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Abstract

Two types of optimization methods were applied to a parameter optimization problem in
a coupled ocean—sea ice model, and applicability and efficiency of the respective meth-
ods were examined. One is a finite difference method based on a traditional gradient
descent approach, while the other adopts genetic algorithms as an example of stochas-
tic approaches. Several series of parameter optimization experiments were performed
by minimizing a cost function composed of model—-data misfit of ice concentration, ice
drift velocity and ice thickness. The finite difference method fails to estimate optimal
parameters due to an ill-shaped nature of the cost function, whereas the genetic al-
gorithms can effectively estimate near optimal parameters with a practical number of
iterations. The results of the study indicate that a sophisticated stochastic approach is
of practical use to a parameter optimization of a coupled ocean—sea ice model.

1 Introduction

Sea ice plays an important role in shaping the climate system in the Arctic Ocean
by altering heat, momentum and material exchanges between the atmosphere and
ocean (e.g. Wadhams, 2002; McPhee, 2008; Thomas and Dieckmann, 2009). Devel-
opment of a sea ice model is thus of great significance not only for understanding
the sea ice physics itself but also for understanding the Arctic climate system and its
linkage to the global climate. Comprehensive, large-scale sea ice models exist more
than 3 decades and have provided various insights regarding sea ice and its role in
the Arctic climate system (e.g. Hibler, 1979; Hibler and Bryan, 1987; Zhang and Hibler,
1997; Hunke and Dukowicz, 1997). However, even current sea ice models differ in the
simulated ice properties and also show pronounced biases compared to observations
(Rothrock et al., 2003; Gerdes and Kdberle, 2007; Johnson et al., 2007, 2012; Martin
and Gerdes, 2007; Eisenman et al., 2007). In order to improve simulated ice properties,
explorations of suitable parameterization of dynamic and thermodynamic processes of
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sea ice (Shine and Henderson-Sellers, 1985; Lipscomb et al., 2007) as well as param-
eterization regarding atmosphere—ice—ocean fluxes (Lupkes and Birnbaum, 2005; Lu
et al., 2011) are still under way. Such studies are always accompanied by sensitivity
studies with respect to newly introduced parameters or an estimation of an optimal
parameter set. Particularly, an estimation of an optimal parameter set relevant to re-
spective model configurations is nontrivial work for simulating realistic sea ice fields by
a model (Miller et al., 2006; Kim et al., 2006; Nguyen et al., 2011). In this study we
explore suitable and effective methods for parameter optimization of coupled ocean—
sea ice models, which can be applied to any kind of similar models with relatively small
programming effort.

To find an optimal parameter for a parameterization of a certain physical process,
early studies performed sensitivity experiments in which a single parameter was varied
at a time and other parameters were fixed (Shine and Henderson-Sellers, 1985; Led-
ley 1991a,b; Holland et al., 1993). However, Chapman et al. (1994) reported an inter-
dependency of parameter sensitivity and thus the necessity of multivariate sensitivity
experiments. In order to find an optimal parameter set in multi-dimensional parame-
ter space, Harder and Fischer (1999) and Miller et al. (2006) performed multivariate
sensitivity experiments with a sea ice model. Harder and Fischer (1999) optimized
atmospheric and oceanic drag coefficient and ice strength to minimize the misfit be-
tween their sea ice model and observations. Similarly, Miller et al. (2006) optimized
atmospheric drag coefficient, ice strength parameter and ice albedo simultaneously. In
both studies, the parameter space was discretized in a lattice form and combinations
of parameters were tested. Although they successfully obtained an optimal parameter
set in the 3-dimensional parameter space, they had to perform more than hundred ex-
periments even for just 3 parameters. Generally, the number of experiments required
for an n-dimensional parameter space increases with the n-th power.

In recent years, more sophisticated approaches for parameter optimization were pre-
sented. Kim et al. (2006) applied an automatic differentiation (AD) technique to examine
parameter sensitivity of a dynamic thermodynamic sea ice model. In their approach,
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analytical derivatives of the model with respect to selected parameters were obtained
by AD. They used so-called “identical twin experiment” for parameter optimization to
demonstrate the performance of their algorithm. It was shown that an AD-based gradi-
ent combined with a quasi-Newton search algorithm can effectively retrieve the param-
eters. Nguyen et al. (2011) presented another sophisticated approach for parameter
optimization. They optimized sea ice and ocean model parameters as well as the ini-
tial conditions of a coupled ocean — sea ice model with a Green’s function approach.
Sensitivities of the model with respect to the control parameters were assumed to be
linear around a base line experiment, and then the model Green’s function was calcu-
lated by perturbation experiments. They obtained a set of parameters, forcing field and
initial conditions which reduces the cost function by 45 %. Other than sea ice models,
such methods for model’s parameter optimizations can be found in numerous atmo-
spheric and oceanic studies (e.g. Garcia-Gorriz et al., 2003; Menemenlis et al., 2005;
Mochizuki et. al., 2007; Bocquet, 2012).

Although these approaches provided effective methods to perform a multivariate pa-
rameter optimization, problems could arise if the model exhibits a nonlinear response
to control parameters, resulting in a complicated shape of the cost function (Evensen
and Fario, 1997; Mazzega, 2000). For instance, if the cost function has a multimodal
or ill-shaped structure, results of gradient-descent methods depend on the initial guess
for the parameter set. Generally we cannot exclude the possibility that the cost function
has local minima besides the global minimum. In such a situation, one has to perform
multiple individual optimizations starting from a variety of initial parameter guesses to
find the global minimum. Another problem may arise from a micro-scale structure of the
cost function, because gradient-descent approaches can only be reasonably applied if
the cost is a smooth function of control parameters. Unfortunately, smoothness of sea
ice model’s response with regard to its control parameters is not always guaranteed as
will be shown in Sect. 3.

One of the possible solutions to these problems is to apply stochastic algorithms,
which perform a random search in the parameter space. Stochastic algorithms, such
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as simulated annealing or genetic algorithms, are kinds of global optimization algo-
rithms (GOAs) and widely applied to parameter optimization problems in other research
fields such as biogeochemical modeling (e.g. Athias et al., 2000; Schartau and Os-
chlies, 2003; Shigemitsu et al., 2012). Advantages of stochastic approaches are their
applicability to multimodal or ill-shaped functions, easy implementation and suitability
for parallel computational environment. On the other hand, a serious disadvantage of
these approaches is that they generally require huge computational resources as com-
pared with gradient descent approaches for an individual search (Vallino, 2000). This
may be one of the reasons why these approaches have not been applied to param-
eter optimizations for sea ice models coupled with ocean general circulation models
(OGCMs), which usually require substantial computational resources. Actually, most
of the applications of stochastic approaches for parameter optimizations are found
in 0- or 1-dimensional model studies (e.g. Carroll, 1996; Vallino, 2000; Athias et al.,
2000; Schartau and Oschlies, 2003; Lv et al., 2009), and only a few applications for
3-dimensional model studies can be found (Huret et al., 2007).

