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Neurons in the brain typically receive thousands of synaptic inputs, 
which are integrated in time and space to generate an output sig-
nal. As most of these inputs are made on the dendritic tree, research 
over many years has focused on understanding how the passive and 
active properties of dendrites influence synaptic integration. A range 
of forms of synaptic integration have been described, from sublin-
ear, as seen in passive dendrites1, to supralinear due to generation of 
dendritic spikes2–8. More subtle modifications of synaptic integration 
have also been described, due to activation of potassium, HCN and 
persistent sodium channels9–12. Evidence for these different forms 
of synaptic integration is based largely on experiments conducted  
in vitro. Much less is known about how neurons process synaptic 
inputs while embedded in their network in vivo.

The cortex provides an ideal brain region where this issue can be 
addressed. Single neurons in sensory cortical areas integrate inputs 
with defined spatial and temporal patterns depending on the char-
acteristics of the stimulus. These early computations are thought 
to be crucial to the processing of sensory information. While there 
is emerging evidence that somatosensory stimulation can evoke 
active forms of dendritic integration in vivo13–16, to what extent 
this can be generalized across different sensory modalities is unclear. 
In vitro work indicates that supralinear forms of synaptic integra-
tion require correlated activity clustered onto the same dendritic 
location or branch3,8. In contrast, when inputs are dispersed onto 
different branches or activated at different times, linear or sublinear 
forms of synaptic integration usually occur8,17–19. It is only now 
becoming apparent how synaptic inputs, encoding specific sensory 
information, are distributed at the dendritic level. Some evidence 
indicates that sensory information is processed by dendrites in a 
dispersed manner20,21, which is less likely to recruit active dendritic 

 processing, whereas other evidence supports clustered activation of 
synaptic inputs onto the same dendrite22,23.

Here we examine the integration of synaptic inputs in the binocular 
region of the primary visual cortex of the mouse in vivo. By definition, 
binocular neurons encode information from the two eyes, providing 
a model system in which to study how two defined sensory inputs are 
integrated at the single-cell level. Although extracellular recording 
has provided a basic understanding of how simple and complex cells 
integrate binocular information24,25, this analysis is based exclusively 
on the firing output of neurons and therefore lacks information on the 
integration of the underlying synaptic responses. Here we use whole-
cell patch-clamp recording in vivo to study the synaptic events lead-
ing to binocular processing in layer 2/3 pyramidal neurons. We find 
that small synaptic inputs from the two eyes are integrated linearly, 
whereas large inputs are integrated sublinearly. Using voltage-clamp 
and compartmental modeling, we show that sublinear binocular inte-
gration cannot be explained solely by nonlinear integration of excita-
tory inputs but requires balanced recruitment of inhibition. Finally, 
we find that sublinear integration of binocular synaptic inputs acts 
as a divisive form of gain control, linearizing the output of binocular 
neurons and enhancing orientation selectivity.

RESULTS
To investigate the integration of binocular inputs, we made in vivo 
whole-cell current-clamp recordings from layer 2/3 pyramidal  
neurons in primary visual cortex of anesthetized adult mice. Visual 
stimuli (sinusoidal drifting gratings) were presented selectively 
to each eye alone or to both eyes together, by using computer- 
controlled motorized eye shutters (Fig. 1a). To reveal the underlying 
synaptic response, action potentials were removed using a sliding 
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Although we know much about the capacity of neurons to integrate synaptic inputs in vitro, less is known about synaptic 
integration in vivo. Here we address this issue by investigating the integration of inputs from the two eyes in mouse primary 
visual cortex. We find that binocular inputs to layer 2/3 pyramidal neurons are integrated sublinearly in an amplitude-dependent 
manner. Sublinear integration was greatest when binocular responses were largest, as occurs at the preferred orientation and 
binocular disparity, and highest contrast. Using voltage-clamp experiments and modeling, we show that sublinear integration 
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inputs, even when they are activated closely in space and time, but requires balanced recruitment of inhibition. Finally, we 
show that sublinear binocular integration acts as a divisive form of gain control, linearizing the output of binocular neurons and 
enhancing orientation selectivity.
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median filter26 (Fig. 1a, bottom). This approach did not appreci-
ably affect the measures we used to characterize subthreshold syn-
aptic responses (Supplementary Fig. 1). Median-filtered voltage 
responses were averaged across trials, as well as over a single cycle 
of the visual stimulus, fitted with a sinusoidal function and the 
peak (Vpeak), mean (Vmean), and amplitude of sinusoidal modula-
tion (Vmodulation) quantified (Fig. 1b).

Binocular synaptic inputs sum sublinearly
We first restricted our analysis to neurons classified as simple cells 
(Supplementary Fig. 2a,b) and focused on synaptic potentials evoked 
by stimuli at the preferred orientation; that is, the orientation that gave 
the largest suprathreshold (spiking) response during stimulation of 
both eyes together. Consistent with earlier work, in adult mice the 
preferred orientation during stimulation of the ipsilateral or contral-
ateral eye alone was matched in most cells27 and was similar to that 
during stimulation of both eyes together (Supplementary Fig. 2c). 
To investigate the integration of synaptic inputs from the two eyes, 
we compared the synaptic response evoked by stimulation of both 
eyes together to the linear sum of responses evoked by stimulation 
of each eye separately. As neurons were poorly direction tuned, 
with ~85% of cells having a direction selectivity index less than 0.5  
(ref. 28) (Supplementary Fig. 2e), we pooled responses to the two 
directions. We found that inputs from the contralateral and ipsilateral 
eyes added linearly in cells where the expected linear sum was small; 
however, they added sublinearly in cells where the expected linear 
sum was large (Fig. 1c,d). Overall, at the preferred orientation, we 
observed sublinear integration of binocular synaptic inputs when the 
peak of the expected linear sum was larger than approximately 15 mV 
(Fig. 1e), with the extent of sublinear integration proportional to the 
amplitude of the expected linear sum (Fig. 1f). Sublinear integration 
did not depend on the stimulus direction (Supplementary Fig. 3a,b). 
We obtained similar results in neurons classified as complex cells 
(Supplementary Fig. 4a–c).

We next investigated whether the integration of binocular  
synaptic responses depends on stimulus orientation (Fig. 2a).  

When averaging across cells, we observed significant sublinear inte-
gration only at or near the preferred orientation (Fig. 2b). This may 
arise because responses at the preferred orientation are by definition 
largest or because the cellular mechanisms generating sublinear inte-
gration depend on stimulus orientation. To investigate this, we tested 
how binocular integration depends on the amplitude of the expected 
linear sum during stimulation by gratings with different orientations. 
This analysis showed that, in individual cells, inputs from the two 
eyes could integrate sublinearly at non-preferred orientations if the 
expected linear sum was large (Fig. 2c,d). These data indicate that 
the orientation dependence of sublinear integration (Fig. 2b) arises 
simply because the proportion of responses with large expected lin-
ear sums (>15 mV) is highest at the preferred orientation (Fig. 2d;  
P < 0.05, χ2 test).

