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Connectivity of Ad Hoc Networks with Link
Asymmetries Induced by Shadowing

Giuseppe De Marco, Member, IEEE, Maurizio Longo, Fabio Postiglione

Abstract—The aim of this letter is to determine the minimum
node density to achieve a connected large-scale ad hoc network,
where every node has the same transmitting and receiving capa-
bilities. Due to the log-normal shadowing, links are unidirectional
in general. Contrary to the prevailing opinion, we argue that such
asymmetries result into a “reduced” connectivity graph, which,
from the point of view of MAC and routing protocols, is to be
considered the true or effective connectivity graph. Accordingly,
we derive a new formula for the connection probability between
two nodes in order to compute global connectivity. Finally,
theoretical findings, borrowed from random graphs theory, are
compared to numerical simulation results in synthetic wireless
network scenarios.

Index Terms—Ad hoc networks, multi-hop networks, connec-
tivity, log-normal shadowing, random graphs theory.

I. INTRODUCTION

AN ad hoc wireless multi-hop network is often represented
as a connectivity graph G(V, E), where V is the node

set and E is the link set. In such a network, the presence of
an edge between two vertices is often modelled as a Bernoulli
random variable (r.v.), as a consequence of the random position
of nodes in the space. Let p`(r) be the link probability,
i.e. the probability that a link exists between two nodes at
(euclidean) distance r. In the simplest case, it is modelled as
a monotone step function of r, i.e. p`(r) = 1r≤r0 , where r0 is
the transmission range; the resulting random graph is known
as Geometric Random Graph (GRG). To account also for the
irregularities of the losses along the radio channels, adds some
complexity to the characterization of link probability. Here, we
consider the case of log-normal shadowing, i.e. the path loss
is assumed to be a log-normal r.v. [12].

Usually, the connectivity graph is assumed to be undirected,
which corresponds to consider links as bi-directional and sym-
metrical. More generally, they are asymmetrical to the point
that, in some cases, as demonstrated by recent measurements
on wireless networks [4], a communication is allowed from
one node u to another v while being hindered on the converse.
This lack of symmetry may adversely affect the performance
of MAC and routing protocols, which typically do not make
provision for asymmetrical links [11].

In this paper, we assume that the link asymmetries are
only due to radio impairments, hence neglecting other sources
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of dissimilarities, such as uneven power assignment and
interference (low traffic regime). We also assume that the
link characteristics are stationary, thus ignoring possible time
varying behaviors.

Under these assumptions, we are able to determine the min-
imum node density that can guarantee a large-scale connected
network at a given probability level. Since most of available
results on the connectivity of GRG refer to undirected graphs
[6], [7], [8], [1], we provide some new formulas for the
global connection probability of ad hoc networks (directed or
not), and we compare said theoretical findings with numerical
results obtained in simulated environments.

II. DEFINITIONS

Inside the log-normal shadowing model, the path loss (in
deciBel) is a normal r.v. β(r) whose expectation depends on
the length r, according to

β(r) = β0 + 10α log(r/d0) + X, (1)

where β0 and d0 are constants, α is the attenuation coefficient,
X ∼ N (0, σ2) and log(·) is the base 10 logarithm. Without
loss of generality, henceforth β0 = 0 dB and d0 = 1 m. Since
we assume identical hardwares, equal transmitting powers and
homogeneous path loss characteristics, two nodes at distance
r are connected if β(r) ≤ βth, where βth is the threshold
path loss. Equivalently, we can use the transmission range
r0, defined after (1) as r0 , 10

βth
10α , which is the maximum

distance between two nodes at which the receiving power is
greater than a receiving power threshold, in the absence of
log-normal shadowing effect, i.e. for σ2 = 0.

It is worth noting that, since all nodes have the same βth,
we implicitly assume there is no power control mechanism
deployed in the network. For further details on this mechanism,
we refer to [1], [13].

Let Gu(V, Eu), or simply Gu, be an undirected graph and
Gd(V,Ed), or simply Gd, a directed graph or digraph. They
model the connectivity graph of an ad hoc network with sym-
metrical and asymmetrical links, respectively. In particular, in
the former model the log-normal shadowing is supposed to act
symmetrically on both directions1. A reduced graph is thereof
introduced, referred to as Gr(V,Er), or simply Gr: It has an
undirected link between nodes z, v ∈ V iff Gd has arcs in
both directions between z and v. Gu is said to be connected
if, for every node pair, there is at least one sequence of edges
(path) connecting them. If this applies to the digraph Gd, by

1An alternative model for Gu is introduced in [2], where Gu is obtained
from Gd, and leads to similar results.
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considering also arc directions, we say that Gd is strongly
connected.

Our approach to characterise the connectivity properties of
ad hoc networks subject to log-normal shadowing is based
on Random Graphs (RGs) theory. By considering the link
probabilities pu, pd and pr, for connection graphs Gu, Gd and
Gr respectively, the global connection probabilities of graphs
are introduced: Πu, respectively Πr, is the probability that Gu,
respectively Gr, is connected; Πd is the probability that Gd is
strongly connected.

Let N be the number of the nodes, and suppose that they
are uniformly distributed over a square surface with finite area
L × L so that the node density is ρ = N

L2 . In order to avoid
border effects, we assume that the network surface is a torus
surface, which can be formed by connecting both pairs of
opposite edges together. This means that the distance between
two points x = (x1, x2) and y = (y1, y2) is

d(x, y) = {[|x1 − y1| ∧ (L− |x1 − y1|)]2 +

+ [|x2 − y2| ∧ (L− |x2 − y2|)]2} 1
2 , (2)

where (a ∧ b) , min{a, b}.