Difficulties arising from a large computational burden can be overcome by com-
bining parallel processing and a low-computational-cost stochastic approach. Athias
et al. (2000) examined the efficiency of parameter optimization by 3 types of GOAs.
They reported that micro genetic algorithm (WGA) can more efficiently reach a near-
optimal solution than other GOAs like simulated annealing (Kirkpatrick et al., 1983)
and TRUST (Cetin et al., 1993). The genetic algorithm (GA) is a quasi-stochastic
search algorithm to find an optimal solution based on the natural selection of living
things (Holland, 1975; Goldberg, 1989). The uGA is a realization with a small compu-
tational load by taking advantage of very small population size (Krishnakumar, 1989,
Kim et al., 2002). It has been successfully applied to a variety of optimization problems
(e.g. Johnson and Abushagur, 1995; Carroll, 1996; Kim et al., 2002; Schartau and
Oschlies, 2003), and its advantages compared with the simple GAs were reported by
Krishnakumar (1989) and Kim et al. (2002). As will be shown in Sect. 2, the computa-
tional load of uGA is quite suitable for muli-processor architecture of recent computers,
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and a parameter optimization of a coupled ocean—sea ice model can be achieved within
a reasonable computational time.

The purpose of this study is to provide a simple and systematic method for a pa-
rameter optimization of coupled ocean—sea ice models. In order to provide a suitable
optimization method, we introduce a cost function composed of model-data misfit of
ice concentration, ice drift velocity and ice thickness. We examine the characteristics
of the cost function to specify a requirement necessary for an optimization approach,
and then demonstrate parameter optimizations in practice by two types of different ap-
proaches; a gradient descent approach and a stochastic approach. As an example of
gradient descent approaches, we apply the finite difference method, whereas as an
example of stochastic approaches we apply the uGA. By examining applicability and
efficiency of the respective approaches together with examinations of the character-
istics of the cost function, we provide an useful parameter optimization procedure for
modelers working on coupled ocean—sea ice models. To achieve our goal, we demon-
strate parameter optimizations with a cost function defined by 1-yr window. This is
too short to estimate proper parameters for a long term simulation, but long enough to
examine the properties of the cost function and the efficiency of the methods. A param-
eter optimization for a realistic simulation by using a longer time window and detailed
examinations of simulated ice field will be presented in a forthcoming paper.

The paper is organized as follows: in Sect. 2 we describe the experiment design,
which is composed of a brief introduction of the coupled ocean—sea ice model, sea ice
data used in this study, definition of the cost function, a description of two types of opti-
mization methods and a description of optimization experiments. In Sect. 3, properties
of the cost function are examined in 2-dimensional parameter space, and then, results
from the two types of optimizations are provided. Conclusions are given in Sect. 4.
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2 Experiment design
2.1 Coupled ocean-sea ice model

The coupled ocean—sea ice model used in this study is the North Atlantic/Arctic Ocean
Sea Ice Model (NAOSIM) developed at AWI (Gerdes et al., 2003; Kdberle and Gerdes,
2003; Kauker et al., 2003). The ocean part of NAOSIM is based on the MOM-2 model
developed at the GFDL (Pacanowski, 1995), while the sea ice part of the model is
a dynamic thermodynamic sea ice model with viscous plastic rheology (Hibler, 1979;
Harder, 1996). Both parts of the model are coupled following the procedure devised by
Hibler and Bryan (1987). The model domain encloses the whole Arctic and the North
Atlantic Ocean north of approximately 50° N (Fig. 1), and is formulated on a spherical
rotated grid. The geographical north pole was shifted to 60° E on the equator to avoid
a numerical singularity arising from convergence of meridians. NAOSIM has been suc-
cessfully applied to a variety of ocean and sea ice studies in the Arctic Ocean (e.g.
Kauker et al., 2003, 2005, 2009; Karcher et al., 2005, 2007, 2011), and more descrip-
tive information about the model configuration can be found in Karcher et al. (2003),
Kauker et al. (2003) and studies mentioned above.

In this study we employ a low-resolution version of NAOSIM (Kauker et al., 2009),
with a horizontal resolution of 0.5° x 0.5° and 20 levels in the vertical (Table 1). At
the southern boundary of the model domain, an open boundary condition has been
implemented along the Atlantic sector following Stevens (1991), while in the Pacific
sector Bering Strait is treated as a closed wall. At the open boundary of the Atlantic
sector, temperature and salinity at inflow points are restored toward PHC climatology
(Steele et al., 2001), and barotropic velocities normal to the boundary are specified
from a model version covering the entire Arctic and Atlantic Ocean north of 20°S
(KOberle and Gerdes, 2003). The model is driven by daily atmospheric forcing from
1948 to 2003 (NCEP/NCAR reanalysis, Kalnay et al., 1996) starting from temperature
and salinity fields given by the PHC climatology and 100 % ice concentration with 2m
thickness in regions where the sea surface temperature falls below the freezing point
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of sea water. The initial model fields for the parameter optimization window are taken
from 1 January, 2003, and 1-yr integration window forced by daily NCEP forcing from 1
January to 31 December, 2003 is used for parameter optimization.

For parameter optimizations by a gradient descent approach, we make use of two
types of model codes. One is the standard model code and the other is a “smoothed”
model code (hereafter referred to as standard- and smth-code, respectively). As will be
shown in Sect. 3, responses of modeled sea ice fields to its control parameters do not
provide a tractably smooth function for a local gradient estimation. Possible reasons are
the parameterization of certain physical process and the model’s coarse discretization
in space and time. The smth-code of NAOSIM was developed for its 4DVar data assim-
ilation system (Kauker et al., 2009) and is used here to mitigate the problems of local
gradient estimation arising from the standard-code. In the smth-code, fortran state-
ments such as “if”, “max(.)”, “min(.)” and “abs(.)” in the code which potentially cause
discontinuous model behaviors were replaced by continuous function such as “atan(.)”
to smooth the local structure of the cost function. Although the smth-code slightly mod-
ifies the modeled ice and ocean fields, the difference of the simulated fields between
the standard- and smth-code are acceptable for the present purpose. Differences of
the cost function between the standard- and smth-code will be examined in Sect. 3.

2.2 Data

To evaluate modeled sea ice fields, we make use of 3 types of sea ice data sets ob-
tained from satellite observations, i.e. ice concentration, ice drift velocity and ice thick-
ness. With a basin-wide spatial coverage, these satellite data are suitable to measure
model—data misfit and have been applied for parameter optimization of a sea ice model
(e.g. Miller et al., 2006) as well as a coupled ocean—sea ice model (e.g. Nguyen et al.,
2011).

For sea ice concentration, we use preprocessed sea ice concentration data set of
the European Organization for the Exploitation of Meteorological Satellites (EUMET-
SAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF). For the data period
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in this study, the original data was measured by the Special Sensor Microwave/Imager
(SSM/1) and processed following the algorithms described in Eastwood et al. (2010).
Here we use the product OSI-409 (available at ftp://saf.met.no/reprocessed/ice/conc/
v1/), which contains daily mean ice concentration on a polar stereographic grid with
a horizontal resolution of 10 km, covering the entire Arctic Ocean except near the North
Pole. We processed the original OSI-409 data set into monthly mean data on the model
grid to facilitate model-data comparison. Only the original data whose status flag guar-
antees its reliability were used. The monthly mean values were defined at points where
the number of valid data exceeds at least 30 % of the number of days of the respective
month. For the data projection from the data grid to the model grid, we simply calcu-
lated the arithmetical mean of valid data contained in each model grid cell. Each grid
cell generally contains a sufficient number of data points and interpolation errors can
be negligible.

