta model for the representation of dynamic object
aspects, which can be reused for any situation modeled by a state transition diagram considering the
expression of dynamic semantics as database objects. With small alterations, the model proposed here can be
used to reflect the semantics of IFO2.  Another meaningful difference is the representation of states as
subclasses of application classes, and thus the inheritance of dynamic behavior.

[Harel+96] extends the notation proposed in [Harel88] with dynamic object behavior, as expressed in
[Rumbaugh+94, Cook+94], via state diagrams and O-charts. This work can be used to validate the model
proposed here, since it presents most situations where dynamic modeling plays a part. In particular, we offer
solutions to the following O-chart representations, not considered in the original description:
•  behavior inheritance from classes representing states;
•  event pre- and post-conditions.
 
 [Schlaer+90] proposes a class modeling transition diagrams exists in the system, and for each object having
this behavior an instance of this class is created, its transitions are loaded, and a proxy object is created to
keep track of the current state of the application object.  The State pattern [Gamma+95] can also be used to
model transition diagrams: life-cycle states are represented as sub-classes in a type hierarchy whose root
models a component of the application object, responsible for the state dependent behavior of the application
object.  In contrast to [Schlaer+90] and [Gamma+95], we decided to  use the state diagram modeling approach
proposed in [Cook+94], where states are modeled by special sub-classes of the class modeling the application
object, because it is easily mapped into tables in an active relational database.
 
 
 3.  Modeling Object Behavior
 
 In this section, we discuss the mapping of state diagrams, expressing the life-cycle of objects of a given class,
into database mechanisms, as found in the Entity-Relationship model [Chen76].  We briefly describe state
diagrams, using a simple Flying Object state diagram example (see Figure 1). Then, based on this example, we
describe the static and dynamic relational views of state diagrams. Next, we show how state diagrams are
implemented using database mechanisms. Finally, we describe the integration of application classes with
database objects.

 3.1 State Diagrams

A state diagram represents the life history of objects in a class and shows the sequence of operations that takes
objects into several different states. It is a graph whose nodes are states of an object and whose arcs are
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transitions between states caused by events applicable to that object. The graphical notation used for a state
diagram is the Harel statecharts [Hare88]. Figure 1 shows a state diagram describing the life-cycle of Flying
Objects.  A Flying Object can be in the following states: AtRest, Taxiing, Taking Off, Flying and Landing.

State diagrams can express, in relation to events objects can receive:
•  Transitions: represent state changes due to actions executed when objects of the class receive events.
•  Guards: describe the situations under which an object may accept an event.
•  Pre-conditions: describe what must be true after an event is accepted, but before its corresponding

transition actions take place.
•  Actions: describe what must be executed when an event is accepted and its pre-conditions are true.
•  Post-conditions: describe what must be true after the actions corresponding to an accepted event are

executed.

AtRest

TakingOff

Flying

LandingTaxiing

Time to

TakeOff

ReachCruiseAltitude
[NoTurbulence] /
Activate Automatic
Pilot

AbortTakingoff

ApproachDestination

(distance)

GroundTouch

EnginesOff

Figure 1:  Flying Object State Diagram   

As an example from Figure 1, when the event ReachCruiseAltitude produces a transition of flying objects from
the TakingOff state to the Flying state, provided the pre-condition NoTurbulence is true.  The corresponding
actions include the activation of the automatic pilot.

3.2 A Static View of State Diagrams

In this paper, we represent the states of an object as first class objects. That is, states are treated as normal
classes in the system and are represented as special subclasses of the object’s application class. This model
allows the expression of behavior along several object attributes, each having its own state diagram; to each
state diagram there corresponds a state-class hierarchy. This model also allows the nesting of states; nested
states become subclasses of the nesting state-class. Figure 2 depicts a state-class hierarchy representing the
life-cycle of flying objects. We basically use OMT notation [Rumbaugh+91], and show a few attributes in
each class. State subclasses are indicated with a diagonal line across its upper left corner, as in Syntropy
[Cook+94].
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Figure 2: Flying Object State-Class Hierarchy

The static aspects of state-class hierarchies can be modeled using the mapping techniques proposed in
[Keller97], where classes become tables and static relationships become attributes validated by database
integrity constraints.  The table corresponding to the root class of the hierarchy has as fields the attributes of
the application class. Accordingly, each state-subclass becomes a table having as fields the specific attributes
the object acquires when in that state.  An identification attribute, created in each table (id_FO, in the example
above),  implements the association between state-subclass and application class instances.

