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We study a large sampling of chiral double-wall carbon nanotubes to propose simple formula
describing the dependence of the interwall energy, the chiral discrimination energy, and the radial
breathing mode frequencies as a function of the main characteristics of the tubes, i.e., their radius,
length and chiral angle. It is shown that tube pairs with the same handedness are more stable than
enantiomeric pairs, and this discrimination, though small, mainly occurs in the first step of the
growth of an inner tube inside an outer one. Chiral splittings of the breathing mode frequencies for
the two DWCNT diastereoisomers �ni ,mi�@ �no ,mo� and �mi ,ni�@ �no ,mo� can reach a few wave
numbers. © 2010 American Institute of Physics. �doi:10.1063/1.3366688�

I. INTRODUCTION

The structure of single-wall carbon nanotubes
�SWCNTs� is defined1 by the length L, the radius R, and the
chiral angle � describing the helical twist of the rolled-up
graphene sheet. With the exception of armchair and zig-zag
tubes, all the other tubes are chiral, i.e., the tubes of right �r�-
and left �l�-handed helicities are enantiomers of each other.
The geometry of the CNT can also be described2 by refer-
ence to the graphene sheet using two integers �n ,m� defining
any lattice point from the unit cell vectors of the sheet.
Chirality can then be viewed through the reverse nomencla-
ture �n ,m� for the l-handed and �m ,n� for the r-handed spe-
cies. Other terminologies have also been proposed in the
literature.3

Sorting the CNTs from their structural properties
�L ,R ,�� has been an experimental challenge which has
drawn considerable attention over the past few years.4–8

Many separation mechanisms have been devised, with spe-
cial emphasis to the control of chirality and enantiomeric
detection.7,9–11 At the frontier between single wall and mul-
tiwall nanotubes, double-wall carbon nanotubes �DWCNTs�
have been considered as ideal, having the thinnest graphite
structure with excellent graphitization,11 to study how the
correlation between the two rolled-up graphene layers influ-
ences the relationship between the structural and electrome-
chanical properties of the tubes. Selective syntheses of
DWCNTs have been largely reported,12–14 and among them,
let us cite the peapod growth technique15 which provides
tubes of nearly perfect purity with generally small
diameters.16,17 The determination of the chirality of the two
constituent tubes has been tentatively performed using Ra-
man spectroscopy,18 electron diffraction,19 transmission elec-
tron microscopy,20 and coupling scanning tunneling micros-
copy and spectroscopy experiments.21 In a general way, from
a reasonably small sampling of DWCNTs, it was concluded
that no �or very small� correlation exists between the chiral

angles of the inner and outer tubes and the distribution of the
nanotubes. Such a result corroborated previous theoretical
results22 devoted to the calculation of the most stable struc-
tures of DWCNTs described by the four integer numbers
�ni ,mi�@ �no ,mo�, where i refers to the inner tube and o
refers to the outer one. However, from the assignment of
DWCNT chiralities using radial breathing modes, compared
to experimental data,23 it has been suggested24 that the effect
of chirality, though small, should not be neglected to inter-
pret the complete splitting of the components in the high
resolution Raman response of the inner tubes.

The handedness relationship between the two layers in
nested DWCNTs was investigated for the first time in Ref.
25. Handedness measurements of 18 chiral DWCNTs lead to
the conclusion that some interaction may have been exerted
during the simultaneous growth of the tubes to prefer the
same handedness for the inner and outer tubes. Besides, chi-
ral angles and tube radii were carefully measured over a
sampling of 140 isolated �ni ,mi�@ �no ,mo� DWCNTs.20 The
distribution of the tube number as a function of the interwall
distance �R and radii �Ri ,Ro� and as a function of the chiral
angles ��i ,�o� was determined for small and large radii. It
showed a different tendency, with chiral angles approaching
� /6 for radii less than 15 Å, while the distribution was much
wider for larger �Ri ,Ro� values.

Calculations of stable structures of a set of DWCNTs
have been carried out, including achiral species �armchair
and zig-zag�, based on a Lennard-Jones potential between
carbon atoms belonging to the two layers.22 Information on
the interlayer spacing �R and on the adiabatic potential
shape has been obtained, showing a flat potential shape for
�R values ranging between 3.3 and 3.5 Å. The same type of
potential was used26 to propose a classification scheme for
DWCNTs based on their symmetry properties and to calcu-
late the rotation and translation barriers of the inner tube
with respect to the outer one. An analytical form of the in-
teraction potential between the two concentric tubes, de-
duced from a 6-exp. binary potential, was expressed27 as aa�Electronic mail: claude.girardet@univ-fcomte.fr.
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function of the parameters �R, �i, and �o �or �R and ��
=�i−�o�. This form was successfully applied28 to the deter-
mination of the stable structure of seven DWCNTs identified
in transmission electron microscopy experiments.29

In fact, it is still unclear as to whether the relative hand-
edness of the two tubes can influence the structural and, as a
consequence, the electromechanical properties of DWCNTs.
It seems therefore crucial to have some simple rules on the
behavior of the interaction energy between the two tubes
depending on their mutual handedness and on the relation-
ship between this energy and interwall distance �R, radii Ri

and Ro, lengths Li and Lo, and tube helicities �i, �o, and ��,
using a very large sampling of chiral tubes. This can be made
based on a simple potential, even if very recent progresses30

in the implementation of van der Waals density functional
theory for CNTs could lead in the future to appreciably re-
duced computational times.