For sea ice drift, we utilize the low resolution sea ice drift product OSI-405 from EU-
METSAT OSI SAF as well. The data used here is a single sensor product measured
by the Advanced Microwave Scanning Radiometer of the Earth Observation System
(AMSR-E) and processed following the algorithms described in Lavergne and East-
wood (2010). The data set provides information about positions of ice parcels before
and after a certain time interval (48 h) as daily files from January to April and from Octo-
ber to December with some data gaps. In the original data set, the initial position of the
parcels are fixed to the grid points defined on the polar stereographic coordinate with
62.5 km mesh, while the position of the parcels after the time interval is provided as ice
displacement data. This procedure introduces certain biases. Nevertheless, this is one
of the best available estimates of sea ice motion with large spatial and long temporal
coverage. In order to use the data for the present model-data comparison, we calcu-
lated monthly mean ice drift on the model grid. In this process, we firstly calculated
monthly mean displacement of each parcels on a data grid point when observations
were available for more than half of each month. We secondly projected the displace-
ment data form the data grid to the model grid and calculated zonal and meridional
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ice drift in the model coordinate, with a limitation of maximum interpolation distance of
90 km.

In addition to the above data sets, we also use basin-wide ice thickness data pro-
vided by Kwok et al. (2009). The data set is composed of 10 campaigns of Ice, Cloud
and land Elevation Satellite (ICESat) from 2003 to 2008 on a polar stereographic grid
with a horizontal resolution of 25 km (available at http://rkwok.jpl.nasa.gov/icesat/). Ice
thickness is estimated by a method described in Kwok et al. (2007) and Kwok and Can-
ningham (2008) from total (sea ice plus snow) freeboard measured by a laser altimeter
on the satellite. In the present study, we utilized the ON3 campaign from 24 September
to 18 November, 2003 for model-data comparison. We projected the original data onto
the model grid by simply adopting the nearest data point, since the horizontal resolution
of the original data is finer than that of the model.

2.3 Cost function

The cost function measuring the model-data misfit is defined by a combination of 3
types of sea ice data mentioned above and an additional penalty term. The total cost
function, J, is given by

J=Sk,p (1)

where k = 1, 2 and 3 correspond to ice concentration, ice drift velocity and ice thickness
observations, respectively; J, represents the contribution from respective component;
N, is the number of observational data for the k-th component; P is a penalty term in-
troduced for a gradient descent approach and will be defined later. To reduce the cost
from the respective components simultaneously, we organize the cost function so that
the contributions from the respective sea ice properties have the same order of mag-
nitude. For this purpose, J, is divided by the number of respective observations, N,
since the numbers of the respective observations significantly differ from each other
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(Ny =50730 (ice concentration); N, = 14295 (ice drift velocity); N3 = 2123 (ice thick-
ness)). Together with the observational uncertainties defined later, this normalization
makes it possible to evaluate the contribution from the respective components in the
same order of magnitude.

We measure each component of the cost function by the squared L? norm of model—
data misfit weighted by the uncertainties of the observations;

Jy =[d - G(m)]"W[d - G(m)], (2)
where d = [d},ds, ... d,\,]T represents the observational data; m =[my,m,, ... ,m,l,,]T is
the control parameter set to be optimized; G(m) = [G1(m),67‘2(m),...G,\,(m)]T is the

convolution of measurement function with the full model dynamics, i.e. G;,(m) gives
the model’s counterpart to the observational data, d;; W is the weighting matrix to
take uncertainties of the observed data into account. In the present experiments, we
only consider the diagonal elements of W defined by W, = 0;2, where o, is the uncer-
tainty of the respective observations of k-th component. We assume provisional values,
o4 = 5% for ice concentration, o, = 1cm s for ice drift velocity and 03 = 50cm for ice
thickness. These uncertainty values were chosen so as to make the costs associated
with respective components have the same order of magnitude, and therefore, con-
tribute to the total cost function to the same extent. An exact evaluation of uncertainties
of the merged data and providing an exact form of the weighting matrix is nontrivial
and would be quite time consuming as well as digress from the subject of the present
study. Therefore we simply assumed the provisional uncertainty values for ice con-
centration and ice drift velocity, whereas we adopted the uncertainty values provided
by Kwok et al. (2009) for ice thickness data, since the thickness data is provided as
a time average of each campaign period and we did not process the data for temporal
average.

As control parameters m for the optimization, we selected 7 model parameters from
different physical processes as listed in Table 2 (i.e. M =7 in the present case). Two
of the parameters were taken from momentum transfer processes among atmosphere,
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ice and ocean, while others were taken from dynamic and thermodynamic processes
of the sea ice model. Atmospheric and oceanic drag coefficients (cdwin and cdwat)
are important tuning parameters for coupled ocean—sea ice models, and a number of
studies have focused on obtaining appropriate values for realistic sea ice simulation
(e.g. Holland et al., 1993; Chapman et al., 1994; Harder and Fischer, 1999). The em-
pirical ice strength parameter (P*) is another key parameter controlling dynamic sea
ice processes and has been chosen as one of the tuning parameters in a number of
studies (e.g. Holland et al., 1993; Harder and Fischer, 1999; Nguyen et al., 2011). We
also include the lead closing parameter in the ice compactness equation, A, in the set
of control parameters. Furthermore, we select latent and sensible heat transfer coef-
ficients (cdlat and cdsens) and snow and ice albedo values (albedo), since these are
the key parameters controlling the thermodynamic processes of sea ice. The represen-
tative albedo value in Table 2 is set to be equivalent to the albedo of frozen snow in the
model, and is related to other albedo values by maintaining the original ratio between
the albedo of frozen snow and other albedo values (0.77/0.8 for melting snow, 0.7/0.8
for frozen ice, and 0.68/0.8 for melting ice).

We limited the number of control parameters to 7 to maximize the efficiency of the
optimization by the gradient descent approach on our computational environment. This
limitation comes from the number of available CPUs in a certain batch job class on
the computer facility at AWI, and can be relaxed when we perform a parameter opti-
mization for realistic model simulations. We also set bounds to the parameter values
within a prescribed upper- and lower-limits (see m; = and m?"" in Table 2). These lim-
its are provisional values for examining performances of the present two optimization
approaches, and also can later be relaxed within the physical constraints (e.g. that the
albedo values should not exceed 1.0).
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The penalty term, P, is introduced so that the gradient descent algorithms can keep
the estimated parameters within the prescribed range;

20
central value

M . .
p=3 (N , (3)
i=1

half range
m,. 9

where mSeM@vale _ (mMax 4 ;™) /o and m?a” a9 = (m™™ — m™") /2, respectively.
This term rapidly increases the cost function when the estimated parameters exceed
their prescribed ranges, while adding negligible cost when the parameters stay within.
Although the stochastic approach does not need the penalty term, we applied the term
to a couple of series of optimization experiments with a stochastic approach for com-
parison purposes.

2.4 Gradient descent approach

As a gradient descent approach, we employ a finite difference (FD) method combined
with a quasi-Newton search algorithm to find an optimal parameter set. This is a very
fundamental and simple method to optimize model parameters. One of the advantages
of the method is that no changes to the model code are necessary to evaluate the
gradient of the cost function. Therefore the method can be easily applied to numerical
models of all kinds without special programming effort. Another advantage is that no
linearization of the code is done and one can explore the fully nonlinear cost function
space. On the other hand, the computational cost for gradient estimation increases
proportional to the number of the control parameters in contrast to sophisticated ap-
proaches such as an adjoint. By exploiting recent parallel computational environments,
one can apply the method to parameter optimizations for a moderate number of param-
eters, while it is still impractical to apply the method to optimize initial and/or boundary
conditions of the model. A disadvantage common to all gradient descent approaches is
the possibility to become stuck in one of the local minima of the cost function. In order

3605

OosD

9, 3593-3642, 2012

stochastic
approaches

H. Sumata et al.

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/9/3593/2012/osd-9-3593-2012-print.pdf
http://www.ocean-sci-discuss.net/9/3593/2012/osd-9-3593-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

to reduce this possibility, experiments with various initial guesses of the parameter set
must be performed.