Selective presentation of the same visual stimulus to the con-
tralateral or ipsilateral eye alone evoked responses that were often 
out of phase (Fig. 2e). Notably, the extent of sublinear integra-
tion was greatest when the phase difference between monocular 
responses was smallest (Fig. 2e,f). As seen for stimulus orienta-
tion, the phase dependence of binocular integration was due to 
the higher proportion of responses with large expected linear  
sums (>15 mV) when monocular responses were in phase  
(Fig. 2g,h; P < 0.01, χ2 test). Finally, we investigated the con-
trast sensitivity of binocular integration. Stimuli were presented 
at three different contrasts (30%, 50% or 100%; Supplementary  
Fig. 3c). The peak of the synaptic response to stimulation of the 
contralateral or ipsilateral eye alone increased with increasing con-
trast (Supplementary Fig. 3d), leading to larger expected linear 
sums at higher contrast. Consistent with an amplitude-dependent  
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Figure 1 Summation of binocular inputs at the preferred orientation. 
(a) Top: the experimental setup during presentation of the same visual 
stimulus selectively to each eye alone or to both eyes together, using  
eye shutters. Bottom: overlaid trials (n = 3) of membrane potential  
during baseline (gray bar, top) and in response to drifting gratings at  
the preferred orientation (dotted bars, top) during stimulation of the 
ipsilateral (left) or contralateral eye (middle) and both eyes together 
(right) with corresponding color-coded median-filtered average responses. 
Dashed gray line indicates average membrane potential during baseline. 
(b) Single-cycle average of a median-filtered synaptic response (light 
green) fitted with a sinusoidal function (black). The peak (Vpeak), 
mean (Vmean) and modulation component (Vmodulation) are indicated. 
(c) Single-cycle synaptic response to stimulation of both eyes (light 
green) superimposed with the linear sum of contralateral and ipsilateral 
responses (pink) for three cells with different expected linear sums. 
Data fitted with sinusoids (dark green and purple). (d) Vpeak of synaptic 
responses to stimulation of both eyes at the preferred orientation at either 
the preferred or non-preferred direction versus the corresponding  
expected linear sum (40 responses, n = 20 cells). Dashed diagonal line 
indicates linear summation. (e) Same data as in d in 5-mV bins for the 
expected linear sum and expressed as an average ± s.e.m. (n = 20 cells; 
*P < 0.05, **P < 0.01, ***P < 0.001, two-way ANOVA, Bonferroni  
post-test). (f) Residuals from linearity (difference between observed  
Vpeak and expected Vpeak) versus the expected linear sum. Only residuals 
for large expected linear sums are shown (Vpeak > 15 mV; 18 responses,  
n = 10 simple cells). Data fitted with a linear regression (black line);  
r, Pearson’s correlation coefficient; P, significance of correlation.
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effect, the extent of sublinear integration of binocular responses 
was greatest at highest contrast (Supplementary Fig. 3e,f).

One of the main roles of binocular integration is to encode bin-
ocular disparity, which is thought to be critical for depth perception. 
To study how binocular integration depends on the stimulus phase 
disparity, we made recordings from binocular neurons during pres-
entation of binocular stimuli at six different interocular spatial phase 
disparities at the preferred orientation using a haploscope (Fig. 3a). In 
these experiments, the initial phase of gratings presented to one eye 
was fixed while the initial phase of the stimulus to the other eye was 
systematically varied in 60° increments (Fig. 3b). First we presented 
the stimuli selectively to each eye alone. Changes in the initial phase of 
the stimulus to one eye led to almost identical changes in the phase of 
the corresponding monocular synaptic response (Fig. 3b,c). We then 
presented the stimuli to both eyes together and studied how binocular 
synaptic responses integrate as a function of the interocular phase 
disparity (Fig. 3d). At the neuron’s preferred phase disparity, defined 
as the phase disparity that gave the largest suprathreshold (spiking) 
response (Fig. 3e,f, top), the phase difference between monocular 
synaptic responses was smallest (Fig. 3e,f, bottom) and the extent of 
sublinear integration was greatest (Fig. 3g). This observation, at the 
single-cell level, is essentially identical to that observed across the cell 
population when we examined binocular integration of monocular 
synaptic responses with different phase during presentation of the 
same visual stimulus to both eyes (see Fig. 2f). In summary, these data 
show that the extent of sublinear integration is greatest at the neuron’s 

preferred phase disparity, when monocular synaptic responses are in 
phase and binocular responses are of largest amplitude.

Membrane potential responses of simple cells to drifting gratings 
are commonly characterized by the mean voltage change during the 
stimulus and by the amplitude of sinusoidal modulation (Fig. 1b). 
Previous work suggests that the cellular mechanisms underlying these 
components may be different and may encode different aspects of 
the stimulus29. We therefore investigated the integration of these 
different components during binocular stimulation (Fig. 4a). The 
amplitude of both the mean and modulation components of the bin-
ocular response displayed weak orientation tuning (Fig. 4b,c), with 
sinusoidal modulation having a higher orientation selectivity index 
(Fig. 4d). To investigate how these different components of the syn-
aptic response integrate during binocular stimulation, we compared 
the linear sum of each component during stimulation of each eye 
on its own to the response observed during stimulation of both eyes 
together (Fig. 4e,f). Although there was substantial scatter around a 
line with slope of one (indicating linear integration), when the data 
were sorted on the basis of peak amplitude we observed sublinear 
integration of both modulation and mean components when the 
expected linear sum was large (Fig. 4g).

Taken together, these results indicate that sublinear binocular inte-
gration is not triggered by a subset of incoming synaptic inputs encoding 
a specific aspect of the stimulus (for example, preferred versus non-
preferred phase disparity). Furthermore, sublinear integration is not 
restricted to a specific component of the response (mean or modulation).  
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Figure 2 Dependence of binocular integration on stimulus orientation and response phase. (a) Single-cycle responses during stimulation of both eyes 
at six different orientations (light green) together with the corresponding expected linear sum of contralateral and ipsilateral responses (pink). The 
preferred orientation is 0°. Sinusoidal fits are in dark green and purple. (b) Average Vpeak (± s.e.m.) of responses to stimulation of both eyes together 
with the expected linear sum plotted as a function of stimulus orientation (40 responses for each stimulus orientation, n = 20 cells). Data fitted with 
a Gaussian. (c) Average Vpeak (± s.e.m.) of responses to stimulation of both eyes color-coded for different stimulus orientations and plotted versus the 
corresponding expected linear sum in 5-mV bins. Dashed diagonal line indicates linear summation. (d) Average residuals from linearity (± s.e.m.) for the 
different stimulus orientations (same color code as in c). Responses sorted based on the amplitude of the expected linear sum. Number of responses 
in each group indicated below the bars. (e) Top: single-cycle responses to stimulation of the contralateral or ipsilateral eye in different cells showing 
different degrees of phase difference. Bottom: single-cycle responses to stimulation of both eyes together with the expected linear sum for the responses 
shown in the top. Data fitted with sinusoids. (f) Average Vpeak (± s.e.m.) of responses to stimulation of both eyes together with the expected linear sum 
plotted as a function of the phase difference between contralateral and ipsilateral responses. Response phase difference binned in 30° bins. Data fitted 
with a linear regression (number of responses for each phase difference is indicated below the points; n = 20 cells). (g) Same as c, color-coded for 
phase difference. (h) Same as d, color-coded for phase difference (same color code as in g). Number of responses in each group indicated below the 
bars. *P < 0.05; **P < 0.01; ns, not significant; two-way ANOVA, Bonferroni post-test.
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Instead, the extent of sublinear binocular integration depends exclu-
sively on the amplitude of the responses evoked by stimulation of 
each eye on its own. We therefore conducted a point-by-point analysis 
of binocular integration in individual cells (Fig. 4h). This analysis 
revealed a strong correlation between the extent of sublinear inte-
gration and the amplitude of the expected linear sum during a single 
visual stimulus (Fig. 4i), with an average correlation coefficient of 
−0.51 ± 0.06 across all cells at the preferred orientation (40 responses, 
n = 20 cells; P < 0.05). Applying this point-by-point analysis across 
all simple cells at all 12 directions produced a stimulus-independent 
description of the dependence of sublinear binocular integration on 
the amplitude of the expected linear sum of contralateral and ipsilat-
eral inputs (Fig. 4j). Similar results were obtained in complex cells 
(Supplementary Fig. 4d,e).