3.3 A Dynamic View of State Diagrams

The tables mentioned above can be used to map object-oriented structure, in particular state attributes, to the
relational world.  To complete the paradigm shift, the dynamic aspects included in state diagrams must also be
considered.  Such aspects represent rules of behavior, which essentially drive state changes.  We use a
dynamic meta-model, shown in Figure 3 with E-R notation, to map object behavior in active relational
databases. The different roles that a class may play in the system are represented as view type entities; The
dynamic aspects governing state changes, such as events, transitions,  pre- and post-conditions, are represented
as entities in the E-R model;  Pre- and post-conditions are implemented as conditions and actions in database
triggers.

State
Valid
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Event

source

destiny

Initial State

stimulus

Dynamic Characteristics
Dynamic View

Final

State

View Type Class
Simple Inheritance

Figure 3: Dynamic Meta-Model of State Diagrams

3.4 Implementing State Diagrams
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In this section, we describe the implementation of state dependent behavior, as described above, as a three-
step procedure: the creation of exclusion and inclusion triggers1, and the creation of stored procedures.
Triggers correspond to state pre- and post-conditions, and stored procedures to transition actions.

Step 1: Create triggers for transition pre-conditions.  For each state-subclass representing a state
originating a transition associated to a pre-condition, create an exclusion trigger.  This trigger contains, in its
body, statements verifying the pre-condition.

To exemplify, consider the transition ReachCruiseAltitute from state TakingOff  to Flying, in Figure 1 above.
Its pre-condition is the absence of turbulence.  The exclusion trigger below verifies this condition, and cancels
the operation accordingly.

Step 2: Create triggers for transition post-conditions.
For each state-subclass representing a destination state for a transition associated to a post-condition, create an
inclusion trigger.  This trigger contains, in its body, actions and statements verifying the post-condition.

Again using the transition above, the action ActivateAutomaticPilot is verified by the inclusion trigger’s body:

Step 3: Create a stored procedure for each event.
For each event in the application domain, create a stored procedure, consisting essentially of the following
code:
1. select all objects modeled by state-classes which originate transitions corresponding to the event received;
2. for each such object:

•  eliminate the object from the current state;
•  insert the object in a destination state.

                                                          
1 We use the SYBASE SYSTEM XI T-SQL language trigger mechanism.

Create trigger TakingOff_D
 for delete on TakingOff
 as
 begin
    Declare @var char(1);

                  Select @var = (select turbulence State from deleted)
                  If  (@var = ‘y’)  then
                     begin
                        raiserror ( “ Unable to transition to Flying “ )
                        rollback
                      end
                 end

Create trigger Flying_I
  for insert on flying
  as
    update FlyingObject FO,
    set automaticPilot = “y”
    from FlyingObject FO,

inserted I
     where FO.idfo = I.idfo;
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Public  class FlyingObject {
String name;
Int  totalFlyingHours;
Boolean automaticPilot;
Boolean turbulenceState;

Boolean ReachCruiseAltitude ( boolean turbulenceState) {

Note that the initial creation of an object with state dependent behavior results from two insertions: the first in
its application-class table and the second in the state-class table corresponding to the initial state.  Thus, when
an object changes state, only the properties exclusive to the old state are lost.

3.5 Integrating Application Classes with Database Objects

From the steps presented in sub-section 3.4, together with the dynamic meta-model expressed in Figure 3, one
can envision the use of an active relational database as a tool for implementing object behavior . A positive
aspect of this approach is that we reduce the complexity of object oriented applications, by reducing the
amount of code necessary to enforce object dynamic behavior. In addition, the use of a database in the
implementation of state transition diagrams, promotes low cost of  application’s maintenance considering the
facility of data updates in active relational databases.