In the FD method, a gradient of the cost function with regard to each ontrol param-
eter, %, is evaluated at a certain point in the M-dimensional cost function space by

a difference of the cost functions divided by an increment;
oJ J(m+ Amj) - J(m)
om; Am,

(4)

where Am; =[0,0,...,Am,,... O]T is an increment of /-th control parameter normalized
by the range of each parameter. By performing M + 1 model runs and cost evaluations,
we can obtain full gradient of the cost function g—,{, at a certain point. We applied one of
the quasi-Newton search algorithms, the limited-memory Broyden—Fletcher—Goldfarb—
Shanno algorithm (L-BFGS) by Liu and Nocedal (1989), to reduce the cost function by
searching an optimal parameter set in the gradient descent direction. Re-evaluations
of the cost and its gradient and an application of the search algorithm are repeatedly
performed, until an Euclidean norm of the gradient (normalized by a Euclidean norm
of the control vector) falls below a prescribed threshold or the line search routine in
the search algorithm is unable to provide further steps which satisfies the sufficient
decrease and curvature conditions. The threshold for the norm of the gradient is set to
1.0x 1072,

Before performing parameter optimizations, we tested the performance of the L-
BFGS algorithm by a pseudo cost function defined by a M-dimensional continuous
function with only one global minimum, and confirmed that the algorithm finds the min-
imum of the function within a computational accuracy after dozens of iterations. Fig-
ure 2a shows schematics of the parameter optimization system by the present method.
As shown in the figure, we perform M + 1 model runs and cost evaluations in parallel
by exploiting M + 1 processors. Therefore, the time required for L iterations is equiv-
alent to L model runs plus the cost evaluations by one processor. Since a parallel
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computational environment has become quite common, the approach is feasible for
the optimization of a limited number of parameters in a sea ice-ocean coupled model.
Before performing optimization experiments, we also made a survey of the incre-
ment, Am, for the gradient estimation. If the cost function is a smooth and continuous
function of the control parameter set m, we can apply an infinitesimal increment for lo-
cal gradient estimation in Eq. (4). However, as will be shown in Sect. 3, the shape of the
cost function given by the coupled ocean—sea ice model is not smooth. It has a micro-
scale spiky structure probably due to some parameterizations adopted in the model
and the model’s discretization in space and time. Although this situation is to some ex-
tent alleviated by adopting the smth-code mentioned above, it is not completely solved.
A cost function, J, evaluated at a certain point in the parameter space inevitably reflects
micro-scale local structure. If we apply a very small increment for a gradient estimation,
the gradient represents an inclination of micro-scale unevenness of the function and is
not applicable to the minimum search, whereas if we apply a large increment, the gra-
dient cannot represent a local gradient and the accuracy of the search will decline. In
such a situation, we have to figure out an appropriate increment size which is suffi-
ciently larger than the width of the micro-scale structure, while at the same time, small
enough to capture a local gradient of the function. We performed preliminary optimiza-
tion experiments with various increment sizes, and evaluated the reduction ratio of the
gradient of the function as a measure of an appropriate increment size. If a gradient
of the function after an optimization is sufficiently small, the optimized parameter set is
close to an extremum of the function. While the gradient remains large, it is still far from
an extremum or the gradient captures micro-scale unevenness of the function due to
an inordinately small increment. Therefore, we can say that a smallness of the gradi-
ent after an optimization compared to the initial gradient is a necessary condition for
being close to an extremum. In the preliminary experiments, we tested various sizes of
increment with smth-code and found that an increment with (m™ — m™") x 1072 gives
the best reduction ratio of the gradient. We apply this increment value in the following
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experiments. The adequacy of the increment will be reexamined by 2-dimensional sur-
vey of the cost function in Sect. 3.

2.5 Stochastic approach

As an example of stochastic approaches, we apply the micro genetic algorithm (uUGA),
which is a small population version of the genetic algorithms (GAs). The GAs are global
optimization algorithms based on the natural selection of living things (a description of
the algorithms can be found in Holland, 1975 and Goldberg, 1989). The advantage of
the algorithms is an applicability to an extremum search for ill-shaped or multimodal
functions, whereas the disadvantage is a huge computational cost to obtain a solu-
tion with a high accuracy. In the algorithms, a single set of the control parameters
(parameter vector) is represented by a genotype of an individual by encoding the pa-
rameter vector to binary bit strings (Fig. 3a), and then a generation which is composed
of a prescribed number of randomly generated individuals is prepared (Fig. 3b). The
generation can be regarded as a pool of various vectors, and the algorithms simulate
an evolution of the generation based on a reproductive plan, which consists of selec-
tion of individuals, recombination of genes and mutation of individuals. The selection
process is conducted by the Darwinian evolutionary principle of “survival of the fittest”,
which in the present context corresponds to a selection of suitable parameter vector by
an evaluation of the cost function (Fig. 3c). The recombination of genes is carried out
by an exchange of genes among selected individuals (Fig. 3d), corresponding to a gen-
eration of new parameter vector by a random combination of binary bit strings coming
from a couple of vectors contained in the pool. The mutation introduces new genic
information into the generation, corresponding to an introduction of random seeds of
parameter vectors into the pool. Generally, GAs require a population size of 0(102) to
preserve sufficient possibilities for the search. Since the population size is correspon-
dent with the number of model runs required for each generation, it is generally not
possible to apply the algorithms to a parameter optimization of coupled ocean—sea ice
models in its original form.

3608

OosD

9, 3593-3642, 2012

stochastic
approaches

H. Sumata et al.

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/9/3593/2012/osd-9-3593-2012-print.pdf
http://www.ocean-sci-discuss.net/9/3593/2012/osd-9-3593-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

The uGA, on the other hand, requires a very small population size regardless of
the chromosome length (Goldberg, 1989). The basic strategy of the uGA is to per-
form a quick search in parameterspace by taking advantage of the small population
size and to perform an intensive search by iterative reinitializations. Technically, the al-
gorithm is composed of 3 processes; a reproduction of individuals, an assessment of
convergence and a reintroduction of randomly generated individuals throughout a reini-
tialization. The reproduction of individuals is achieved by a recombination of genes in
the same manner as in the simple GAs with the exception that the best fittest individual
of the current generation is reserved and is directly transferred to the next generation
without any change (Fig. 3e). After each renewal of generation, the algorithm eval-
uates convergence of genotype in the generation, and if the diversity of the genes
is lower than a certain criteria, all the individuals except the fittest one are replaced
by randomly generated new individuals (reinitialization). Since the new information is
repeatedly introduced by the reinitialization process, pGA does not need a mutation
process. Advantages of the puGA compared with the simple GAs have been reported
in Krishnakumar (1989) and Kim et al. (2002), and examples of application of uGA to
various problems can be found in the papers mentioned in the introduction.