Mechanisms underlying sublinear binocular integration
The observed sublinear integration of binocular synaptic potentials 
may have a presynaptic origin, due to a reduction in excitation or an 
increase in inhibition during large responses, or could occur post-
synaptically as a result of nonlinear interactions in layer 2/3 pyramidal 
neurons. To address these possibilities we investigated how excitatory 

and inhibitory postsynaptic currents (EPSCs and IPSCs) sum dur-
ing binocular stimulation using somatic whole-cell voltage-clamp 
recordings. Recordings were made at hyperpolarized (−80 mV;  
n = 12 cells) and depolarized (+20 to +30 mV; n = 10 cells) potentials 
to isolate the excitatory and inhibitory components of the binocular 
response, respectively30,31. EPSCs recorded at the predicted reversal 
potential for inhibition (−80 mV) during stimulation of both eyes 
were orientation tuned (Fig. 5a,b), consistent with previous data in 
mice during monocular stimulation30,31. Notably, EPSCs evoked by 
stimulation of both eyes together were similar in magnitude to the 
linear sum of EPSCs evoked during stimulation of each eye alone 
(Fig. 5c). Similarly, IPSCs recorded at depolarized potentials during 
stimulation of both eyes together were well predicted by the linear 
sum of IPSCs evoked by stimulation of each eye alone (Fig. 5d). These 
data indicate that inhibitory and excitatory conductance changes sum 
essentially linearly, arguing against the idea that sublinear integra-
tion of voltage responses during binocular stimulation results from 
reduced excitation or increased inhibition.

We next studied the relationship between excitation and inhibition 
in single cells during binocular stimulation at the preferred orienta-
tion. Excitatory (ge) and inhibitory (gi) conductances were estimated 

Figure 3 Dependence of binocular integration 
on phase disparity. (a) The experimental  
setup during presentation of different visual 
stimuli to each eye with a haploscope. (b) Top: 
monocular stimulation with drifting gratings 
at the preferred orientation. The initial phase 
of the stimulus to the ipsilateral eye is kept 
constant while the initial phase of the stimulus 
to the contralateral eye is varied. Bottom: 
single-cycle responses to stimulation of the 
ipsilateral (red) or contralateral (blue) eye.  
Data fitted with sinusoids. (c) Average relative 
phase (± s.e.m.) of the monocular synaptic 
response versus the initial phase of the variable 
stimulus (n = 7 contralateral eye; n = 4 
ipsilateral eye). In different cells, the monocular 
response to gratings with initial phase of 0°  
has been assigned a relative phase of 0°.  
(d) Top: binocular stimuli with different degrees 
of interocular phase disparity. Bottom: single-
cycle responses during stimulation of both eyes 
at six different interocular phase disparities 
(light green) together with the corresponding 
expected linear sum of contralateral and 
ipsilateral responses (pink). Same cell 
as in b. Sinusoidal fits are shown in dark 
green and purple. (e) Top: spike rate versus 
stimulus phase disparity for a representative 
simple cell (preferred phase disparity, 120°). 
Bottom: phase difference between monocular 
synaptic responses versus the stimulus phase 
disparity. (f) Top: average spike rates (± s.e.m.) 
normalized to the response at the preferred 
phase disparity (Pref.) versus the relative 
stimulus phase disparity. Bottom: summary of 
phase difference between monocular synaptic 
responses versus the relative stimulus phase 
disparity. Box plots show the median (center 
bar), interquartile range (box) and range 
(whisker extent; n = 7 cells; *P < 0.05,  
**P < 0.01, one-way ANOVA, Bonferroni  
post-test). (g) Average Vpeak (± s.e.m.) of 
responses to stimulation of both eyes and the expected linear sum, plotted as a function of the relative stimulus phase disparity. Responses to 60° and 
300° (−60°) stimulus phase disparity or to 120° and 240° (−120°) have been pooled. Data fitted with a linear regression (11 cells; variable stimulus 
presented to either the contralateral (n = 7) or ipsilateral eye (n = 4); *P < 0.05, **P < 0.01, two-way ANOVA, Bonferroni post-test).
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using previously published methods32,33. This analysis revealed that  
ge and gi in individual neurons increased in a proportional manner 
during stimulation of both eyes together (Fig. 5e; average correlation =  
0.95 ± 0.01, n = 9 cells; P < 0.01). The ratio of inhibition to excitation 
(gi/ge), estimated from the slope of linear fits to data from individual 
cells, indicated that inhibition and excitation were recruited in a bal-
anced manner, with an average ratio close to 1 (1.12 ± 0.18; n = 9). 

Consistent with this analysis, the average reversal potential of evoked 
synaptic currents during binocular stimulation was approximately 
halfway between the predicted reversal potential for excitation and 
inhibition (−45.8 ± 3.7 mV; n = 9). These data indicate that excitation 
and inhibition are recruited in a balanced manner during binocular 
visual input.

That EPSCs and IPSCs sum essentially linearly during binocular 
stimulation suggests that sublinear integration of binocular synaptic 
potentials has a postsynaptic origin. To investigate this further, we 
simulated visual responses in a morphologically realistic model of 
a layer 2/3 pyramidal neuron in which contralateral and ipsilateral 
excitatory and inhibitory inputs were recruited linearly in a balanced 