In Sec. II, we introduce the background to calculate the
interaction energy and related quantities depending on the
relative geometry of the two tubes in a DWCNT. Section III
is devoted to the presentation of the results and of the rules
deduced from the sampling of about 3000 chiral DWCNTs
�the two tubes being chiral�. The dependence of the interac-
tion with the mutual chirality of the two tubes, and the dis-
crimination energy between two l-handed tubes �or in
equivalent way between two r-handed tubes� and one l- and
the other r-handed tube, is carefully analyzed. We also ex-
amine the influence of the chirality on the resonance frequen-
cies of the radial breathing modes, as these frequencies are
sensitive tests of the DWCNT structure. We discuss in Sec.
IV the consequences of these results on the distribution of
DWCNTs using a simple model that mimics the growth of a
tube in an outer one, and we show that the frequency split-
ting of the breathing modes is influenced by the handedness
of the two tubes.

II. BACKGROUND

DWCNTs are characterized by the four integers ni, mi,
no, and mo, which define the period B, the radius R, and the
chiral angle � of each i or o tube. For a SWCNT �n ,m�,
these quantities are given as

B =
3dCC

GCD�n,m�
�n2 + m2 + nm , �1�

R =
�3dCC

2�
�n2 + m2 + nm , �2�

� = arccos� 2m + n

2�n2 + m2 + nm
� , �3�

where dCC=1.42 Å is the carbon-carbon bond length in a
tube, and GCD�n ,m� mean the greatest common divisor of n
and m.

The interaction between the two tubes i and o with radii
Ri and Ro, respectively, is a function of the distance djijo
between the jith atom of the inner tube and the joth atom of
the outer one. Using a helicoidal description of carbon atom
arrangement in each tube, which is consistent with the chiral-

ity �Fig. 1�, the jth atom can be characterized by the triplet of
integer numbers �s , l ,h�, where s refers to the two atoms in
the unit cell along the helix �s=0,1�, l is the cell number
�l=0, . . . ,NC−1=2�n2+m2+nm� / ��m−n�GCD�n ,m��−1�,
and h is the helix number required to account for all the
carbon atoms of the chiral tube �h=0, . . . , �m−n�−1�. The
square of the distance djijo

is expressed as

djijo
2 = Ri

2 + Ro
2

− 2RiRo cos	�� �3li + si + hi��ni + mi� + mihi

ni
2 + mi

2 + nimi

−
�3lo + so + ho��no + mo� + moho

no
2 + mo

2 + nomo
� − �


+
dCC

2

4 	 �3li + si��ni + mi� − 3mihi

�ni
2 + mi

2 + nimi

−
�3lo + so��no + mo� − 3moho

�no
2 + mo

2 + nomo

− z
2

. �4�

The coordinates � and z define the position of the origin
atom in the first helix �ho=0� of the outer tube with respect
to the position of the origin atom in the first helix �hi=0� of
the inner tube �Fig. 1�. The interaction potential between two
perfect �no defect, no deformation� concentric tubes is writ-
ten as

V = �
si,li,hi

�
so,lo,ho

�
k=6,12

�− �k/2 Ck

djijo
k , �5�

where C6=4��6 and C12=4��12 are the Lennard-Jones coef-
ficients between two carbon atoms. This interaction V de-
pends on the mutual handedness of the two tubes forming the
DWCNT. Depending on whether the two tubes have the
same or different handedness, we define the energy as

FIG. 1. Geometry of left-handed �2,6� and right-handed �6,2� SWCNT, re-
spectively, at the left and right parts. z means the nanotube axis and Ch
=na1+ma2 is the chiral vector, where a1 and a2 are the unit vectors defining
the cell on a graphene sheet. b is the helix pitch and B is the period of the
CNT. Angle �=arccos��3�n+m� / �2�n2+m2+nm�� defines the helicity of
the tube and it is equal to �� /6−�� or ��−� /6� depending on the handed-
ness of the tube, where � is the chiral angle. Angle � is equal to
arccos��2m+n� / �2�n2+m2+nm�� and it corresponds to � or �� /3−��.
Circles, triangles, squares, and diamonds define the atom arrangement on the
various helices in the tubes.
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Wll = V�ni,mi,no,mo� � Wrr = V�mi,ni,mo,no� �6�

or

Wlr = V�ni,mi,mo,no� � Wrl = V�mi,ni,no,mo� . �7�

These two energies were minimized with respect to � and z
occurring in Eq. �4� for a very large sampling of DWCNTs.
For the inner tube, the series ni=1, . . . ,12 and mi=ni

+1, . . . ,120 have been considered with outer tubes indices
�no ,mo� obeying the condition �see Eq. �2��.