Figure 2b shows schematics of the parameter optimization system with the pGA.
We adopted the genetic algorithm driver developed by Carroll (1996) to implement the
MGA into the system. As shown in the figure, the number of CPUs necessary for run-
ning the system is equivalent to the number of the population size of the generation.
The population size required for the pGA is generally less than 10; Goldberg (1989)
indicated that a population size of 3 is sufficient for convergence; Coello and Pulido
(2001) used a population size of 4; Krishnakumar (1989), Athias et al., (2000) and Kim
et al., (2002) used a population size of 5. On the other hand, Schartau and Oschlies
(2003) and Shigemitsu et al. (2012), for example, adopted larger population sizes of 13
and 19. In their studies, the population size is set to be the same number as the num-
ber of control parameters. Schartau and Oschlies (2003) mentioned that the choice is
not mandatory, but was found to perform well in their test experiment. In the present

3609

OosD

9, 3593-3642, 2012

stochastic
approaches

H. Sumata et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| II I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/9/3593/2012/osd-9-3593-2012-print.pdf
http://www.ocean-sci-discuss.net/9/3593/2012/osd-9-3593-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

experiment, we adopt population sizes of 5 and 8. The population size of 5 is recom-
mended by a number of former studies, whereas 8 is a number slightly larger than the
number of the control parameters. Both of the numbers are quite feasible for recent
parallel computational environments. Since the system executes all the model runs in
one generation in parallel, the computational time required for an optimization is given
by the time for one model run times the number of generations.

The number of generations required for an optimal solution depends on the needed
accuracy. Due to the quasi-stochastic nature of the pGA, the convergence of a solu-
tion particularly near the optimal solution is quite slow. In addition, since the parameter
space is discretized by a prescribed increment and the size of the increment is in-
versely proportional to the size of the parameter space (or the number of possibilities),
a small increment necessary for an accurate solution requires a search in a vast space.
Therefore, we have to figure out a practical number of generations as well as a size
of an increment in relation to the desired accuracy of a solution. In order to obtain
a tentative relation among them, we performed preliminary optimization experiments
with a pseudo function. In these experiments we found that the number of possibilities
of 27 for each parameter requires at least 400 generations for a solution with 1 % ex-
pected error, and 1000 generations for a solution with 0.5 % expected error. It should
be noted that since these tentative estimations of errors were obtained from a contin-
uous function with only one minimum, it is not clear whether such an error estimate
is applicable to a complicated function with a number of local minima. Nevertheless,
from the practical point of view, an optimization experiment with 400 generations is an
upper limit of model runs if we intend to apply the method to a parameter optimization
with a realistic time window, and therefore we employ these tentative estimations to
examine efficiency and applicability of the present method.

2.6 Optimization experiments

Before performing optimization experiments, we conducted 2-dimensional complete
surveys of the parameter space spanned by h, and P* to demonstrate the nature of
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the cost function derived from coupled ocean—sea ice model. The surveys were done
for both standard- and smth-code with some intensive search in a specific area. All the
2-dimensional maps showing the cost function structure are composed of a mesh of
40 x 40 points obtained from 1600 model runs and cost evaluations.

For the gradient descent approach, we performed a couple of series of optimization
experiments with the standard- and smth-code to examine the effect of smoothing of
the model code on the efficiency of an optimization (Table 3). The cost function ob-
tained from the smth-code is reevaluated by applying the optimized parameters to the
standard-code for comparison purpose. In each series of experiments, 10 indepen-
dent optimizations starting from different initial parameter sets were performed to see
whether the optimized parameter sets converge to certain parameter values (Table 4).
It is essential to perform such experiments to assess the applicability of the algorithm
to the objective function, because one of the difficulties arising from the approach is
missing the global minimum of a function with an ill-shaped structure.

We also performed 4 series of optimization experiments with the uGA (Table 3). Each
series of experiments was composed of 10 independent optimization experiments with
different seeds for random number generator in order to statistically assess the effi-
ciency of the algorithm. The first series of experiments (WGA-1) is conducted with the
population size of 5 and the number of possibilities of (27)7.The second series of ex-
periments (LGA-2) has exactly the same setup as the first one but includes the penalty
term in the cost function to facilitate the direct comparison with the optimizations by
the FD method. The third (UGA-3) and fourth (UGA-4) series of experiments employ
different set-up parameters in the uGA. The third series uses a population size of 8
whereas the fourth series uses a larger number of possibilities of (210)7.
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3 Result
3.1 Property of the cost function

Figure 4 shows a 2-dimensional cost function map in hy— P* space obtained from
the standard-code. The other parameters used for the cost evaluations were fixed to
the standard setup values from Table 4. The figure shows that the total cost function
reaches its minimum around h, ~ 1.3 and P* ~ 35000 (Fig. 4a) with the standard pa-
rameter set. This combination of the h, and P~ values does not correspond to minima of
the 3 individual components (Fig. 4b—d) of the cost function. The shapes of the J, /N,
coming from different ice properties significantly differ from each other. For example,
around the center of the panels, the response of the ice thickness cost to h, variation
(Fig. 4b) is opposite to that of the ice concentration cost (Fig. 4c), while at the same
time, the ice drift cost is relatively insensitive to h variation (Fig. 4d).

Such property-dependent responses of the cost suggest a couple of important fea-
tures of the total cost function derived from a combination of different ice properties.
The first point is that the function potentially has more than one minimum even if
each component of the cost has only one global minimum. The property-dependent
responses may be partly due to biased initial sea ice conditions, shortcomings of mod-
eled physics and also partly due to errors in the forcing data. Since a parameter opti-
mization work is inevitably accompanied by such circumstances, the search algorithms
for a parameter optimization should be tolerant regarding the existence of local min-
ima. In other words, the gradient descent approaches may have some difficulties to find
a global minimum due to the characteristics of the cost function. The second point is
that the shape of the total cost function, and therefore the optimal parameter set corre-
sponding to the cost function, is strongly influenced by relative importance or weight-
ings of respective components. Since the relative importance stems from squared dif-
ferences between modeled and observed ice properties divided by observational un-
certainty, an appropriate choice of respective uncertainties is of significant importance.
Although we adopted here the provisional uncertainty values to concentrate on our
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examination of an applicability and efficacy of the optimization methods, we have to
investigate appropriate uncertainties as well as their relative weightings when we per-
form parameter optimizations for realistic simulations.

Another characteristic of the cost function is its micro-scale structure. Figure 5 shows
a magnification of the black solid rectangles in Fig. 4. The cost function obtained from
the standard-code has a micro-scale uneven structure. Although most of the uneven-
ness on this scale stems from the ice concentration cost, the ice drift and ice thickness
cost also have uneven structures if we magnify the map further. Such an uneven struc-
ture makes it difficult to accurately estimate a gradient of the function required for the
gradient descent approach, and then extremely lowers the accuracy of the solution.
Although an application of the smth-code mitigates such a situation to some extent
(Fig. 6a, e), the cost function still has an uneven structure on smaller scale (Fig. 6f).
If we estimate possible increments for the FD method from Fig. 6, Ahy ~ 0.025 and
AP ~ 500 are respectively the smallest values which will not be affected by the micro-
scale unevenness. These estimations are consistent with the increment values ob-
tained from the preliminary experiments, ( m™ - m™) x 1072, i.e. Ahy = 0.019 and
AP* = 450. It should be keep in mind that although the smth-code does not change
the basic responses of the cost function to variations of respective parameters, it in-
creases the cost by approximately 7—8 % and slightly deforms the shape of the cost
function (Fig. 6a—d).