The integration between OO applications and the dynamic meta-model implemented over active relational
database is presented in Figure 4, where the transition from the source state Takingoff to Flying is represented.
The diagram comprehends the communication between the OO application and support classes and database
management system objects,  like tables, stored procedures and triggers. At the application side, we use the
proposal in [Reese97, Silva97] where the Peer Pattern is used to separate the persistent behavior of an
application domain class into a correspondent (i.e. peer) class. On the database side, the stored procedure
execution engine, generalized here as DBMS, receives a request to execute the stored procedure which
implements the actual transition. Its execution operates on the state subclasses related with the transition,
implemented as tables in the database. In Figure 4, we show how the correspondent FlyingObject tuple is
deleted from table TakingOff and inserted into table Flying. Both operations stimulate the correspondent
triggers, which performs the necessary validation plus actions.

ReachCruise
Altitude

Flying
Object

Persistent
Flying
Object

DBMS TakingOff Flying

ReachCruiseAltitude
Delete

Insert

Check pre_cond

Active Relational Database SideOO Application Side

sp_reachcruise
altitude

Action

Check
post_cond

Figure 4:  Integrating of OO Application Classes with Active Relational Database Tables

It is important to note that all the dynamic behavior is encapsulated into the active mechanisms of the
database. Once an event is detected by the application its sole responsibility is to inform the database of such.
It is of the latter the responsibility to proceed with pre- and post- conditions verification and actions execution,
according to the dynamic behavior.

The following Java classes exemplify the application code needed for the application domain side of the
integration. The FlyingObject is a problem domain class with dynamic behavior as depicted in Figure 1. It’s
response to events are expressed as the execution of the correspondent method, as is the case with the
ReachCruiseAltitude method/event. The peer class PersistentFlyingObject is responsible for implementing the
persistent behavior associated with the FlyingObject class. As seen in its body, the special treatments needed
to execute the stored-procedure sp_reachCruiseAltitude link the OO application side with the database side.
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One can conceive that the whole dynamic behavior is being held by the active relational database. The
transition validations, i.e. pre- and post- conditions, implemented over triggers, free the application
programmers from enforcing them. The actions executed as part of the insert trigger, solves the indirection
problem associated with the update of persistent data by the OO application, by reproducing cascading
updates on the data in the database.

By the end of the execution of the database side of the application, the transition has been executed, and
validated, and the actions, if any, have updated persistent data. Now the situation points to the application
objects which may need to be synchronized with the database. We are currently working to attend such a need.

4.  Handling Object State Inheritance

With the state model adopted in our approach, an application-class may have subclasses of two natures:
application-subclasses, reflecting type relationships in the domain, and state-subclasses, reflecting dynamic
behavior.  We need to define precisely how an execution-time specialization of an application object, along its
type hierarchy, affects its dynamic behavior, and also how this is understood in the active relational database
where the object persists. Figure 5 depicts this situation, showing type and state inheritance for the
FlyingObject example.
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Figure 5: Type Specialization from FlyingObject

In this example, an Helicopter is a FlyingObject, inheriting via type specialization all attributes and behavior
of a FlyingObject.  Since a FlyingObject has state dependent behavior, as shown in Figure 2, this behavior is
inherited by Helicopter.  This means that objects of this class:
•  Respond to FlyingObject events, executing transition actions as defined in the FlyingObject class;
•  May refine FlyingObjects states producing subclasses states and consequently more detailed transitions;
•  May accept events specific to the Helicopter class, executing actions defined in this class;

Figure 6 illustrates type and state hierarchies for FlyingObject and Helicopter.