�Rmin 	 �R = Ro − Ri 	 �Rmax. �8�

The values of �Rmin and �Rmax which are reported in the
literature depend, in fact, on the preparation and synthesis
methods of the DWCNTs. Interwall distances were found to
range between 3.2 �Ref. 24� and 4.2 Å �Ref. 18�, while other
recent experiments20,31 pointed out interwall distances rang-
ing between 3.4 and 3.8 Å with an average value of 3.58 Å.
Therefore, this latter dispersion of values for �R was consid-
ered to define �Rmin and �Rmax. Several tests have been
made, which have shown that the chiral discrimination rap-
idly vanishes when the interwall distance increases, and, on
the contrary, strongly increases when this distance is smaller
than the equilibrium value. Since we were mainly interested
by the determination of the maximum chiral discrimination
energy between the two tubes at physically stable distances,
we generally reduced the range from �Rmin=3.4 Å and
�Rmax=3.6 Å, leading to a sampling of about 3000 tubes,
although some smaller values of �Rmin were also discussed
in the calculation of the breathing mode frequencies.

Since the energies Wll and Wrl depend on the inner and
outer tubes lengths, the calculations were carried out by con-
sidering that the lengths Li and Lo are multiple of the periods
Bi and Bo of the tubes. More precisely, the length of the outer
tube was taken to be Lo=Bo, and, to eliminate side effects in
the sum process of the binary interactions, the length of the
inner tube was chosen to be a multiple of Bi such that Li


Lo+60 Å, i.e., adding 30 Å at each side of the inner tube.
Moreover, we have verified that, by changing Lo into 2Lo and
extending the convergence criterium for Li, the results were
not modified.

Then the interaction energies Wll and Wrl for the
two diastereoisomers �ni ,mi�@ �no ,mo� or �l , l� and
�mi ,ni�@ �no ,mo� or �r , l� were expressed per contact surface
unit �2�RiLo� and renamed as WS

ll and WS
rl �in meV Å−2�.32

Their behavior in terms of n, m, R, and � was studied by

defining the mean energy W̄S for the two diastereoisomers,

W̄S = 1
2 �WS

ll + WS
rl� , �9�

and the chiral discrimination energy �WS as

�WS = WS
ll − WS

rl. �10�

The potential parameters �=2.1 meV and �=3.5 Å
were used.33 Other values of � and � given in the
literature22,34 have also been tested, which give a slight shift

of the interwall distance depending on the � value, but with-
out appreciably changing the results reported in the present
paper.

No analytical expression for the interaction potential be-
tween two continuous helicoidal tubes is available up to date.
However, the interaction between two continuous achiral
tubes �cylindrical geometry� is known35 and it can be written
as

WS
C =

2.921

2�RiLodCC
4 	 �

k=6,12
�− �k/2Ck�

p=1

2

Nk�x,yp�
 , �11�

where the functions Nk are defined in the Appendix in terms
of the tube radii and lengths.

Although this continuum energy WS
C cannot take into

account of the chiral dependence of the tubes, its analytical
form can be used as a valuable test to validate the behavior

of the computed mean energy W̄S and, in particular, the fit in
terms of �R /Ri.

Aside from the DWCNT energies W̄S and �WS, the fre-
quencies of the radial breathing modes provide information
on the two tubes’ chirality. These frequencies can be analyti-
cally written by considering the tube walls as coupled
oscillators36 as

��
2 =

i
2 + o

2

2
� � �i

2 + o
2�2

4
+

kSio
2

mS
2 �1/2

, �12�

where i
2 and o

2 are the square frequencies of the interact-
ing inner and outer tubes defined as

i,o
2 = 	 �

2Ri,o

2

+
kSi,o

mS
. �13�

In Eqs. �12� and �13�, we use the value �
=2243 cm−1 Å given in Ref. 36 and we introduce the mass
per contact surface unit as mS=m /2�RiLo=4.58 amu Å−2,
where m defines the mass of a tube with radius Ri and length
Lo. kSio, kSi, and kSo are the force constants per contact sur-
face unit, obtained as the second order derivatives of the
tube-tube interactions WS

ll or WS
rl with respect to the tube

radii. They have been calculated from Eq. �5� by deriving V
with respect to the distance djijo

and expressing the deriva-
tives of djijo

with respect to Ri,o. Note that Ri,o are themselves
functions of ni,o and mi,o.