3.2 Gradient descent approach

To assess the ability of the optimization system, we first examine the cost function and
corresponding sea ice fields obtained from an optimized parameter set. As an example,
Fig. 7 shows a time series of ice concentration cost and ice drift cost before and after
an optimization. The optimization was performed by the FD method with the standard-
code starting from the standard setup shown in Table 4. The total cost function was
reduced by 26.3 % from 20.87 (standard setup) to 15.39 (after the optimization) after 44
iterations, and all of the 3 components of the cost were also reduced (ice concentration
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cost: 25.6 %, ice drift cost: 24.6 %, ice thickness cost: 28.7 %). As shown in Fig. 7,
the system successfully reduced the ice concentration cost in summer, while the cost
in winter and spring seasons remained unchanged. In August the broad ice-free area
in the Eurasian Arctic found with the standard setup was drastically improved by an
application of the optimized parameter set (Fig. 8a—c). As for ice drift velocity, the time
series of the cost shows that the cost was reduced in the early months of the year,
while the costs in October and November were rather increased (Fig. 7). Figure 8d—
f shows monthly mean ice drift velocity fields in March, in which the improvement of
the modeled ice velocity field is evident. For the ice thickness field, we have only one
ICESat campaign in 2003. The ice thickness averaged over the period also shows
significant improvement in the Eurasian Arctic (Fig. 8g—i). These results indicate that
the system can at least provide a parameter set which gives smaller cost function,
although the set might not be optimal.

Figure 9 shows the initial and optimized cost functions and associated parameter val-
ues obtained from the 10 independent optimization experiments by the FD method with
the standard-code. As shown in panel (a), all the optimizations starting from various pa-
rameter sets successfully reduced the cost to similar values as the optimization starting
from the standard setup (opt-1). The final costs range from 15.02 to 15.47 (mean value
is 15.26). Nevertheless, the estimated parameter values except albedo show quite di-
vergent distributions despite the fact that they give similar costs (Fig. 9b—h). Possible
reasons for the divergent distributions are (1) shortcomings of the FD method associ-
ated with an inaccurate gradient estimation caused by the micro-scale unevenness of
the cost function and its manifestation particularly in the weak-sensitivity regions, and
(2) the search algorithm being stuck to one of the local minima of the function. The first
possibility comes from the characteristics of the cost function shown in Figs. 4 and 5,
and also from the fact that the simulated ice fields corresponding to the estimated pa-
rameter sets show quite similar spatial patterns, regardless of the different parameter
values (Fig. 10). The second possibility comes from the fact that some of the estimated
parameters tend to have some specific values as can be seen in Fig. 9c—g (e.g. in
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Fig. 9f, opt-1, 6 and 8 give similar estimated values around 1.6 x 1073, whereas opt-3,
5, 7 and 10 give values around 2.1 x 10'3) . In any case, we can conclude that the FD
method with the standard-code can reduce the cost to some extent, but at the same
time, has a weakness for estimating parameters with weak sensitivity to the cost.

The application of the smth-code mitigates the divergent property of the estimated
parameters to some extent. Figure 11 shows the initial and optimized cost functions
and associated parameter values obtained from the 10 independent optimization ex-
periments with the smth-code. Variations of some of the estimated parameters become
small compared to the standard-code (Fig. 11b, g, h). Other parameters still vary over
a similar range as with that of the standard-code (Fig. 11e, f). The cost function values
after the optimizations are ranging from 16.26 to 16.39, and those values correspond-
ing to the same parameter sets but re-evaluated by the standard-code range from 15.26
to 15.59 (mean value is 15.38). These values are slightly larger than those obtained
from the optimizations with the standard-code, indicating that the application of the
smth-code, as a result, could not provide parameter values which gives smaller cost
than the cost obtained from the standard-code.

3.3 Stochastic approach

In this subsection, we survey applicability and efficiency of the uGA by examining re-
sults form pGA-1, in which the population size is set to 5 and the number of possible
parameter values is set to (27)7 (see Table 3). Afterwards, we briefly show results from
different setup, pHGA-2, 3 and 4, to make a direct comparison of optimization efficiency
between the uGA and the FD method, and also to examine the effects of set-up pa-
rameters used in the uGA.

The parameter sets obtained from the uGA optimization experiments also succeeded
to reduce the cost function and improved the simulated ice fields as summarized
in Fig. 12. The time series of the cost function (Fig. 12a) and simulated ice fields
(Fig. 12b—d) were obtained from a model run for which the mean parameter values
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obtained from 10 independent optimization experiments by uGA-1 were applied. The
cost function value after the optimization is 14.82, and the reduction rate of the cost
compared to the standard setup is 29.0 % (ice concentration cost: 27.5 %, ice drift cost:
28.7 %, ice thickness cost: 32.0 %). As shown in Fig. 12a, the reduction of ice concen-
tration cost is emphasized in the summer months similar to the FD optimizations. The
costs from January to June are also reduced more than 10 %. For ice drift velocity, the
cost decreases in the early months of the year, whereas they increase in October and
November, again similar to the FD optimizations. The spatial pattern of the simulated
ice fields (Fig. 12b—d) also exhibit similar but slightly better structure than those from
the FD optimizations (see also Fig. 8 for comparison).

Figure 13 summarizes the evolution of the cost functions and corresponding param-
eter values throughout the 10 independent optimization experiments by uGA (UGA-1).
As shown in Fig. 13a, the cost functions rapidly reduced during the first 100 genera-
tions, and the reduction of the cost throughout the following 300 generations is relatively
small. After 400 generations, the costs obtained from the 10 optimization experiments
range from 14.80 to 14.83 (mean value is 14.81). The evolution of the associated
parameter values, on the other hand, show slight modifications even after the 100th
generation in some cases. The variances of the estimated parameters become nearly
constant after 200 generations.

A remarkable point of uGA-1 optimizations is the small variance of the estimated
parameter values even for parameters that varied considerably in the FD method, such
as cdwat and cdlat (Fig. 13, see also Figs. 9, 11 for comparison). Figure 14 summaries
standard deviations of the estimated parameters obtained from the 10 independent op-
timization experiments for the respective approaches. uGA-1 generally provides better
convergence of the estimated parameters compared to the FD method. Although the
FD method with smth-code provides slightly better convergence than uGA for cdsens
and albedo values, the standard deviations are quite small in both approaches and the
difference between the two approaches is vanishing.
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Figure 12e—g show the spatial pattern of standard deviations of the simulated ice
fields calculated by the 10 model runs corresponding to the 10 estimated parameter
sets by uGA-1. The figure shows that differences among the simulated ice fields are
sufficiently small and generally limited to the marginal ice zone. In addition, the differ-
ences are quite small compared to those obtained from the FD method (see Fig. 10
for comparison), indicating better convergence of the simulated ice fields than those
obtained from the FD method. The small standard deviations of the simulated ice fields
indicate that the corresponding cost functions are closer to the global minimum than
those obtained from the FD method.

In order to make a direct comparison of the optimization efficiency between the pGA
and the FD methods, we performed an additional series of experiments (UGA-2), in
which the penalty term was included in the cost function. In this series of experiments,
all the cost function values after 400 generations are smaller than the minimum cost
obtained from the FD method, and the standard deviations of the estimated parameters
are again satisfactorily small (less than 9 % of the prescribed parameter range), again
supporting the advantage of the uGA compared to the FD method.

