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Abstract The distribution of the ratio of two independent normal random vari-
ables X and Y is heavy tailed and has no moments. The shape of its density can be
unimodal, bimodal, symmetric, asymmetric, and/or even similar to a normal dis-
tribution close to its mode. To our knowledge, conditions for a reasonable normal
approximation to the distribution of Z = X/Y have been presented in scientific
literature only through simulations and empirical results. A proof of the existence
of a proposed normal approximation to the distribution of Z, in an interval I cen-
tered at β = E (X) /E (Y ) , is given here for the case where both X and Y are
independent, have positive means, and their coefficients of variation fulfill some
conditions. In addition, a graphical informative way of assessing the closeness of
the distribution of a particular ratio X/Y to the proposed normal approximation
is suggested by means of a Receiver Operating Characteristic (ROC) curve.

Mathematics Subject Classification (2000) MSC 62E17
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1 Introduction

The distribution of the ratio of independent normal variables X and Y with posi-
tive means arises naturally in many scientific areas such as cytometry (Lisák and
Doležel, 1998; Sklar, 2005; Watson, 1992), physiology (Kuethe et al., 2000), risk
analysis (Hayya et al., 1975), DNA microarrays (Brody et al., 2002), and others.
The random variable Z = X/Y has no finite moments and its distribution FZ is
heavy tailed (Hinkley, 1969; Marsaglia, 2006). Both the density and distribution
of Z have complicated expressions that are given in Section 2. The shape of FZ
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can be bimodal, asymmetric, symmetric, and even close to a normal distribution,
depending largely on the values of the coefficient of variation of Y.

In many applications, the parameter of interest is the ratio of means β =
E (X) /E (Y ) in its own right. Due to the complicated expressions of the density
and distribution of Z, it has been of interest to approximate FZ with a normal
distribution with location parameter β in order to simplify making inferences about
β (Watson, 1992; Palomino et al., 1999; see Dı́az-Francés and Sprott, 2001, for a
discussion about this practice in flow cytometry). In addition the issue of having
paired normal observations can complicate the separate estimation about β due to
the large number of additional parameters to be eliminated (see Schneeweiss et al.,
1987; Chamberlin and Sprott, 1987). However, the conditions on the parameters
of FZ in order to determine whether a normal distribution can approximate FZ

reasonably well, have only been given empirically after performing simulations or
exploratory studies in scientific literature (Marsaglia, 2006; Hayya et al., 1975).
Since FZ is heavy tailed, it is not possible to approximate it reasonably well on
the whole real line with a normal distribution. However, we will show in Section
4 that given a normal variable X satisfying some conditions on the parameters,
there exists a normal distribution that approximates well FZ , corresponding to a
certain Y and Z = X/Y , within an interval centered at β.

In Sections 5 and 6, some examples and an application that exhibit practical
ways of using this result are provided. The goal is to check whether for a given
pair of normal variables X and Y the proposed normal approximation to their
ratio is reasonable or not. One way of doing this is to compare visually the plots
of the density functions of Z and the corresponding normal approximation. The
plot of the corresponding ROC curve is quite useful as well for comparing the
distributions of Z and the normal approximation.

2 The Distribution of Z

Consider the case of two independent normal variables X and Y with strictly
positive means and variances (µx, σ

2
x) and (µy, σ

2
y), respectively. The case where

their coefficients of variation, δx = σx/µx, δy = σy/µy, are smaller than one
will be considered here. The joint distribution of X and Y depends only on four
parameters (µx, σx, µy, σy) in this case since the correlation between X and Y is
zero.

Therefore, the joint density of Y and Z = X/Y can be obtained from that of
X and Y, by the change of variable theorem, and it will depend as well on the same
four parameters. Consider the following one to one convenient reparametrization,

(µx, σx, µy, σy)←→ (β, ρ, δy, σx) ,

where β = µx/µy, ρ = σy/σx. The joint density of Y and Z can be factored as

fY,Z (y, z;β, ρ, δy, σx) = fZ (z;β, ρ, δy) fY |Z (y | z;β, ρ, δy, σx) ,

where fZ (z;β, ρ, δy) is the marginal density function of Z. This density fZ depends
only on the three identifiable parameters (β, ρ, δy) and can be expressed as
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.

Marsaglia (2006) presented an expression with a similar structure but for the
density of Z∗ = ρZ.

The following equivalent expression was given by Kuethe et al. (2000) and
has been used in physiology applications. It is given here as well in terms of the
quantity q for simplicity,

fZ (z;β, ρ, δy) =
ρ

π(1 + ρ2z2)

{
exp
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(
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2
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. (2)

The distribution function of Z, FZ can be obtained as in Hinkley (1969), from
the bivariate normal cumulative distribution function, or by numerical integration
of this density.