III. CONNECTIVITY OF NETWORKS SUBJECT TO
SHADOWING

In the rest of the paper, connectivity graphs are RGs
modeled as GRGs where p` is obtained by averaging, with
respect to r, the probability that two generic nodes at a distance
r are connected, namely p`(r) = Pr{β(r) ≤ βth}. Hence, if
r is distributed according to a pdf f(r)

p` =
∫ +∞

0

f(r)Pr{X ≤ 10α log (r0/r)}dr =

=
1
2

∫ +∞

0

f(r) erfc
[
10α log (r/r0)

σ
√

2

]
dr, (3)

where erfc(·) is the complementary error function. As derived
in [10], in the toroidal surface defined in Sect. II it is

f(r) =





2πr

L2
0 ≤ r ≤ L/2,

2πr

L2
− 8r

L2
arccos

(
L

2r

)
L/2 ≤ r ≤ L

√
2/2,

0 elsewhere.
(4)

Consider a connectivity graph represented as an undirected
RG Gu. In order to find the relationship between node density
and global connectivity, we use the property, proved by Erdős
and Rényi [5], [3], that, given a constant c ∈ R, almost every
undirected random graph is connected with probability

Πu
N→∞−→ e−e−c

, (5)

provided the link probability behaves as

pu =
ln(N) + c + o(1)

N
. (6)

By eliminating c in (5) and (6) and adopting p` provided by
(3) in place of pu, we conclude that an undirected GRG is

connected with probability Πu, if node density ρ is such that
ln(ρL2)−ln(− ln Πu)

ρL2 = p`. Hence, for large values of ρL2,

Πu = e−ρL2e−ρL2p`
. (7)

To account for link asymmetries, we adopt a directed
GRG Gd as the connectivity graph. By exploiting similar
arguments and using Palásti’s results [9] (see also [3] for
further readings), it is readily seen that, given a constant
ν ∈ R, a directed RG is strongly connected with probability

Πd
N→∞−→ e−2e−ν

, (8)

if the probability that a directed link between two nodes exists
is

pd =
ln(N) + ν + o(1)

N
. (9)

Again, by eliminating ν in (8) and (9) and using p` provided
by (3) in place of pd, we can compute Πd as a function of ρ
as follows

Πd = e−2ρL2e−ρL2p`
. (10)

Since MAC and routing protocols typically do not make pro-
vision for asymmetrical links [11], it may become necessary
to model the real network connectivity graph as a “reduced”
graph Gr, in which an undirected link is present between each
node pair if directed links in both directions exist. By assuming
that such link probabilities factorise, it is straightforward to
realize that

pr =
∫ +∞

0

f(x) (Pr{X ≤ 10α log(r0/x)})2 dx =

=
1
4

∫ L
√

2/2

0

f(x) erfc2

(
10α log (x/r0)√

2σ

)
dx. (11)

By similar arguments as above, Πr can then be expressed
in terms of ρ as

Πr = e−ρL2e−ρL2pr
. (12)

IV. NUMERICAL RESULTS

In order to test the above findings, numerical simulations
have been performed on synthetic networks. N isolated nodes
were spread uniformly over a torus surface derived from
a square with length L on each edge (L = 400 m), as
described in Sect II. The following system parameters were
assumed: βth = 50 dB, α = 3, σ = 3 and 8. Thereafter a
directed or undirected arc – depending on the graph type –
was added from one node to another whenever the path loss
(randomly generated according to the assumed probabilistic
model) turned out lower than βth. We then checked whether
each resulting graph Gu, Gd and Gr was connected or not.
Finally, the global connection probabilities were evaluated by
means of Monte Carlo simulations (1000 trials).

In Fig. 1 the simulation results are compared to Πu, Πd and
Πr, computed from (7), (10) and (12), having obtained p` in
(3) and pr in (11) by numerical integration procedures. The
agreement between numerical and theoretical results is quite
satisfactory and improves as σ increases: This is in keeping
with the general acknowledgment that the higher σ the better
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Fig. 1. Global connection probabilities Πu, Πd and Πr vs node density
ρ of ad hoc networks in different log-normal shadowing environments. Both
theoretical Πu (straight line), Πd (dash-dotted) and Πr (dashed) and numeri-
cal results (triangles, boxes and stars, respectively) are reported, together with
global connection probability in absence of the shadowing effect (dotted line).
The parameter values adopted are: L = 400 m, βth = 50 dB, α = 3, (a)
σ = 3 dB and (b) σ = 8 dB.

the ad hoc networks are modelled as the classical RGs (e.g.
[1]). It is worth noting that this is the most frequent case in
typical wireless communication scenarios [12], where σ/α >
1.

From a Layer-2 and Layer-3 protocols perspective, Gr is
to be considered the “true” connectivity graph for ad hoc
networks. Hence, Fig. 1 shows that, to achieve a given a global
connection probability level, a minimum node density ρ, also
referred to as the critical node density, is required which is
significantly larger than that predicted by adopting Gu or Gd

connectivity graph models. Thus, we suggest that the critical
node density shall be conservatively determined according to
(12).

Furthermore, if σ increases, Πu and Πd also increase
markedly, whereas Πr is relatively unaffected. In other words,
we can not expect much advantage from shadowing effects
toward connectivity of real wireless multi-hop networks.

V. CONCLUDING REMARKS

Motivated by recent measurements on real testbeds, we ad-
dressed the impact of unidirectional links on the connectivity
properties of an ad hoc network and introduced some new
formulas to compute global connection probability. From the
point of view of MAC and routing protocols, we argued that i)
the connectivity properties of networks should be predicted by
considering link direction and, consequently, network design
tools should be revised accordingly and ii) the log-normal
shadowing model for path loss (in particular its standard
deviation) does not improve such connectivity properties. This
study can be applied also to wireless sensor networks, where
the approximation of zero interference holds due to the low
duty cycle of the sensors.
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