Figure 4 Summation of different components 
of the synaptic response. (a) Single-cycle 
responses to drifting gratings presented  
to both eyes at the indicated directions  
(light green). The preferred direction is 
indicated as 0°. Data fitted with sinusoidal 
functions (dark green). Dashed horizontal  
lines indicate the Vmean for each response.  
(b,c) Average amplitude (± s.e.m.) of  
Vmodulation (b) and Vmean (c) during stimulation 
of both eyes at 12 different directions  
(preferred direction defined as 0°; n = 20 
cells). (d) Orientation selectivity index (OSI) of 
Vmodulation and Vmean. Bars represent mean and 
points show individual cells (n = 20 cells;  
*P < 0.001, paired t-test). (e,f) Vmodulation (e) 
and Vmean (f) during stimulation of both eyes 
versus the corresponding expected linear sum  
(240 responses to 12 stimulus directions,  
n = 20 cells). Vpeak linear sum < 15 mV,  
n = 172 responses; Vpeak linear sum > 15 mV,  
n = 68 responses. Dashed diagonal line 
indicates linear summation. (g) Average 
residuals from linearity (± s.e.m.) for Vmodulation 
and Vmean for small (red) and large (blue) 
expected linear sums (n = 20 cells; *P < 0.001,  
two-way ANOVA, Bonferroni post-test).  
(h) Representative observed (both) and 
predicted (linear sum) synaptic responses used 
for point-by-point analysis of sublinear integration during a single response. (i) Residuals from linearity versus the expected linear sum for the response 
shown in h after binning in 10-ms epochs. Data were fitted with a linear regression (black line); r, Pearson’s correlation coefficient; P, significance 
of correlation. Compare with Figure 1f. (j) Pooled data during stimulation of both eyes together. Vm binned in 10-ms epochs; 12,000 time bins from 
240 averaged responses to 12 stimulus directions in 20 simple cells. Small gray symbols indicate individual data points. Large open symbols indicate 
average ± s.e.m. after binning in 2.5 mV increments. Dashed diagonal line indicates linear summation.
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Figure 5 Recruitment and summation of excitation and inhibition during 
binocular integration. (a) EPSCs recorded at −80 mV in response to 
stimulation of both eyes with drifting gratings at six different orientations. 
(b) Normalized EPSC amplitude (± s.e.m.; averaged over the duration of 
the stimulus) during stimulation of both eyes versus stimulus orientation 
(preferred orientation defined as 0°; n = 12 cells). Data fitted with a 
Gaussian. (c,d) Top: single-cycle EPSC (c; recorded at −80 mV) and  
IPSC (d; recorded at +20 mV) in response to stimulation of both eyes at 
the preferred orientation together with the linear sum of EPSCs (c) and 
IPSCs (d) evoked by stimulation of each eye alone. Bottom: peak EPSC  
(c; n = 44 responses, n = 11 cells) and IPSC (d; n = 40 responses,  
n = 10 cells) amplitude evoked by stimulation of both eyes with gratings 
at four different orientations (preferred, +30°, +60°, +90°) versus the 
corresponding linear sum. (e) Top: single-cycle average of estimated 
excitatory (ge) and inhibitory (gi) conductance changes in a single cell 
in response to gratings at the preferred orientation. Bottom: gi versus ge 
(n = 9 cells). Data from individual cells (represented by different colors) 
binned at 0.5-nS increments for ge and expressed as average ± s.e.m. 
Colored lines represent linear fits to each data set.
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manner, to match our experimental observations (Fig. 5e). We mod-
eled two scenarios. In one scenario, contralateral and ipsilateral inputs 
converged upstream from layer 2/3, for example in layer 4 (Fig. 6a, 
left). In the second scenario, separate contralateral and ipsilateral 
inputs converged onto layer 2/3, either from layer 4 neurons with 
different ocular dominance (Fig. 6a, middle)34 or through differ-
ent thalamic or hemispheric pathways (Fig. 6a, right)35. To simulate 
these two scenarios, we sampled ipsilateral and contralateral excita-
tory inputs either from a common pool or from two segregated pools 
of synapses distributed randomly onto basal dendrites (Fig. 6b, top). 
Inhibitory inputs were distributed randomly onto basal dendrites 
or placed at the soma (Fig. 6b, bottom). We simulated our voltage-
clamp data (Fig. 5) using a realistic value of the somatic series resist-
ance (35 MΩ) and adjusted the resting membrane properties of the 
model to match the average holding currents recorded at hyperpo-
larized and depolarized potentials. Excitatory and inhibitory inputs 
were randomly activated by means of sinusoidally modulated inde-
pendent Poisson processes in a balanced manner so that the mag-
nitude and ratio of inhibitory to excitatory synaptic conductances 
estimated from somatic voltage-clamp simulations was similar to 
that observed experimentally (Supplementary Fig. 5; compare with 
Fig. 5e). As one would expect owing to space-clamp errors associated 
with voltage-clamping neurons with complex dendritic trees36, the 
real excitatory and inhibitory conductances required to match the 
experimental data were substantially larger than that estimated from 
somatic voltage-clamp, particularly in models with dendritic inhi-
bition (Supplementary Fig. 5). Furthermore, proportionally more 
inhibition was required to simulate the experimentally recorded 
inhibitory-to-excitatory conductance ratio (gi/ge = 1.12) in models 
with dendritic inhibition, whereas the opposite situation was observed 
in models with somatic inhibition (Supplementary Fig. 5). These 

simulations highlight issues with the interpretation of excitatory and 
inhibitory conductance estimates from somatic voltage-clamp data 
in neurons with dendrites.

Linear recruitment of ipsilateral and contralateral excitatory inputs, 
separately or together in a balanced manner with inhibition, generated 
excitatory and inhibitory currents that summed in a manner similar 
to that observed experimentally (Fig. 6c). Essentially no difference 
in voltage-clamp responses at the soma was observed in models with 
common compared to segregated ipsilateral and contralateral excita-
tory inputs (Fig. 6c). These simulations predicted a small amount of 
sublinear summation of excitatory and inhibitory currents during 
large responses, which was absent in models with current-based syn-
apses (Fig. 6d), indicating that it results from poor voltage or space 
clamp. The capacity of this linear recruitment model to accurately 
predict our voltage-clamp data further substantiates our conclusion 
that sublinear integration of voltage responses arises postsynaptically 
and is not due to a decrease in excitatory drive or an increase in inhibi-
tory drive during large binocular responses.

We next used these models to simulate voltage responses at the 
soma during stimulation of contralateral and ipsilateral inputs alone 
or together. In these simulations we adjusted the passive properties 
of the model to match those observed experimentally at the resting 
membrane potential during current-clamp recordings. These simula-
tions accurately predicted the extent of sublinear integration of volt-
age responses observed experimentally during binocular stimulation 
(Fig. 6e,f). Notably, we were not able to distinguish between models 
with common or segregated ipsilateral and contralateral input, indi-
cating either model is valid. Furthermore, we could not distinguish 
between models with somatic or dendritic inhibition.

As the extent of sublinear summation depends on the relative loca-
tion of synaptic inputs, we generated additional models with different 
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Figure 6 Balanced recruitment of excitation and inhibition  
explains sublinear integration of binocular synaptic inputs.  
(a) Models of binocular integration in layer 2/3 (L2/3) pyramidal  
neurons in which contralateral (blue) and ipsilateral (red) inputs  
converge upstream from layer 2/3, for example in layer 4 (L4, left)  
or arise via separate inputs from layer 4 neurons with different  
ocular dominance (middle) or from different thalamic/hemispheric  
pathways (right). Putative feed-forward interneurons (I) are shown  
in gray. (b) Distribution of excitatory and inhibitory synapses on  
layer 2/3 pyramidal neurons in the different models. (c,d) Somatic  
voltage-clamp simulations of EPSC (top) and IPSC (bottom) amplitude  
during activation of contralateral and ipsilateral inputs together  
compared to their linear sum using either conductance (c) or current  
synapses (d) for common-pool and segregated models with somatic  
or dendritic inhibition (lines essentially superimposed). Experimental  
data (from Fig. 5c) shown as green symbols. (e) Somatic current- 
clamp simulations of the single-cycle synaptic responses to activation  
of contralateral and ipsilateral inputs together compared to their  
linear sum in the different models. (f) Simulated synaptic response  
amplitude during activation of contralateral and ipsilateral inputs  
together plotted versus the linear sum for the different models (lines essentially superimposed; same color code as in c). Experimental data (from  
Fig. 4j) shown as open symbols.
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spatial distributions of excitatory input: either dispersed randomly 
throughout the entire basal dendritic tree, partitioned into different 
basal dendritic regions or concentrated onto a single dendritic branch 
(Fig. 7a). We omitted inhibition in these models to determine the 
extent with which nonlinear interactions between ipsilateral and con-
tralateral excitatory inputs alone contributes to sublinear integration 
of binocular inputs. As observed experimentally, small contralateral 
and ipsilateral responses summed linearly, whereas larger responses 
summed sublinearly (Fig. 7b,c). The extent of sublinear binocular 
integration was greatest when contralateral and ipsilateral synapses 
were concentrated onto a single dendritic branch; however, even in 
this extreme case, sublinear integration was substantially less than 
that observed experimentally (Fig. 7c).

Finally, we tested the impact of temporal correlations between exci-
tatory inputs. Temporal correlations were made either within (monoc-
ular correlation) or between (binocular correlation) contralateral and 
ipsilateral inputs by using the same Poisson input train to drive multi-
ple sets of synapses in the dispersed model (Fig. 7d). We characterized 
the extent of these correlations by comparing the number of activated 
excitatory inputs in different time windows (Fig. 7e). As expected, 
the introduction of temporal correlations increased the proportion 
of synapses that were simultaneously activated; however, the differ-
ence between uncorrelated and correlated models rapidly decayed 
when we considered correlations over longer time windows, still rel-
evant for nonlinear interactions (Fig. 7e,f). As a result, introduction 
of temporal correlations either within or between contralateral and 
ipsilateral inputs did not appreciably affect the degree of sublinear 
integration of excitatory inputs (Fig. 7g). Together, these simulations 
reveal that nonlinear interactions between excitatory inputs alone are 
not sufficient to explain the extent of sublinear binocular integration 

observed experimentally, emphasizing the importance of balanced 
recruitment of inhibition.