Flying Object

Id_FO
Name
Object type
Total Flying hours
Automatic pilot
FO state

Helicopter

Id_FO
Number of blades
Type of propeller
Flying state

Taking off

Landing

Stopped on Fly

Flying Backwards

At Rest

Flying

 Flying Forward

Taxiing

Figure 6: Combined Type and State Hierarchies

A database view Helicopter_H corresponding to a join between the FlyingObject and Helicopter  tables
implements attribute inheritance. Helicopter_H objects are created according to both FlyingObject and
Helicopter, and are retrieved as exemplified in the SQL2 section shown below.
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CREATE VIEW Helicopter_H
AS
SELECT FO.Name,FO.Object_type,FO.Total_flying_hours,H.number_of_blades,

H.Type of propeller

            Flying Object FO,
            Helicopter H

WHERE
FO.id_FO  = H.id_FO

FROM

State-subclasses corresponding to the application-subclass (Helicopter, in the running example) can be either
specialization of corresponding application-superclass states or  new states, specific to the application-
subclass. In the first case, by adopting nested states as in [Cook+94], we need to define the initial state for
each view created in each class. A state transition may be represented in several levels in the application class
type hierarchy. These transitions automatically occur from the execution of  insertion triggers corresponding to
destination states and  exclusion triggers corresponding to origin states. Both types of triggers can be
generated from the dynamic meta-model described in sub-section 3.3.

The insertion triggers execute the following steps:
1. Verify the existence of subclasses of the application-class
2. For each sub-class specializing a view suffering a transition in the super-class, create a tuple in the table

corresponding to the subclass’ initial state.

For instance, let us assume that the initial state of the Helicopter view is FlyingForwards, as the transition
according to this view is taken in FlyingObject, from the state TakingOff to the state Flying, actions
corresponding to the same transition are taken in the Helicopter class. Exclusion triggers, as described above,
execute similarly, eliminating tuples accordingly.

For those states with sub-class specialization, transitions occur only in their most specialized level. The
example below, where a FlyingObject specializes into a Helicopter, illustrates this situation. Consider the
event PullBackStick in the example below, which causes Helicopter with id 10  to change states, from
FlyingForwards to FlyingBackwards. The referred instance would accept the event by changing over the
Helicopter sub-classes, while the instance corresponding to the super-class would remain untouched.

When  considering state sub-classes  that are refined through more specific state sub-classes, one can benefit
from the previous outline procedure by following the subsequent steps:
1. Represent sub-classes as specialization entities in the ER diagram;
2. Implement the sub-classes hierarchies as tables in the active relational database;
3. Represent the hierarchy structure as instances of the class self-relationship in the dynamic meta-model of

obj1 : Flying Object
id_FO: 10
name: esquilo-p13
object Type : Helicopter
total Flying Hours: 10.000
automaticPilot : ‘N’
FO_state: flying

Helicopter
id_FO: 10

           number of blades: 2
type of propeller: j2
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Figure 3;
4. For each accepted event over an object with dynamic behavior, consult the dynamic meta-model verifying

the existence of more specific sub-classes and generate insert and delete triggers.
 
It is important to note that, when executing a state transition, the delete operation over the source transition
table stimulates a delete trigger which verifies the existence of the same object below in the  state sub-class
hierarchy, promoting its exclusion. The insert operation on the table representing the destination state of the
transition, proceeds analogously.

5 Conclusion

In this article, we presented a technique for integrating and implementing object behavior to active relational
databases. In addition to using  integrity constrains to check object static relationships between objects, our
approach implements database dynamic constraints using triggers and stored procedures, to validate dynamic
object behavior.

We use state diagrams to represent dynamic object behavior and store them in the database. From the state
diagram, we describe several steps to generate triggers and stored procedures. By using a peer pattern, we
access the database executing a stored procedure any time an event causes an object to change states. When
the stored procedure executes, insertion and deletion triggers simulates the object transition, validating pre and
post conditions and executing actions that are specified in the state diagram. State inheritance has also been
addressed, allowing the database to handle hierarchies of object behavior.

The advantages of this approach are that both static and dynamic aspects of objects are integrated and mapped
to the database. In addition, the amount of code to be written inside object methods is reduced, since any
dynamic constraint validation for persistent objects is now done by the database. Moreover, maintenance is
increased, considering the facility of data updates in active relational databases.

Therefore, we believe our approach is well suited for the integration of object behavior with active relational
databases, because of its simplicity and the ability to deal with the complexity of hierarchies of  states. We are
currently developing a CASE tool that will not only automate the generation of stored procedures and triggers
that implement object behavior, but also maintain the object model synchronized with the database.
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