The coefficient of variation δy plays the role of a shape parameter of fZ . This
parameter also determines the probability that Y takes negative values since

FZ (0) = P [Y ≤ 0] = Φ

(
− 1

δy

)
, (3)

where Φ is the standard normal distribution. In order for this probability to be
negligible, say smaller than a given small positive value h > 0, an upper bound
must be imposed on δy such as

δy ≤ −Φ−1 (h)−1 . (4)

Therefore, depending on what is considered to be a negligible probability, the
value of h can be selected and through (4) an upper bound for δy is determined. The
reverse holds as well, every time an upper bound is assigned to δy, a corresponding
value of h is implicitly being set. As examples, if δy ≤ 0.43, this bound corresponds
to h = 0.01 and δy ≤ 0.32 to h = 0.001.

The cases where FZ can be close to a normal distribution have been established
empirically or through simulations in several works (Merrill, 1928; Marsaglia, 1965;
Kuethe et al., 2000). Kuethe et al. (2000) mentioned that normal approximations
to Z are good whenever δy ≤ 0.1 (this corresponds to a probability of observing
negative values of Y smaller or equal to h = 7.6 × 10−24). Marsaglia (2006) pro-
vides as a practical rule that if a < 2.256 and b > 4, then Z is approximately
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normally distributed, where a = δ−1
x and b = δ−1

y ; Marsaglia’s rule is equivalent
to requiring that δx > 0.443 and δy < 0.25 (with corresponding h = 3.2 × 10−5).
Marsaglia actually considers a slightly different ratio Z∗ of normal variables, but
the relationship with the ratio considered here is that Z∗ = ρZ, since we are as-
suming here that X and Y are not correlated. Hayya et al. (1975) give the rule of
thumb that if δx ≥ 0.19, and δy ≤ 0.09 (with associated h = 5.5 × 10−29), then
that FZ is close to a normal distribution. Geary (1930) stated that if δy ≤ 1/3,
(h = 0.0013) , then the normal approximation to the distribution of Z∗ (and con-
sequently of Z) is reasonable. Though these results establish different bounds for
the coefficients of variation, all of them coincide in requiring that δy should be
sufficiently small.

The fact that the coefficient of variation δy determines the probability of ob-
serving negative values of Y , as stated in (3) , has an important effect on the
distribution of Z. Note that

lim
δy→0

P [Y ≤ 0] = lim
δy→0

Φ

(
− 1

δy

)
= 0. (5)

The following result presented by Hinkley (1969) helps to understand why the
magnitude of δy plays such an important role in determining the shape of the
distribution FZ . Hinkley defined the following function of z,

F ∗ (z) = Φ

(
zµy − µx√
σ2
x + z2σ2

y

)
= Φ

(
z − β

δy
√

ρ−2 + z2

)
= Φ

(
z − β√

δ2xβ2 + z2δ2y

)
, (6)

and noted that FZ (z) could be expressed as the sum of F ∗ (z) plus other terms
that involved the probability of Y being negative and that were negligible when δy
was sufficiently small. Thus he obtained an upper bound for the absolute difference
of FZ and F ∗ in terms of the coefficient of variation of Y ,

∣∣FZ (z;β, ρ, δy)− F ∗ (z)
∣∣ ≤ Φ

(
− 1

δy

)
.

Finally he proved that F ∗ (z) converges uniformly to FZ (z) whenever the
coefficient of variation δy tends to zero. However note that F ∗ (z) is not normal.
Moreover it is not even a distribution since F ∗ (−∞) ̸= 0 and F ∗ (∞) ̸= 1 if δy > 0.
The normal approximation to FZ presented in the following section overcomes
these deficiencies. Nevertheless, Hinkley’s result is crucial for the proof of the
existence of a normal approximation to FZ that will be stated as the theorem of
Section 4.

3 The Proposed Normal Approximation to FZ

Both reparametrizations (β, δx, δy) and (β, ρ, δy) will be used for FZ , indistinctly
from here on, for convenience. The first parametrization involves both coefficients
of variation explicitly, and as mentioned, these parameters have been used in lit-
erature to determine when a normal approximation to FZ might be reasonable.
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However, the second parametrization permits to give algebraic expressions in a
simpler way.

The normal approximation that is being proposed here was obtained after
considering the Taylor series expansion of the function h (X,Y ) = X/Y = Z of
the ratio of two independent normal random variables X and Y with positive
means about the point (µx, µy). Considering only up to the first order term of
the expansion and taking expectation on both sides of this approximation, the
expected value of Z, if it were finite, could be approximated with

β =
µx

µy
. (7)

In a similar way, a second order approximation to the variance of Z, if it were
finite, could be

σ2
z = β2

(
δ2x + δ2y

)
= δ2y

(
ρ−2 + β2

)
. (8)

So a natural proposal for a normal approximation to FZ is the following normal
distribution function with mean β, variance σ2

z , and distribution

G (z;β, ρ, δy) = Φ

(
z − β

β
√

δ2x + δ2y

)
= Φ

(
z − β

δy
√
ρ−2 + β2

)
. (9)

The distribution G is proper in contrast to Hinkley’s F ∗ (w). However, note
the similarity of the arguments of Φ in both expressions, the difference being only
in the denominator; G considers β2 and F ∗ involves z2.

