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Continuous-variable quantum key distribution using coherent states [1–4] is regarded as a promising realisation of quantum cryptography due to high compatibility
with existing telecom components and high detection efficiency (PIN diodes vs. single-photon detectors). However, the actual performance of a CV-QKD system
depends on a large variety of parameters related to the transmitter system (e.g. modulation variance, symbol rate, wavelength, phase noise) the quantum channel
(e.g. channel length, transmittance, coupling losses, Raman noise), the receiver setup (e.g. detection efficiency, detection noise, quantisation error) and post-
processing (e.g. reconciliation efficiency, code rate, frame-error rate). Our software CVsim allows the user to enter arbitrary specifications of his system into a
graphical user interface and delivers a detailed analysis of the experimental setup.
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