Impact of sublinear integration on action potential output
What is the impact of sublinear binocular integration on action  
potential output? To address this issue, we first described the relation-
ship between the underlying membrane potential and action potential 
output in individual cells using a previous model19 (Fig. 8a). Using 
this model, we could accurately predict, on the basis of median- 
filtered voltage responses in single cells, the firing rate observed 
experimentally, confirming the model’s validity (Fig. 8b). We then 
used this model to predict action potential output assuming linear 
summation of synaptic responses and compared the predicted fir-
ing rate to that observed experimentally (Fig. 8c,d). As expected 
from the highly nonlinear relationship between membrane potential 
and action potential output (Fig. 8a), firing rates observed during 
stimulation of both eyes together were substantially lower than those 
predicted by the linear sum of synaptic potentials during stimula-
tion of each eye separately (Fig. 8d). Furthermore, when we plot-
ted the observed and predicted firing rates against the linear sum of 
monocular responses, these data indicated that sublinear integration 
of binocular responses significantly reduces the gain of the binocu-
lar input/output relationship (Fig. 8e). This reduction in gain acts 
to ‘linearize’ the output of binocular cells, such that the firing rate 
during binocular stimulation is equal to the linear sum of the firing 
rates during stimulation of each eye on its own (Fig. 8f; linear fit 
to the observed spike rates: slope = 1.02 ± 0.06, r2 = 0.6, P < 0.001). 
We observed a similar impact of sublinear binocular integration on 
the gain of the binocular input/output relationship in complex cells 
(Supplementary Fig. 4f).
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Figure 7 Interactions between excitatory synapses  
alone cannot account for sublinear integration of  
binocular inputs. (a) Dendritic location of contralateral  
(blue symbols) and ipsilateral (red symbols) excitatory  
synapses on the basal dendrites of the layer 2/3 pyramidal  
neuron model. Synapses were distributed in three different spatial configurations. (b) Somatic current-clamp simulations of synaptic responses during 
activation of contralateral and ipsilateral inputs together at different intensities to evoke responses of different amplitude (linear sum <15 mV, ~15 mV 
and >15 mV) for the different configurations. Corresponding expected linear sums are superimposed. (c) Simulated synaptic response amplitude during 
activation of contralateral and ipsilateral inputs together plotted versus the linear sum for the different models together with experimental data (open 
symbols, from Fig. 4j). (d) Raster plots of uncorrelated (left) and correlated (right) spike trains driving contralateral (blue) and ipsilateral (red) sets 
of synapses during binocular stimulation. Correlations were introduced by using common Poisson trains to drive sets of 50 synapses. (e) Peristimulus 
time histograms (PSTHs) of the spike trains shown in d averaged over six stimulation cycles for the indicated time windows for uncorrelated (left) and 
binocularly correlated (right) inputs. (f) Cross-correlogram (1-ms bins) averaged across all pairs of input spike trains for uncorrelated and binocularly 
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experimental data (open symbols, from Fig. 4j). Orange, red and green lines are essentially superimposed.
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We next characterized the impact of sublinear integration on the 
tuning properties of individual neurons during stimulation with drift-
ing gratings. Consistent with a divisive transformation of the input/
output relationship, firing rates were reduced significantly more at the 
preferred compared to the orthogonal orientation (Fig. 8g; orthogo-
nal reduction, 3.47 ± 0.97 spikes per second; preferred reduction, 
6.81 ± 1.95 spikes per second; n = 20; P < 0.05, paired t-test). Analysis 
of tuning properties based on observed and predicted firing rates 
showed that, on average, sublinear binocular integration of synaptic 
responses did not alter direction selectivity (Fig. 8h) or tuning 
half width (Fig. 8i), but enhanced orientation selectivity (Fig. 8j).  
A similar impact of sublinear integration on orientation selectivity 
was observed in a subset of cells with ‘in-phase’ monocular responses 
at the preferred orientation (Supplementary Fig. 6), indicating that 
this is not due to a complex interaction between stimulus orientation 
and the relative phase of contralateral and ipsilateral responses.

DISCUSSION
Here we describe the integration of binocular synaptic inputs in layer 
2/3 pyramidal neurons from mouse primary visual cortex. The main 
finding is that small inputs from the two eyes are integrated linearly, 
whereas large inputs are integrated sublinearly. Sublinear integration 
depends solely on the amplitude of the incoming inputs and is not 
restricted to information encoding particular aspects of the visual 
stimulus, such as orientation, direction, contrast or binocular phase 
disparity. Furthermore, sublinear binocular integration is not a result 
of network interactions upstream from layer 2/3 pyramidal neurons 

but occurs postsynaptically owing to nonlinear interactions between 
excitatory and inhibitory inputs recruited in a balanced manner. This 
amplitude-dependent sublinear integration reduces the gain of the 
input/output relationship of binocular neurons, linearizing action 
potential output and increasing orientation selectivity.

Previous work in vitro has indicated that neurons can integrate 
inputs in sublinear, linear and supralinear regimes2,3,7,8,17,18,37–39. 
Synaptic inputs in these studies were activated using non-physiological  
stimuli under artificial conditions. How the different types of inte-
gration observed in these in vitro studies relate to synaptic integra-
tion in vivo during encoding of physiologically relevant information 
is unclear. Integration of binocular visual input in the visual cor-
tex provides an ideal system for studying this issue. In mice, as in 
higher mammals including humans, visual inputs from the two eyes 
terminate in distinct and well-defined areas of the thalamus before 
passing on to primary visual cortex, where they converge onto single 
neurons40–42. By presenting the two eyes with independently control-
led visual stimuli, it is possible to see how distinct aspects of visual 
information are integrated at the single-cell level. Under our experi-
mental conditions, we found that binocular inputs were integrated 
either linearly or sublinearly, but not supralinearly, suggesting that 
active dendritic mechanisms are not recruited during binocular inte-
gration. Notably, sublinear integration of binocular inputs depended 
exclusively on the amplitude of the incoming monocular responses 
and was not related to peculiar aspects of the visual information. It 
therefore represents a general mode of integration in these neurons 
that is likely to occur under a range of stimulus conditions. The linear 

Figure 8 Impact of sublinear binocular integration on action potential output. (a) Average spike count versus membrane potential (30-ms bins) for 
one cell. Data fitted with a threshold nonlinearity model (black trace; k = 1.16 × 10−5, p = 4.46; ref. 19). (b) Average spike rates predicted using the 
threshold nonlinearity model during stimulation of both eyes together versus the experimentally observed spike rates (240 responses to 12 stimulus 
directions, n = 20 cells). Spike rate calculated over the 1.5 s period of stimulus presentation. The dashed diagonal line indicates a perfect correlation 
between predicted and observed values. (c) PSTHs of observed action potential output during stimulation of both eyes together at the preferred 
orientation (top left, 30-ms bins) and corresponding synaptic response (bottom left), together with the predicted action potential output (top right,  
30-ms bins) for the same cell assuming linear sum of contralateral and ipsilateral synaptic responses (bottom right). (d) Pooled data of the observed 
spike rate during stimulation of both eyes together plotted versus the predicted spike rate assuming linear summation of synaptic responses to each eye 
alone (40 responses to preferred stimuli, n = 20 cells). (e) Summary of observed (green symbols) and predicted (pink symbols) spike rates (± s.e.m.) 
as a function of the expected linear sum of Vpeak (in 5 mV bins). Data fitted with the same function as used in a to describe the relationship between 
membrane potential and spike output. (f) Summary of observed (green symbols) and predicted (pink symbols) spike rates as a function of the linear sum 
of the spike rates evoked by stimulation of each eye separately. Data fitted with a linear function (slope = 1.02 ± 0.06 for observed spike rates, dark 
green line; slope = 2.12 ± 0.24 for predicted spike rates, purple line; P < 0.0001). Dashed diagonal line indicates linear summation of spike rate.  
(g) Average tuning curves based on the observed (green) and predicted (pink) spike rates (± s.e.m.) during presentation of gratings at different 
orientations to both eyes. Data fitted with a Gaussian. (h–j) Direction selectivity index (DSI, h), tuning width (HWHH, half width at half height; i) 
and orientation selectivity index (OSI, j) observed during stimulation of both eyes (green) together with that predicted assuming linear summation of 
ipsilateral and contralateral inputs (pink). Bars represent means and points show individual cells (n = 20 simple cells; *P < 0.05, paired t-test).
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and sublinear modes of dendritic integration that we observed are 
consistent with recent data showing that integration of visual informa-
tion in layer 2/3 pyramidal neurons occurs by means of summation of 
distributed rather than clustered inputs43. In contrast, evidence exists 
for supralinear dendritic integration of somatosensory information 
in the dendrites of cortical layer 5 pyramidal13–15 and layer 4 spiny 
stellate neurons16.