III. RESULTS

A. Mean interaction energy

Figure 2 displays the behavior of the mean energy W̄S

�Eq. �9�� as a function of �R for typical series of DWCNTs.
The minimum is relatively flat, as shown in a previous
paper,22 where a random sampling of pairs �ni ,mi�@ �no ,mo�
were considered with the outer larger radius less than 10 Å.
In the present paper, the �l , l�- and �r , l�-handed tubes were
studied for the inner tube series �1,2�, �1,3�, and �1,6� with
respective radii of 1.04, 1.14, and 2.57 Å, yielding minimum
energy values equal to �33, �30, and −23 meV Å−2, re-
spectively. The energy corresponding to the series with an
inner tube �3,4� and a radius of 2.38 Å was also drawn since
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it corresponds to the smallest tube experimentally
identified.29 Larger tubes in the series �6,7� and �4,27� with
radii equal to 4.41 and 11.43 Å display minimum energy
values which increase to �20 and −17 meV Å−2. For com-
parison, the energy issued from the continuum model �Eq.
�11�� was drawn for Ri=2.57 and 5.00 Å, i.e., values close to
those of the �1,6� and �6,7� series, showing a very good
agreement, within a systematic error less than 2 meV Å−2.
This agreement indicates that the continuum model applies
very well and that chirality does not strongly influence the
stability of the tubes in the DWCNTs, as already discussed.

Using the results in Fig. 2, we draw in Fig. 3 the mean

energy W̄S for the series �ni ,mi� �ni=1, . . . ,12; mi=ni

+1, . . . ,120� with outer tubes obeying the maximum stability
of the DWCNTs, i.e., 3.4	�R	3.6 Å �Eq. �8��. Within this

constraint, the curve W̄S�Ri� is fitted with a high accuracy to

W̄S = − 14.13 −
24.87

Ri
+

4.49

Ri
2 . �14�

The maximum is obtained for the smallest radius of the
inner tubes �ni=1, mi=2� with outer tubes �no=1, mo

=11� and �no=4, mo=9�. As the radius Ri increases, the

energy W̄S significantly increases to reach a nearly constant

value. Shown in the inset �Fig. 3� is the dependence of W̄S in
terms of �R /Ri, displaying a quasilinear behavior for �R /Ri

values less than 1.6, i.e., values of Ri�2.2 Å. The limit for
very large Ri values can be compared to the energy between
two graphene planes equal to −15.2 meV Å−2 and two
graphite planes equal to −14.5 meV Å−2. Note that the non-

linear part of the curve W̄S��R /Ri� corresponds to very small
inner tubes which have not been observed experimentally. In
this inset, we have also drawn the behavior of WS

C in the

continuum model, which shows that the nonlinear part of the
curve is typical of the small radius of the tube.

From Eq. �14� and using the relation

Ri�i  Ri sin �i =
3dCC

4�
ni, �15�

we can also express the behavior of W̄S in terms of the chiral
angle �i of the inner tube in the whole series of DWCNTs as

W̄S = − 14.13 – 72.93
�i

ni
+ 40.36	�i

ni

2

. �16�

Such an expression is valid when �i remains sufficiently
small. Here for the inner tube considered as a left handed
isomer, �i is always less than � /6 �for a right-handed isomer
the corresponding �i value would range between −� /6 and
0�, thus leading to an error which is less that 5%.

B. Chiral discrimination energy

Figure 4 displays the chiral discrimination energy per
area unit �WS �meV Å−2� between two DWCNT diastereoi-
somers �ni ,mi�@ �no ,mo� or �l , l� and �mi ,ni�@ �no ,mo� or
�r , l�. Our calculations show that the values of �WS are gen-
erally vanishingly small when �n=no−ni�0, while the larg-
est values of �WS are obtained when �n=0 and �m=mo

−mi=9. Therefore in Fig. 4, we have drawn the series corre-
sponding to these constraints �n=0 and �m=9 as a function
of the inner tube indices �ni ,mi�. We see that the discrimina-
tion energy is nearly constant and has the same value around
0.4 meV Å−2 for all the ni series and relatively large mi val-
ues, i.e., large inner radius. On the contrary, the discrimina-
tion energy vanishes for small mi values. Intermediate mi

values lead to a maximum of �WS which is clearly much
more enhanced for the series with small ni values.

FIG. 2. Mean interaction energy W̄S between the inner and outer tubes in
various DWCNT series vs the interwall distance �R. The black symbols
correspond to inner tubes �1,2� �circles�, �1,3� �reverse triangles�, �1,6�
�squares�, �3,4� �diamonds�, �6,7� �triangles�, and �4,27� �hexagons� having
radii equal to 1.04, 1.41, 2.57, 2.38, 4.41, and 11.43 Å, respectively. The
white symbols correspond to calculations performed within the continuum
model for Ri=2.57 Å �circles� and Ri=5.00 Å �reverse triangles�.

FIG. 3. Mean interaction energy W̄S vs the inner tube radius Ri for a large
sampling of DWCNTs �see the text�. Inset: Same energy vs �R /Ri showing
a quasilinear behavior. The black and white circles correspond to DWCNTs
series with �n=0 and �n�0, respectively. The broken line with black
triangles is drawn using the continuum model.