Further experiments were also performed to examine effects of the set-up parame-
ters in the uGA on the efficiency of the optimization. One series of experiments exam-
ines the effect of the population size (UGA-3), and the other series of experiments ex-
amines the effect of the number of possible parameter values (LWGA-4). If we increase
the population size from 5 to 8, the efficiency of an optimization slightly decreases
(the maximum standard deviation of the estimated parameters is 12.3 % of the pre-
scribed parameter range at 400th generation), probably because of a reduced number
of reinitializations due to increased population size. For a large number of possibilities,
the convergence of the solution again decreases, indicating that the larger parameter
space worsens the efficiency of the optimization even for an identical cost function.
These results indicate that the selection of the set-up parameters used in the pGA are
important to achieve a fast convergence within a limited number of generations.
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4 Summary and conclusion

Two types of optimization method were applied to a parameter optimization problem
of a coupled ocean—sea ice model, and a comparison of the two methods was made
to assess an applicability and efficiency of the respective methods. One is a finite
difference method based on a gradient descent approach, while the other adopts the
stochastic approach of genetic algorithms. To evaluate modeled sea ice properties,
a cost function composed of model-data misfit of ice concentration, ice drift velocity
and ice thickness was introduced.

An example of a 2-dimensional complete survey of the cost function in the parame-
ter space showed that the cost function composed of a combination of different types
of observations potentially has more than one minimum value. In addition, the survey
also showed that the cost function exhibits a micro-scale uneven structure in parameter
space, which prevents estimating the gradient of the function with high accuracy. Due
to the nature of the cost function, the finite difference (FD) method has difficulties to
estimate optimal parameters. The estimated parameter values depends on their initial
guesses, and the standard deviations of the estimated parameters calculated from 10
independent optimization experiments were quite large for some parameters. A longer
time window for a more realistic parameter optimization would render the cost function
more complicated and would make the FD method even harder to apply. The genetic al-
gorithm, on the other hand, provides satisfactory results regardless of a relatively small
number of generations used here. The results show that the standard deviations of
estimated parameters calculated from 10 independent optimization experiments were
less than 6 % of the prescribed range of the respective parameters. Examinations of
standard deviations of the simulated ice fields also suggest that the uGA can provide
cost functions which are being closer to the global minimum than those from the FD
method. From these results, we conclude that the uGA has an advantage compared to
the FD method, and is applicable to a parameter optimization of coupled ocean — sea
ice model with a reasonable computational cost.
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1 20.0 -20.0
2 20.0 -40.0
3 20.0 -60.0
4 20.0 -80.0
5 20.0 -100.0
6 21.6 -121.6
7 34.4 -156.0
8 59.3 -215.3
9 95.3 -310.6
10 140.9 -451.5
11 194.0 —-645.5
12 252.3 -897.9
13 313.3 -1211.2
14 374.3 -1585.5
15 432.6 -2018.2
16 485.8 -2503.9
17 531.3 -3035.3
18 567.4 -3602.6
19 592.3 -4194.9
20 605.1 -4800.0
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Table 2. Parameters applied for the optimizations. The representative albedo of snow and ice
is related to respective albedo values in the manner described in the text.

osD

9, 3593-3642, 2012

stochastic
approaches

H. Sumata et al.

m; Name  Description Upper limit  Lower limit  increment for uGA  increment for uGA
(m"™) (mM™)  (possibility=2")  (possibility = 2'%)
my  hy Lead closing parameter for 2.0 0.1 1.496 x 1072 1.857x 1073
ice compactness equation (m)
m, P’ Empirical ice strength 5.0 x 10* 5.0 x 10° 354.3 43.99
parameter (Nm~2)
my cdwin  Atmospheric drag coefficient 30x10°% 50x107* 1.969 x 107° 2.444 x107°
m, cdwat  Oceanic drag coefficient 1.0x1072  40x107° 4.724x107° 5.865 x 107°
ms cdlat  Latent heat transfer coefficient 25x107° 1.25x107° 9.843x107° 1.222x107°
mg cdsens Sensible heat transfer coefficient 25x107° 1.25x107° 9.843x107° 1.222x107°
m, albedo Representative albedo of snow and ice 0.99 0.6 3.071x107° 3.812x 107
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Table 3. 5 series of optimization experiments with the FD and puGA.

FD-1 FD-2  pGA-1 UGA-2 UGA-3 uGA-4 Title Page ‘
Model code standard smth standard standard standard standard -
Penalty term yes yes no yes no yes Abstract Introduction
Number of independent 10 10 10 10 10 10
optimization experiments
Number of possible o [eS) (27)7 (27)7 (27)7 (210)7 e
combination of parameter values -
Number of population size - - 5 5 8 5 ﬂ ﬂ
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stochastic

Table 4. Initial parameter sets for optimization experiments with the FD method. approaches

H. Sumata et al.

Experiment ho P cawin cdwat cdlat cdsens  albedo
number
1 (standard setup) 0.5 15000 2.475x10™° 55x10° 1.75x10™° 1.75x107° 0.8 ,

-3 2 -3 _3 Title Page ‘
2 20 50000 3.0x10° 1.0x10 2.5x10 25x10° 0.99
3 0.1 5000 05x10° 4.0x107° 1.25x107° 1.25x107° 0.6 Py [ S —
4 2.0 5000 05x10™% 1.0x1072 1.25x107° 25x10° 0.6
5 01 50000 15x107° 80x10° 20x10°% 20x10° 07
6 1.0 30000 20x107° 6.0x10° 15x10° 15x107% 0.85
7 15 40000 25x10°% 80x10° 20x107° 1.25x10™° 0.65
8 0.5 10000 15x107° 7.0x107° 1.8x10° 225x107% 0.75
9 0.75 7500 1.0x10° 4.0x10% 14x10® 1.85x10° 095 g g
10 0.25 20000 0.75x107° 50x10° 24x10° 24x10° 08
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Fig. 1. Bottom topography of the model.
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(a) Schematics of parameter optimization system with finite difference method

Model run & cost evaluation Optimal parameter search
N A

Preparation of

s set _>| J(m+Am ) (cpu 2) I yes
for model runs L P! Search optimal
Gradient estimation Parameter set by |y Check convergence [ stop

of the solution

N = LBFGS algorithi
m, Jm+am) (opu3) 0 at'm algorithm
m+Am,, P ostimation N
’ 4l Om Ne | J—Jprev|<e? o
m+Am2, lew m
m+Am,

J(m+Am,) (cpu M+1)

Iteration loop

(b) Schematics of parameter optimization system with Genetic Algorithm

Model run & cost evaluation Genetic Algorithm driver

A AN
4 N~ N

The best fittest individual Yes

Check the number [ stop
Reinitialization & of generations

Individual 2 (cpu 2) Yes |Replacement by randomly
~ generated individuals ™ gen > maxgen ?

Recombination i~ A of
Individual 3 (cpu 3)

A

Individual 1 (cpu 1)

17

of genes convergence

A\

No

Individual M (cpu M)

Iteration loop

Fig. 2. Schematics of a parameter optimization system with (a) finite difference method and (b)
Genetic Algorithm. See text for description.
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(a) Encoding the parameter vector to binary bit strings.

ho P* ddwin

Genetic code for hy Genetic code for P*

7-digit bits allow 2'=128 possibilities of the parameter value.

(b) Preparation of the 1st generation.

maividuai 1 [ 1] o] 1] 001 oJo[1] o] o[ 1] 1] 4] o 1] 1]..

idividual 2 [ 0] o] 1] 1o o 4[] 4] o[ 1] 1o 1] o]0 o] 7]..

indiviauaim [ 1[4 ] o[ 1] o] 1] 1] o] o[ o[ 1] o] 1] o] 1 01 o]..

(c) Evaluation of fitness (cost function)

maiiaual [ 1] o[ 1] 0o 1] o].