Although it is well documented that the convergence of the inputs 
from the two eyes first happens at the level of the cortex40–42, whether 
this convergence happens at the level of layer 2/3 pyramidal neurons 
is not known. Preprocessing of binocular input upstream of layer 2/3 
pyramidal neurons could, in principle, explain the observed sublinear 
integration. This could occur through a decrease in excitatory input 
from layer 4 during strong binocular input, as a result of increased 
inhibition within layer 4. Alternatively, there could be an increase in 
inhibitory input to layer 2/3 neurons during large binocular responses, 
as a result of enhanced recruitment of feed-forward inhibition. Our 
voltage-clamp data argue against these possibilities by showing that 
during binocular integration both excitatory and inhibitory currents 
sum linearly (Fig. 5c,d). Furthermore, our voltage clamp data were 
well described by models using linear recruitment of excitatory and 
inhibitory input (Fig. 6c). The capacity of this ‘postsynaptic’ model 
to accurately reproduce the extent of sublinear binocular integration 
observed experimentally (Fig. 6e,f) strengthens the conclusion that 
sublinear integration is due to nonlinear interactions within layer 2/3 
pyramidal neurons. Notably, this mechanism depends exclusively on 
the number of activated inputs and not on their origin. Indeed, our 
simulations showed that the extent of sublinear integration observed 
experimentally was independent of whether binocular inputs were 
integrated upstream of layer 2/3 neurons (common pool model) 
or arose through segregated ipsilateral and contralateral inputs  
(segregated model).

During binocular stimulation, we found that inhibition was 
recruited in a proportional manner with excitation, with an inhibitory- 
to-excitatory conductance ratio close to 1. Models with only exci-
tatory synapses could not reproduce the extent of sublinear inte-
gration observed experimentally, even when we pushed these  
models using extreme scenarios with all excitatory inputs concen-
trated on the same branch or activated with high instantaneous tem-
poral correlations. We conclude, therefore, that the recruitment of 
balanced inhibition is an essential component of binocular sublinear 
integration. Addition of inhibition makes the net reversal potential 
of the binocular response more hyperpolarized than with excitation 
alone. This increases the impact of changes in membrane potential 
on the driving force for current flow and thereby enhances sublinear 
integration. Together with other data44,45, these findings provide fur-
ther evidence that balanced recruitment of excitation and inhibition 
is critical for sensory processing. Moreover, our simulations show 
that postsynaptic sublinear integration is a robust mechanism that, 
in comparison to supralinear dendritic computations, is not very 
dependent on the precise location of incoming excitatory and inhibi-
tory inputs.

One of the main computations thought to be performed by binocular  
neurons is the detection of binocular disparity, which presumably 
contributes to depth perception of the outside world46,47. Our data 
contribute to an understanding of how interocular phase differences 
are integrated at the single-cell level. Numerous single-unit (extra-
cellular) studies in cats have explored the way that binocular neurons 
combine monocular inputs to encode binocular disparity24,25,46–48. 
These studies have proposed that, for most cortical cells, integration 
of binocular inputs can be explained by linear summation of the 

neuronal signals received from each eye and is strongly dependent on 
the phase disparity of gratings presented to the eyes. As these studies  
are based on action potential output, they do not provide direct 
information on how subthreshold synaptic inputs are integrated. 
By recording intracellular voltage changes from layer 2/3 pyrami-
dal neurons during presentation of stimuli with different binocular 
phase disparities, we found that, at the preferred phase disparity, the 
underlying synaptic responses are essentially in phase and are inte-
grated sublinearly. Importantly, sublinear integration of monocular  
synaptic potentials leads to linear summation of monocular  
firing rates during binocular stimulation (Fig. 8f), consistent with 
the linearity of binocular integration observed in earlier studies using 
extracellular recording24,25,48.

At the functional level, we find that sublinear integration of bin-
ocular inputs leads to a reduction in gain of the input/output rela-
tionship. This divisive transformation has a powerful suppressive 
effect on the firing rate, compressing the dynamic range of neuronal 
output without negatively affecting the tuning properties of binocu-
lar neurons. Indeed, compared to what would happen if monocular 
synaptic potentials summed linearly, neurons maintained their abil-
ity to discriminate between stimulus contrast and interocular phase 
disparity and showed enhanced orientation selectivity (Fig. 8i). This 
latter result can be explained by considering the impact of sublin-
ear integration on the firing output at non-preferred orientations49. 
Sublinear integration often caused the response to stimulation of both 
eyes at non-preferred orientations to be below action potential thresh-
old, reducing the average firing rate at non-preferred orientations to 
baseline noise levels. This effect on firing rate at non-preferred orien-
tations can explain the observed increase in the orientation selectivity 
index during binocular integration.

Finally, one of the key observations in our study is that inhibi-
tion is critical for sublinear integration of binocular inputs. Recent 
findings in mouse primary visual cortex have suggested that distinct 
subclasses of cortical interneurons, targeting specific neuronal com-
partments, are responsible for mediating different transformations of 
the input/output relationship of pyramidal neurons31,49,50. Although 
our simulations do not allow us to identify the location of inhibi-
tion recruited during binocular integration, the observed impact 
of binocular sublinear integration on orientation tuning is very 
similar to that found during optogenetic activation of parvalbumin- 
expressing interneurons31. This may suggest that inhibition recruited 
during binocular integration is largely somatic in origin. Future 
studies will be required to resolve the specific interneuron subtypes 
recruited during binocular integration and the functions of these  
neurons in depth perception and stereopsis.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Animal experimentation. All the procedures were conducted in accordance 
with the guidelines approved by the Animal Ethics Committee of the Australian 
National University.