124704-4 Vardanega, Picaud, and Girardet J. Chem. Phys. 132, 124704 �2010�



We give in Fig. 5 the behavior of the maximum discrimi-
nation energy �WS

max versus inner tube radius Ri, as deduced
from the maxima shown in Fig. 4. These maxima display a
quasilinear dependence

mi = − 5 + 8ni, �17�

as shown in the inset of Fig. 5. The discrimination is maxi-
mum and equal to 0.067 meV Å−2 for the smallest inner
tubes, significantly decreases when Ri increases up to 15 Å,
and then very smoothly tends to a finite value for large Ri

values. �WS
max obeys the law

�WS
max = 0.044 +

0.059

Ri
−

0.017

Ri
2 . �18�

The discrimination energy �WS
max is positive, in agree-

ment with the fact that two concentric tubes with the same
handedness are more stable than their counterpart with dif-
ferent handedness. In Fig. 5, we have also shown the behav-
ior of �WS

max versus the inverse of the difference ��=�i

−�o of the chiral angles of the two tubes. This difference can
be expressed in terms of Ri, �R, and �n as

�� 
3dCCni

4�Ri

�R/Ri − �n/ni

1 + �R/Ri
. �19�

For �n=0, there is no significant difference between the
curves �WS

max�Ri� and �WS
max���−1�, while the discrimina-

tion vanishes as �n increases �not shown�. The behavior of
�WS

max versus ��−1 indicates that an increase in the tube
radii requires a smaller difference in the chiral angle of the
two tubes to keep a maximum chiral discrimination.

To study the influence of the various quantities R, �, and
L on the discrimination energy for the two diastereoisomers,
we have assumed an outer left-handed tube defined by its
characteristics Ro, Lo, and �o and we have calculated the
chiral discrimination energy �WS experienced by a left- or
right-handed tube growing inside it, by applying the con-
straints Ri=Ro−�R and �i=�oRo /Ri �for �n=0� which en-
sure maximum stability of the DWCNT. The tube character-
istics are given in Table I, and Fig. 6 displays the behavior of
�WS as a function of the length Li of the growing tube. For
nearly constant values of the radius Ro and length Lo of the
outer tube �tubes 1–6 in Table I�, an increase in the chiral
angle �o from 1° to 6° induces a strong decrease in �WS

when the inner tube length Li increases up to being equal to
that of the outer tube Lo777 Å. The chiral discrimination
is, however, maximum for small values of the length Li,
whatever the chiral angle �o, i.e., at the beginning of the
inner tube growth and it favors the �l , l� DWCNT with re-
spect to the �r , l� one.

A small length Lo of the outer tube, concomitantly with a
corresponding smaller radius leading to an increase in the
chiral angle difference �� and a decrease by a factor 2 of the
inner tube radius Ri �tubes 7 and 8 in Table I�, is responsible
for a decrease in the chiral discrimination. This shows that
the discrimination is enhanced when the two tubes have
similar chiral angles, since an increase of 1° of �� reduces
the discrimination energy between the �l , l� and �r , l� species
by about 0.015 meV Å−2. Finally, decreasing by a factor 3
the length Lo of the outer tube without modifying the other
characteristics of the two tubes �tubes 8 and 9 in Table I�
leads to enhance by the same factor the discrimination en-
ergy.

C. Breathing mode frequencies

The behavior of the three force constants kSi, kSo, and
kSio used to calculate the breathing mode frequencies of the
DWCNTs are shown in Fig. 7 versus the numbers ni

=1, . . . ,9 and mi=ni+1, . . . ,45. We see that these force con-
stants follow a similar behavior with ni and with mi. Their
values decrease as mi increases according to a quadratic
polynomial in 1 /mi for fixed ni value, while they increase
according to a quadratic polynomial in ni for fixed mi. The

FIG. 4. Discrimination energy �WS between �l , l� and �r , l� DWCNTs vs the
integers ni and mi defining the inner tube.

FIG. 5. Maximum discrimination energy �WS
max between �l , l� and �r , l�

DWCNTs vs the inner tube radius Ri �circles� and vs the inverse of the chiral
angle difference between the two tubes �triangles�. Inset: Linear behavior
ni�mi� defining the maximum discrimination energy for the series of
DWCNTs.
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values of these force constants decrease as the radii Ri and Ro

increase. The smaller value of kSio found here for a Ri radius
equal to 19.7 Å �ni=8, mi=45� is 0.048 meV Å−4. It com-
pares very well with the value of kSio between two graphene
sheets �infinite values of Ri and Ro� at the equilibrium dis-
tance of 3.51 Å which is equal to 0.046 meV Å−4.

The behavior of the frequencies of the radial breathing
modes �+ and �− versus the tube radius are shown in Fig. 8.
These frequencies fit very well with very simple laws

�+ = a+ +
b+

Ri
, �20�

�− = a− +
b−

Ro
, �21�

where a+=10.0 cm−1, b+=1169.4 cm−1 Å, and
a−=−0.6 cm−1, b−=1236.2 cm−1 Å. The values for a+ and
b+ nicely compare with those determined in Ref. 16�a+

=9 cm−1 and b+=1175 cm−1 Å�.
The occurrence of points outside the continuous curve is

due to the influence of the change in the interwall distance
�R depending on the tube species. It may be noted that the

consideration of this dependence as a polynomial in �R in
Eqs. �20� and �21� would make all the points being nearly
aligned with the curves. In the inset of Fig. 8, we show that
introducing a �R2 dependence in the calculated curves of ��

tends to appreciably reduce the deviation from the ideal
curves. This is consistent with the expressions of kS obtained
in the continuum model �Eqs. �A3� and �A4�� when x is
approximated by 1− ��R /Ri�2 and yp nearly vanishes for a
large value of the inner tube length with respect to the radius
�see Appendix�.