(d) Recombination of genes (crossover)

indiviauai A [ 4] o] 1] oJo 1o o[a] o[ o[ 4o 4] 4] o] 2] 4]..

indiviauai 8 [ o] o] 1]4] o o[ 4] 1[0 4] 1Jo[1]oo] o] 1]cc

—» New individual | 1] o[ 1] 1JoJo[a[1[1J o[ 1] 1] o] 1] 1o 1] 1]..

Population size

— Decoding —m~ Model run — Cost evaluation

} current generation

| Next

(e) Renovation of generation

current generation

Next generation

The best fittest individual

Random seleton —»[ofof1]oo] 4] 1].

crossover T~

\ [

1[ o[ 1] o1 0] o]..

3631

Fig. 3. Schematics of key processes in genetic algorithm: (a) encoding the parameter vector to
binary bit strings, (b) preparation of generation, (¢) evaluation of fitness of each individual, (d)
recombination of genes and (e) renovation of generation. See text for description.
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(=) total cost function (b) cost of ice thickness
standard—code, standard set—up standard—code, standard set—up
50000. 8.00
23.00
40000. 7.00
22.00
30000.
& & s/ 8 8.00
o o h«.?
21.00
20000.
5.00
20.00
10000.
T T 4.00
0.5 1
ho

(c) cost of ice concentration (a) cost of ice drift
standard—code, standard set—up standard—code, standard set—up

12.00 50000. 7.00

11.50 40000.

30000,
1100 &

20000.
10.50

10000.

10.00 3.00

0.5 1 1.5 2

Fig. 4. (a) A 2-dimensional structure of the total cost function in h, — P* space obtained from
the standard-code, and contribution to the cost from (b) ice thickness, (¢) ice concentration and
(d) ice drift velocity. Note that the same contour interval is adopted in all the panels, whereas
the color scale is different each other. The black solid rectangles around the center of the panel
are the area for the magnifications shown in Fig. 5.
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(a)

35000.

34000.

33000.

p*

32000,

31000,

(e)

35000.

34000,

33000.

p*

32000.

31000.

total cost function
standard—code, standard set—up
19.80

18.75

19.70

19.65

cost of ice concentration
standard—code, standard set—up

10.65

10.58

10.50

10.43

1.0 11

(®)

P*

35000.

34000.

33000.

32000,

31000,

(d)

pP*

35000.

34000,

33000.

32000.

31000.

cost of ice thickness
standard—code, standard set—up

cost of ice drift
standard—code, standard set—up

Fig. 5. The same with Fig. 4 but the rectangular areas in Fig. 4 are magnified.
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Fig. 6. A 2-dimensional structure of (a) the total cost function in Ay — P*

total cost function (b)
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4.00
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21680

21578

21575

21578

space obtained from

the smth-code, and contribution to the cost from (b) ice thickness, (¢) ice concentration and
(d) ice drift velocity. (e) Magnification of the black solid rectangle in (a). (f) Magnification of the
black solid rectangle in (e). (a)—(d) Utilize the same contour interval but different color scale,
whereas (e) and (f) utilize different contour interval and color scale.
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COST

Cost of ice concentration and ice drift

standard—code, standard setup

ice concentration (std setup)

ice concentration (optimized)
ice drift (std setup)
ice drift (optimized)

M A M J J A S O N D
TIME (year = 2003)

Fig. 7. Time series of ice concentration cost (blue lines) and ice drift cost (red lines) obtained
from the standard setup (solid lines) and from the optimized parameter set (dashed lines). The
optimized parameter set is obtained by using finite difference method with the standard-code,
starting from the standard setup (see Table 4).
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oncentration, std setup (2003 m 8] ntra o ©) 1o ation [2003 m 8]
120

meridional. grid number

o o

20 10 0
zonal grid number

20 10 6
zonal grid number

lce drift velocity, sdt setup, Mar. 2008 () Iee drift velocity, opt setup, Mar. 2003
- 120

zonal grid number

() leo thickness, ICESat, on03
It

gégg% N

‘meridional. grid number
meridional. grid number

0 Py

0 40 60 20 B
zonal grid number zonal grid number

o w0 e
zonal grid number

Fig. 8. Modeled and observed (a—c: the first row) monthly mean sea ice concentration in August
2003, (d—f: the second row) monthly mean ice drift velocity in March 2003 and (g—i: the third
row) ice thickness in ON3 ICESat campaign period. The panels in the left column are NAOSIM
with standard setup, while the panels in the center column are NAOSIM with the optimized
parameter set obtained from the finite difference method with the standard-code, starting from
the standard setup. The panels in the right column are from satellite observations: (¢) OSI-409,
(f) OSI-405 and (i) ICESat.
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Fig. 9. The initial and optimized cost functions and associated parameter values obtained from
10 independent optimization experiments with the finite difference method using the standard-
code. (a) Initial (red) and optimized (blue) cost function values. (b)—(h) Initial (red) and optimized
(blue) parameter values; (b) h,, (c) P, (d) cdwin, (e) cdwat, (f) cdlat, (g) cdsens and (h) albedo.
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{a) Std. dev. of ice concentration [y2003 m 8]
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(b) Std. dev. of ice drift (FD} [y2003 m03]
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Fig. 10. Standard deviation of the simulated sea ice fields obtained from the 10 model runs. The
optimized parameter sets by the finite difference method using the standard-code were applied
to the respective model runs. Standard deviation of (a) monthly mean sea ice concentration in
August 2003, (b) monthly mean ice drift velocity in March 2003 and (c) ice thickness in ONO3

ICESat campaign period.
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Fig. 11. The same with Fig. 9 but with the smth-code.
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o N D

n param Mar. 2003 (d) Ice thickness, mGA mean, on03 mean
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120

=

Fig. 12. Summary of the results from the pGA optimization experiments (WGA-1: population
size = 5, number of possibilities of each parameter = 2”). (a) Time series of ice concentration
cost (dashed blue line) and ice drift cost (dashed red line), (b) monthly mean ice concentration
in August 2003, (c¢) monthly mean ice drift velocity in March 2003, (d) ice thickness in ONO3
ICESat campaign period, and (e)—(g) standard deviation of sea ice properties obtained from
10 independent optimization experiments: (e, f and g) correspond to (b, ¢ and d), respectively.
The time series of the cost function and sea ice field (b)—(d) were obtained from average of the
optimized parameter sets.
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(8) Cost. function, mGA~1 (population size = 5)

Fig. 13. The initial and optimized cost function values and associated parameter values ob-
tained from 10 independent oEtimization experiments with the uGA (uGA-1; population size = 5,
number of possibilities = (27) ). (@) Cost function values at the initial (red) and after 100 (yel-
low), 200 (green) and 400 (blue) generations. (b)—(d) Parameter values at the initial and after
100, 200 and 400 generations (the same color correspondence as a). The initial cost functions
and associated parameter values for respective optimization experiments were obtained from
the best fittest individual in the first generation.
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(a) FD
standard— and smth-code
[ normal-code
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(b) mGA-1
population size = 5, possibilities=(27)7

100th generation
200th generation
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T T
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Fig. 14. Standard deviations of the estimated parameters obtained from 10 independent opti-
mization experiments by (a) the FD method and (b) uGA. The standard deviations were normal-
ized by corresponding parameter ranges, i.e. the normalized standard deviation of /-th param-

=1 L H
eter is given by (m}“ax - m;“'”) [L'1 S (m; - m,-)2] , where L is the number of optimization
/

experiments and m; is a mean of estimated /-th parameter.
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