In vivo physiology. Adult post-critical-period male and female C57BL/6 mice 
(8–10 weeks of age) were anesthetized with urethane (0.5–1 g per kilogram body 
weight, 10% w/v in saline, i.p.) supplemented with the sedative chlorprothixene  
(5 mg/kg, 10% w/v in saline, i.p.). In some cases animals were initially anesthe-
tized with ketamine/xylazine (20 mg/kg and 3 mg/kg, i.p.) plus chlorprothixene 
(5 mg/kg, i.p.) and anesthesia maintained with isoflurane (0.5 to 1%). All the cells 
recorded under isoflurane anesthesia and included in the analysis were classified 
as simple cells (n = 7). As results obtained in these experiments were similar to 
those observed under urethane anesthesia, the data have been pooled. Atropine 
(0.3 mg/kg, 10% w/v in saline) was administered subcutaneously to reduce 
secretions. The level of anesthesia was assessed by loss of withdrawal reflexes 
in response to paw pinch. Rectal temperature was monitored and maintained at  
37 ± 0.5 °C by a feedback-controlled heating blanket. The head was fixed to a cus-
tom-built head plate with cyanoacrylate glue and stabilized with dental cement. 
Ophthalmic lubricant gel was applied to both eyes to keep them from drying. 
After retracting the scalp, the area over the binocular region of the primary visual 
cortex was identified (2.9–3.0 mm lateral from the midline and 0.5–0.7 mm 
rostral to the lambda suture) and a small craniotomy (~1–2 mm in diameter) 
performed. To allow the insertion of recording electrodes, a hole was made in 
the dura using a needle and fine forcipes and the exposed cortical surface was 
covered with a thin layer of 0.5–1% agarose. In vivo whole-cell recordings were 
obtained using the ‘blind’ patch-clamp technique51. Electrodes were inserted into 
the brain at an oblique angle (30–35°) and lowered into the superficial layer of the 
cortex to stably record from layer 2/3 neurons in the binocular region. Subpial 
depths ranged from 80 to 230 µm, as estimated from the distance the micro-
manipulator had advanced, taking into account the angle of insertion (average 
subpial depth 160.1 ± 5.5 µm, n = 81 cells). Whole-cell current-clamp recordings 
were made with a current-clamp amplifier (BVC-700, Dagan Corp.) using glass 
pipettes (4–6 MΩ) filled with a solution containing (in mM) 130 potassium gluco-
nate, 10 KCl, 10 HEPES, 4 Mg-ATP, 0.3 Na2-GTP, 15 disodium phosphocreatine  
(pH 7.25–7.30 pH; 290–300 mOsm). Biocytin (0.2–0.5%) was added to the solu-
tion for visualization and histological identification of recorded neurons. Whole-
cell voltage-clamp recordings were made with a patch-clamp amplifier (Axopatch 
200B) using pipettes (3–5 MΩ) filled with the following solution (in mM):  
130 cesium methansulfonate, 3 CsCl, 10 HEPES, 2 Mg-ATP, 0.3 Na2-GTP,  
10 disodium phosphocreatine, 0.3 EGTA, 1 QX-314, (pH 7.25–7.30 with CsOH; 
290–300 mOsm) and biocytin (0.2–0.5%). Current and voltage signals were 
acquired at 50 kHz by a Macintosh computer running Axograph acquisition 
software (Molecular Devices) using an ITC-18 interface (Instrutech). At the 
end of electrophysiological recording, mice were perfused transcardially with  
0.1 M PBS followed by a solution of 4% paraformaldehyde (PFA). The brain was 
removed from the skull and kept in PFA overnight. Coronal slices (100 µm thick) 
of the visual cortex were prepared and processed with the avidin–biotin peroxi-
dase reaction (Vectastain ABC kit, Vector Laboratories). Slices were mounted in 
Moviol and cells reconstructed with the aid of a three-dimensional computerized 
system (Neurolucida, Microbrightfield Inc.; see ref. 52).

Visual stimulation. Visual stimuli were generated in Matlab using the 
Psychophysics Toolbox extension and consisted of sinusoidal gratings. Gratings 
were presented at a temporal frequency of 2 Hz, whereas the spatial frequency 
was optimized for each neuron within the range of 0.01–0.16 cycles/degree. Each 
stimulus was presented for 1.5 s (3 cycles) and preceded by a 2.5 s period of a 
blank screen with the same mean luminance as the stimulus. To study the depend-
ence of binocular integration on stimulus orientation, direction and contrast, 
sinusoidal gratings drifting at 12 equally spaced directions (0°–330°) were dis-
played on a CRT monitor with gamma correction (60 Hz refresh rate, 30 cd/m2 
mean luminance) and presented in a semi-random manner to a circular patch of 
diameter 60° placed 25 cm in front of the mouse subtending the binocular visual 
space. The same stimulus was presented to each eye separately or together using 
computer-controlled motorized eye shutters. In experiments testing the depend-
ence of binocular integration on interocular phase disparity mirrors were placed 
in front of each eye at 45° and independently controlled visual stimuli presented 

to separate LCD screens located on either side of the animal at a distance of  
25 cm. Stimulus interocular phase disparity was varied by keeping the initial 
phase of the grating presented to one eye fix and by changing the initial phase 
of the grating presented to the other eye in 60° steps over the full range of 360°. 
Binocular phase disparity and stimulation condition (stimulation of the contral-
ateral eye, ipsilateral eye or both eyes) were alternated semi-randomly. Visual 
stimulation were repeated three to eight times for each neuron and averaged. 
Gratings were displayed at 100% contrast except in experiments on the contrast-
dependence of binocular integration in which stimuli were presented at three 
different contrasts (30, 50 and 100%).

data analysis. Cell classification. Recorded cells were classified as pyramidal 
neurons on the basis of morphological and/or electrophysiological properties. 
Current-clamp experiments were performed on 65 cells. For each cell we quan-
tified the evoked spike rate (R) in response to each grating direction (θ) as the 
average firing rate during the 1.5-s period of stimulus presentation minus the 
average spontaneous firing rate measured during the 1.5-s period before the 
stimulus. For each stimulation condition, the preferred direction was defined as 
the direction that evoked the highest spike rate (Rpref). In 34 cells we observed an 
increase in firing during presentation of the optimal stimulus to the contralateral 
and to the ipsilateral eye alone (Supplementary Fig. 2g). These cells were classi-
fied as binocular and were included in the analysis. The remaining cells either did 
not show visually evoked suprathreshold responses or responded exclusively to 
either contralateral or ipsilateral eye stimulation. We classified binocular neurons 
as simple or complex cells on the basis of their firing in response to drifting grat-
ings at the preferred orientation presented to the contralateral eye as reported 
previously19,53 (Supplementary Fig. 2a,b).

Voltage-clamp experiments were performed on 16 cells. The neuron’s preferred 
direction was estimated as the one that evoked the largest excitatory postsynaptic 
current (EPSC) when holding the cell at −80 mV (refs. 30,31). In 12 cells we 
measured a visually evoked EPSC during presentation of the optimal stimulus 
to the contralateral (average EPSC peak amplitude = −159.2 ± 35.3 pA) as well 
as the ipsilateral eye (average EPSC peak amplitude = −109.8 ± 24.9 pA). These 
cells were classified as binocular and were included in the analysis.
Tuning properties. Evoked spike rates across all stimulus directions were used to 
determine the orientation tuning properties of the neuron during stimulation 
of the contralateral or ipsilateral eye alone (Supplementary Fig. 2) and for the 
simultaneous stimulation of both eyes together (Fig. 8). The neuron’s preferred 
orientation, direction selectivity index (DSI), orientation tuning width (half-width 
at half height, HWHH) and ocular dominance index (ODI) were determined as 
reported previously27,28. The orientation selectivity index (OSI) was computed 
as 1 − circular variance (refs. 30,54). A neuron that responds exclusively to a 
single orientation will have an OSI = 1, whereas neurons that respond equally 
to all orientations will have an OSI = 0. Calculation of the OSI based on the 
spike rate at the preferred and orthogonal (Rorth) directions using (Rpref − Rorth)/ 
(Rpref + Rorth) (ref. 28) gave similar results. Matching of the preferred orienta-
tion across stimulation conditions was computed as 1 − circular variance, with 
the circular variance being calculated on the preferred orientation determined 
separately during stimulation of each eye alone and for stimulation of both eyes 
together. Values close to 1 indicate perfect matching.
Synaptic responses. To study how binocular neurons integrate synaptic inputs 
from the contralateral and ipsilateral eye, voltage traces recorded in current-
clamp were processed to obtain an estimate of the overall synaptic response that 
underlies action potential generation. This was achieved by applying a sliding 
median filter of 10 ms width to all raw traces to selectively remove action poten-
tials while preserving the overall subthreshold membrane potential dynamics 
(Supplementary Fig. 1a–c). Median-filtered traces were then averaged over a 
single stimulus cycle (0.5 s) and across stimulus repetitions29. We then fitted the 
average single cycle response with a 2-Hz sinusoidal function from which we 
measured the following parameters: the mean component (Vmean), quantified 
as the average potential over the stimulus presentation period relative to a 1.5-s 
baseline period before the stimulus; the modulation component (Vmodulation), 
defined as the amplitude of the fitted sinusoid; and the peak response (Vpeak), 
defined as the sum of the mean and modulation components. Analysis performed 
on supra- and subthreshold responses to visual stimulation revealed a negligible 
impact of median filtering on the quantification of Vmean, Vmodulation and Vpeak 
(Supplementary Fig. 1d–h).
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Binocular integration. To investigate how the different components of synaptic 
responses summate during binocular stimulation, we compared the observed 
response when the two eyes are stimulated together to the linear sum of the 
responses to stimulation of each eye separately. Residuals from linearity are calcu-
lated as the difference between the observed response during binocular stimula-
tion and the expected linear sum of responses to stimulation of each eye alone. 
To measure the linearity and residuals from linearity as a continuous function 
over the period of stimulation, traces were binned in 10-ms epochs and a point-
by-point analysis performed for each time bin.
Synaptic current and conductance estimates. Currents evoked by the presenta-
tion of sinusoidal gratings were recorded during somatic whole-cell voltage-
clamp without compensation for series resistance at two holding potentials. 
Neurons were voltage-clamped at the predicted reversal potential for inhibition  
(−80 mV, n = 12 cells) to record EPSCs, and close to the reversal potential for 
excitation (average: 25.5 ± 1.6 mV, n = 10 cells) to record inhibitory postsynaptic 
currents (IPSCs). Series resistance assessed from the amplitude of the capac-
itance transient at the onset of a voltage step was on average 35.1 ± 2.8 MΩ  
(n = 12 cells). Excitatory and inhibitory conductances were estimated as previ-
ously described32,33, after correction for the junction potential (~10 mV) and 
series resistance and assuming reversal potentials for excitation and inhibition 
of 0 mV and −80 mV, respectively.
Nonlinear threshold model. The relationship between the membrane potential and 
spike rate (R) was described with the following two-parameter model19:

R V k V V p( ) [( ) ]m m rest= × − +

where Vm is the membrane potential during the stimulus presentation and Vrest 
is the resting membrane potential during baseline conditions; k and p are free 
parameters, corresponding to a gain factor and a power-law exponent, respec-
tively, and were determined based on least-square fitting. The subscript “+” 
indicates rectification (membrane potential values below zero were set to zero). 
The fitted parameters were used to predict the firing rate associated with linear 
integration of binocular synaptic inputs.

neuron model. Computer simulations were performed using the NEURON 
simulation environment on a Linux desktop computer running Ubuntu 12.04 
LTS. A multicompartment model was obtained by reconstructing a biocytin-
filled layer 2/3 pyramidal neuron. The reconstructed neuronal model consisted of  
136 compartments, subdivided into a total of 1,021 segments. All dendritic branch 
diameters were scaled by a factor of 1.3 to account for cell shrinkage. Specific 
membrane resistance (Rm), capacitance (Cm; 1 µF/cm2) and internal resist-
ance (100 Ω/cm) were uniformly distributed throughout the model. In current 
clamp simulations the resting membrane potential was set to −70 mV and Rm to  
8,000 Ω/cm2, giving an apparent membrane time constant (8 ms) and input resist-
ance (80 MΩ) similar to those observed for this cell at the resting membrane 
potential in vivo. In voltage-clamp simulations the resting membrane potential 
was set to −52 mV to match holding currents recorded at hyperpolarized and 
depolarized potentials in these experiments. Spines were incorporated into the 
model by decreasing Rm and increasing Cm by a factor of 2 in distal dendritic 
compartments (>40 µm from the soma). No voltage-gated ion channels were 
included in the model. The series resistance of the somatic voltage-clamp ‘elec-
trode’ in voltage-clamp simulations was set to 35 MΩ to match the average series 
resistance in experimental voltage-clamp recordings.

In models with dendritic inhibition 1,000 excitatory and 300 inhibitory syn-
apses were distributed randomly throughout the basal dendrites, with the density 
of inputs on a selected segment proportional to its surface area. Models with 
somatic inhibition contained 800 excitatory synapses distributed throughout 
the basal dendrites plus 180 inhibitory synapses at the soma. Excitatory inputs 
representing contralateral and ipsilateral inputs were sampled from the same 
pool (common pool model) or segregated into two pools with 60% classified as 
contralateral and 40% classified as ipsilateral (segregated model). As seen in the 

Results, there was essentially no difference between common pool and segregated 
models. The conductance change at excitatory synapses had an exponential rise 
and decay of 0.2 and 2 ms, respectively, a peak of 150 pS and a reversal potential 
of 0 mV. Using these parameters, the average unitary EPSP amplitude at the soma 
during activation of inputs randomly distributed throughout basal dendrites was 
0.164 ± 0.018 mV, consistent with previous experimental findings55. The con-
ductance change at inhibitory synapses had an exponential rise and decay of  
0.2 and 10 ms, respectively, a peak of 150 pS and a reversal potential of −80 mV. In 
simulations with current-based synapses, ‘excitatory’ inputs had an amplitude of 
−2.8 pA, whereas ‘inhibitory’ inputs had an amplitude of +1.1 pA in the models 
with dendritic inhibition and +0.7 pA in models with somatic inhibition, with 
only excitatory inputs activated at hyperpolarized potentials and only inhibitory 
inputs activated at depolarized potentials. To simulate the response to drifting 
gratings, synapses were activated in a sinusoidal manner (2 Hz modulation) by 
independent, nonhomogeneous Poisson processes to match experimentally 
recorded currents and voltages during visual input. In the common pool model, 
excitatory inputs were activated at rates between 0.54 (trough) and 27.54 Hz 
(peak) during contralateral input, between 0.36 and 18.36 Hz during ipsilateral 
input, and between 0.9 and 45.9 Hz during binocular input. In the segregated pool 
model, the different sets of contralateral and ipsilateral synapses were activated at 
rates between 0.9 and 45.9 Hz. The effective probability of release was 1.

In models with only excitatory input (Fig. 7), synapses were distributed on 
basal dendrites in different spatial configurations. In the dispersed configuration, 
contralateral and ipsilateral inputs were randomly distributed onto all dendritic 
branches. In the partitioned configuration, contralateral and ipsilateral inputs 
were distributed onto different dendritic branches such that no single branch 
contained both inputs. In the clustered configuration, all contralateral and ipsi-
lateral inputs were positioned on the same, single dendritic branch. The number 
of synapses in the different models was 500 (dispersed), 550 (partitioned) and 
700 (concentrated), and their activation was varied at rates between 1 Hz (trough) 
and 80 Hz (peak). Temporal correlations between synaptic inputs were intro-
duced by using a common Poisson input train to drive sets of 50 synapses. This 
was the highest temporal correlation possible while still maintaining modulated 
responses similar to those seen experimentally. Common input trains were either 
restricted to within the contralateral and ipsilateral pools (monocular correla-
tion) or shared between the pools (binocular correlation). In these simulations, 
the number and distribution of excitatory synapses was identical to that in the 
dispersed configuration.

Statistics. Statistical analysis used Prism 4.0 for Macintosh (GraphPad Software, 
Inc.). Average values are given as mean ± s.e.m. Statistical comparison between 
two sets of matched data used a two-tailed paired t-test. When comparing three 
or more sets of data, we used either a one-way or two-way ANOVA followed 
by a Bonferroni post hoc multiple comparison test. A chi-squared test was used 
when comparing sets of data with categorical outcome as the variable, and the 
Pearson’s correlation coefficient was used when testing for significant correla-
tions between two variables. All data sets were tested for normality. Significance 
was set at P < 0.05.
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