The chiral influence of the tubes on the breathing modes
is shown in Fig. 9. We have drawn the splittings ��+ and
��− of the mode frequencies defined as

��� = ��
ll − ��

rl , �22�

as a function of the inner tube radius for �+ and of the outer
tube one for �−. We see that this splitting is generally smaller
than 2 cm−1, except for some DWCNTs with interwall dis-
tance smaller than 3.4 Å, as shown in the inset of Fig. 9. For
such values of �R, the interaction between the two tubes

TABLE I. Characteristics of DWCNTs used to study �WS vs Li �Fig. 6�.

Fig.a �ni ,mi�@ �no ,mo�
Ri

�Å�
Ro

�Å�
�i

�deg�
�o

�deg�
��

�deg�
Lo

�Å�

1 �1,36�@�1,45� 14.29 17.81 1.36 1.09 0.27 774
2 �2,36�@�2,45� 14.50 18.02 2.68 2.15 0.52 779
3 �3,35�@�3,44� 14.32 17.84 4.07 3.27 0.80 774
4 �4,34�@�4,43� 14.16 17.67 5.50 4.40 1.10 765
5 �5,35�@�5,44� 14.78 18.28 6.59 5.32 1.27 790
6 �6,35�@�6,45� 15.01 18.51 7.78 6.31 1.48 801
7 �2,16�@�2,25� 6.69 10.20 5.82 3.81 2.04 444
8 �1,8�@�1,17� 3.34 6.86 5.82 2.83 2.98 444
9 �1,8�@�1,17� 3.34 6.86 5.82 2.83 2.98 148

aNumbers 1–9 refer to curves drawn in Fig. 6.

FIG. 6. Chiral discrimination energy for a series of tubes whose character-
istics are defined in Table I as a function of the length Li of the inner tube
growing in a consistent outer one. Numbers 1–9 on the curve refer to the
values reported in Table I.

FIG. 7. Behavior of the mean force constants ks= �kS
ll+kS

rl� /2 with ks=kSi,
kSo, and kSio vs the numbers ni and mi for the series of chiral DWCNTs
�ni=1, . . . ,9 ; mi=ni+1, . . . ,45�. The dotted curves show the behavior of
the ni dependence of kS for some fixed values of mi �see the text�.
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becomes repulsive and the chiral discrimination becomes un-
realistically too large, as already mentioned in Sec II.

We give in Fig. 10 the splitting ��� of the mode fre-
quencies �� corresponding to DWCNTs for which �R
ranges between 3.4 and 3.6 Å. Since the frequencies decrease
as the CNT radius increases �Eqs. �20� and �21��, the
strongest splittings �2 cm−1� are obtained when the chiral
angle difference �� ranges between 0.5° and 6° for interme-
diate values of the inner tube radii �between 5 and 10 Å�.
Smaller radii �Ri�5 Å� lead to smaller chiral splittings
��1 cm−1� with, however, chiral angle difference values
which can reach 10°. In a general way, we see that ��+

increases with Ri when �i is kept constant and with �� when
Ri is kept constant. A similar behavior is observed for ��−

versus Ro and �o.
We give in Table II the splittings ��� of the frequencies

�� which are due to the response of the two diastereoiso-
mers �ni ,mi�@ �no ,mo� and �mi ,ni�@ �no ,mo� for a series of
DWCNTs with radii ranging between 2.5 and 4.5 Å. The
present results show that chirality can be responsible for

splittings in the response �+ �250	�+	450 cm−1� of ��l , l�
and �l ,r�� DWCNTs, which range between �0.5 and
+1 cm−1, and for splittings in the response �− �140	�−

	200 cm−1� which are generally larger, being between 0.5
and 2 cm−1. The chiral angle difference �� for all these
tubes appears to be relatively large since it varies from 2.2°
to 12.3°.

IV. DISCUSSION

The interaction between the inner and outer tubes of a
DWCNT can be simply expressed as a function of the inner
tube radius Ri or chiral angle �i, when the carbon-carbon
interaction is described by a Lennard-Jones potential. The
most stable DWCNTs are obtained for small values of Ri and
thus of Ro=Ri+�R, where �R remains close to the interwall
distance given by the Lennard-Jones potential. A quasilinear
increase in the interaction energy is shown for both �l , l� and
�r , l� tubes as Ri increases or �i /ni decreases. At small Ri

(a)

(b)

FIG. 8. Behavior of the breathing mode frequencies �− �a� and �+ �b�
�cm−1� vs the radii Ro and Ri, respectively, for the series of chiral DWCNTs.
The curves correspond to the fit given in Eqs. �20� and �21�.

(a)

(b)

FIG. 9. Frequency splittings ��− �a� and ��+ �b� �cm−1� when ��l , l� and
�r , l�� DWCNT diastereoisomers are considered vs the tube radii Ro and Ri,
respectively. The inset shows the influence of the interwall distance �R
between the inner and outer tubes on the chiral frequency splitting.
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values, the nonlinear behavior can be interpreted by analyz-
ing the �R /Ri dependence of the analytical expression of the
interaction energy written in the continuum model �no chiral
effect�. The interaction calculated for the two diastereoiso-
mers displays a small chiral discrimination energy as shown
by the behavior of �WS with Ri and ��=�i−�o. For the
DWCNT series considered in this paper, the maximum dis-
crimination energy ranges between 0.0675 meV Å−2 �0.18
meV/atom� and 0.045 meV Å−2 �0.12 meV/atom� when Ri

increases from 2.2 to 5.0 Å, or �� increases from 0.5° to 6°.
As an example, for a DWCNT with an inner tube character-
ized by Ri=7 Å and Li=100 Å, the value of �W is 230

meV while W̄=68.1 eV.
Though small, it was interesting to see whether this dis-

crimination between �l , l� and �r , l� DWCNTs can influence
the mutual growth of the two tubes. We have shown that the
chiral discrimination is maximum at the first steps of the
growth of the inner tube in the outer one having the same
handedness and very similar chiral angles. This maximum

value can reach about 0.16 meV/atom, i.e., 6 meV for an
inner tube radius of 3.34 Å and a length of 10 Å. This dis-
crimination remains clearly small and it cannot explain by
itself the selective growth of DWCNTs having the same
handedness, as observed in Ref. 25, but it could participate to
this selectivity among other causes.

Since Raman scattering has proven to be a key technique
for the analysis of DWCNTs16,17,23 due to the photoselective
resonance response of the radial breathing modes, the behav-
ior of the frequencies of these modes has been examined as a
function of the two tubes’ radii and of the chiral angle dif-
ference for the series of selected tubes. In previous
papers,16,17,23 the splittings of the high resolution Raman fre-
quencies were discussed in terms of the response of one in-
ner tube enclosed in several different outer ones, without
regarding the tube chirality. The spectral resolution corre-
sponding to the response of the inner tubes was 0.35 cm−1.
Splittings between �2 and +2 cm−1 around the mean fre-
quency values were observed for inner tubes with radii rang-
ing between 2.5 and 4.5 Å.

The corresponding splittings calculated in Table II cor-
respond precisely to the set of DWCNTs studied in Refs. 17
and 23. Note, however, that some of them occurring in these
references are not stable in our calculations ��R interwall
distance less than 3.4 Å� and they have been removed from
Table II. For �+, the splitting assigned to the chirality lies in
a smaller extent than the one assigned to the filling of several
larger outer tubes by a given inner one. However, since the
interaction energy of these diastereoisomers is a priori more
stable than the energy between tubes with larger interwall
distances, these chiral splittings, which are at the limit of
detection, should be taken into account to interpret the Ra-
man spectrum. Note that the frequency splittings due to
chirality are generally larger for the outer tubes �reaching
2 cm−1� than for the inner ones, but the experimental reso-
lution is in this case less good17 and it would prevent their
observation. It may be noted that all the calculations have
been performed with the theoretical values of the radius and
the chiral angle of the tubes obtained from Eqs. �2� and �3�.
The values of the radii deduced from density functional
theory17 are generally larger than these theoretical values,
leading to slightly smaller values of the breathing mode fre-
quencies. But this correction should not strongly affect the
splitting values determined here.

V. CONCLUSION

Chirality in nanotubes has been and is still the subject of
intensive research since it can be responsible for unique
properties leading to technological applications in photoelec-
tronics, quantum optics, and biosensor devices, for instance.
To our knowledge, no quantitative data were available on the
influence of chirality on the stabilization energy and vibra-
tion of DWCNTs formed by two left-handed concentric tubes
or one left-handed and the other right-handed tube. A large
sampling of DWCNT diastereoisomers has been used to de-
duce simple laws on the chiral energy discrimination and on
the chiral splitting of the breathing mode frequencies. Al-
though chiral effects generally remain weak, they influence

(a)

(b)

FIG. 10. Frequency splittings ��− �a� and ��+ �b� �cm−1� depending on the
chiral angle difference ��=�i−�o for the �l , l� and �r , l� diastereoisomers.
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the stabilization energy of the two tubes and they give addi-
tional signals in the high resolution Raman spectrum that
should be experimentally detected. In terms of interaction
energy and of spectral response, chirality in nanotubes ap-
pears to be a short range phenomenon; i.e., its effect is maxi-
mum when the interwall distance is close to the equilibrium
value. It is also an intrinsic property of the two coaxial tubes
and therefore its influence should be described in similar
terms step by step from an inner tube to an outer one. It is
therefore expected that the present results, which apply to

any size and chiral angle of CNTs, could be easily extended
to the analysis of the MWCNT chirality.

APPENDIX: INTERACTION POTENTIAL AND FORCE
CONSTANTS IN THE CONTINUUM MODEL

In the potential defined by Eq. �11�, x=4RiRo / �Ri+Ro�2

and yp=4RiRo / ��Ri+Ro�2+�p
2� are adimensional variables

depending on the inner and outer tube radii and on the
lengths �1= �Lo+Li� /2 and �2= �Lo−Li� /2. The functions
N6�x ,yp� and N12�x ,yp� are expressed in terms of the hyper-
geometric Appell functions35 F1�n� ,n� ,n� ,n� ,x ,yp� as

N6�x,yp� =
�− �p+1

�p
2 �x − yp�	3�

k=0

�
�2k�!

22k�k!�2�2k + 1��p
k+1

�x − yp�k+1

yp
3/2xk−1/2 F1�1/2,5/2,k + 1/2,1,x,yp� − F1�1/2,1,1,1,x,yp�
 , �A1�

N12�x,yp� =
1

32

�− �p+1

�p
8 �x − yp�4	63�

k=0

�
�2k�!

22k�k!�2�2k + 1��p
k+1

�x − yp�k+1

yp
9/2xk−1/2 F1�1/2,11/2,k + 1/2,1,x,yp� −

21

yp
3 F1�1/2,4,1,1,x,yp�

−
8.4

xyp
2 F1�1/2,3,2,1,x,yp� −

4.8

x2yp
F1�1/2,2,3,1,x,yp� −

3.2

x3 F1�1/2,1,4,1,x,yp�
 . �A2�

The force constants determined from the continuum model �Eq. �11�� are defined as

kSi =
2.921

2�RiLodCC
4 Ri

2 �
k=6,12

�− �k/2Ck�
p=1

2 �x2�x−1/2	Ro

Ri

1/2

−
3

2
� �Nk

�x
− yp

2 Ri

Ro
�1

2
+ 2x−1/2	Ro

Ri

1/2

− 2x−1yp� �Nk

�yp
+ x2�1 − x�

�2Nk

�x2

+ yp
2�1 − ypx−1/2	 Ri

Ro

1/2�2�2Nk

�yp
2 + 2xyp�1 − x−1/2yp	 Ri

Ro

1/2��1 − x1/2	 Ri

Ro

1/2� �2Nk

�x � yp
� �A3�

and

TABLE II. Chiral splittings ��� �cm−1� of the breathing mode frequencies �� �cm−1� for DWCNTs with inner
radius values ranging between 2.5 and 4.5 Å. The chiral angle difference �� is given for each DWCNT.

�ni ,mi�@ �no ,mo� �− ��− �+ ��+

��
�deg�

�1,6�@�1,15� 195.05 0.46 451.85 �0.42 4.4
�3,5�@�3,14� 200.05 1.25 440.74 �0.01 12.3
�2,6�@�2,15� 190.51 0.74 416.22 0.00 7.7
�1,7�@�1,16� 183.33 0.60 392.89 �0.60 3.6
�3,6�@�3,15� 187.02 1.42 386.86 0.61 10.2
�2,7�@�2,16� 179.03 0.67 366.57 0.08 6.4
�1,8�@�1,17� 172.83 0.46 347.80 �0.51 3.0
�3,7�@�3,16� 175.64 1.11 344.09 0.44 8.6
�2,8�@�2,17� 169.00 0.68 327.70 �0.24 5.4
�4,7�@�4,16� 173.41 2.34 325.70 1.04 10.2
�1,9�@�1,18� 163.66 0.49 311.98 �0.38 2.5
�3,8�@�3,17� 165.89 1.06 310.15 0.44 7.3
�2,9�@�2,18� 160.15 0.75 295.99 �0.22 4.6
�4,8�@�4,17� 163.63 1.96 295.02 0.83 8.8
�1,10�@�1,19� 155.34 0.45 283.06 �0.41 2.2
�3,9�@�3,18� 157.18 0.80 282.24 0.13 6.3
�2,10�@�2,19� 152.05 0.93 270.09 �0.06 4.0
�4,9�@�4,18� 154.97 1.70 270.02 0.80 7.7
�3,10�@�3,19� 149.48 0.86 258.57 0.38 5.5
�3,11�@�3,20� 142.47 0.99 238.97 0.22 4.9
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kSio =
2.921

2�RiLodCC
4 RiRo

�
k=6,12

�− �k/2Ck�
p=1

2 �x�3

2
x − 1� �Nk

�x
+ yp�1 −

yp

2
+ 2ypx−1�yp − 1�� �Nk

�yp

+ x2�x − 1�
�2Nk

�x2 + yp
2�1 + yp

2x−1 − 2ypx−1�
�2Nk

�yp
2 + yp�2x + 2y −

1

2
x−1�1 + y�� �2Nk

�x � yp
� . �A4�

The third force constant kSo can be obtained from Eq. �A3� by permuting Ri and Ro, x and yp being invariant in this
permutation.
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