4 Existence of a Normal Approximation to FZ

Theorem 1 Let X be a normal random variable with positive mean µx, variance
σ2
x and coefficient of variation δx = σx/µx such that 0 < δx < λ ≤ 1, where λ is

a known constant. For every ε > 0, there exists γ(ε) ∈
(
0,
√

λ2 − δ2x

)
and also a

normal random variable Y independent of X, with positive mean µy, variance σ2
y

and coefficient of variation δy = σy/µy that satisfy the conditions,

0 < δy ≤ γ(ε) ≤
√
λ2 − δ2x < λ, (10)

for which the following result holds.
Any z that belongs to the interval

I =
[
β − σz

λ
, β +

σz

λ

]
, (11)

where β = µx/µy, and σz = β
√

δ2x + δ2y = δy
√

ρ−2 + β2, satisfies that

|G (z)− FZ (z)| < ε, (12)

where G (z) is the distribution function of a normal random variable with mean β,
variance σ2

z , as given in (9) , and FZ is the distribution function of Z = X/Y .
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Note that the restriction δy <
√

λ2 − δ2x, which is equivalent to λ−1
√
δ2y + δ2x

< 1, guarantees that the left endpoint of the interval I and all points within it are
always positive. That is, the normal approximation holds only for positive values
of z.

Figure 1 exhibits on the parameter space of the coefficients of variation (δx, δy)
the segment of the line where the δy of the random variable Y in Theorem 1 could
be, for a given δ∗x. Note that once a given Y fulfills the closeness between the
corresponding G to FZ , any other Y ∗ with smaller coefficient of variation will
satisfy this result too. The proof of Theorem 1 is given in the Appendix.

∆x = ∆y

0 ∆x
* Λ

∆x

ΓHΕL

Λ

∆y

Fig. 1 The thick vertical black line indicates pairs of values (δx, δy) for which the normal
approximation is close to FZ within the interval I, for a given δ∗x.

5 Some Examples

A very useful graphical way of comparing any pair of distributions F and G is pro-
vided by the Relative Operating Characteristic (ROC) curve, which as presented
in Kotz et al. (2003) consists of the points [G (z) , F (z)] for z ∈ R. Equivalently,
the ROC curve is the plot of the function ROC (t) = F

[
G−1 (t)

]
for t ∈ [0, 1] .

The ROC curve lies within the unit square, [0, 1]× [0, 1]. Closeness to the 45 degree
line, F (z) = G (z), indicates that the distributions being compared are close to
each other, and viceversa, departures from this line indicate differences between
the distributions. A pair of lines at a given distance from the equality line were
marked in the plots as a reference.

The additional plots of the densities and distributions of the normal approx-
imation and of the given Z are very informative too. These plots can show for a
given pair of variables X, Y , and values (ε, λ) , according to Theorem 1, whether
the proposed normal approximation is close or not to the actual distribution of Z.
Note that the length of the interval I where the approximation stated in Theorem
1 holds depends inversely on the size of λ.
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Five examples are given here where the involved parameters are set to certain
fixed values with the purpose of illustrating several interesting cases that can
arise. Different values of δx and δy were selected for the same values of λ = 0.5,
ε = 0.03, and β = 2. For each case, it will be checked whether the proposed normal
approximation, corresponding to those fixed values of the parameters, is close or
not to FZ .

In Table 1, the corresponding values of a = 1/δx and b = 1/δy are given
as well; these are used in Marsaglia’s empirical rule (2006; see his Figure 4) for
describing situations where it would not be possible to find a reasonable normal
approximation to FZ . Here, the first three examples show for the same δx = 0.2,
cases where the normal approximation to FZ is bad, reasonable, and very good,
according to the corresponding value of δy. Figure 2 shows the plots of the densities,
the distributions, and the ROC curve of FZ and G for Example 1. Figures 3 to 6
show only, for brevity, the plots of densities and the ROC curves for the remaining
examples. A band of width 0.03 is marked in dashes above and below the solid
line FZ = G in the ROC curve plots. The midpoint as well as the endpoints of
interval I are marked with asterisks over the ROC curve. The endpoints of I are
also marked over the normal approximation density on all plots.

Examples 2 and 3 contradict Marsaglia’s empirical rule which would have pre-
dicted that the normal approximation would not hold. In contrast it is shown here
that the proposed normal approximation is quite close to FZ , within the interval
I. Note that for this X, any other Y with δy ≤ 0.15 also yields a good normal
approximation G.

Example 4 shows a case where the approximation is bad even if Geary’s rule
of thumb holds (that δy ≤ 1/3 for a good normal approximation); see Figure 5.
The associated Y for such an X would need to have δy ≤ 0.19 for a reasonable
normal approximation, as shown in Example 5 and Figure 6.

Overall, for ε = 0.03 it seems that the recommendation given in Kuethe et al.
(2000) that δy < 0.1 for a good normal approximation, seems to work well for the
values of δx that we explored. However for smaller values of ε, a smaller upper
bound for δy might be required.

Example δx δy a b Normal Approximation

1 0.2 0.3 5 3.3 Bad

2 0.2 0.15 5 6.7 Reasonable

3 0.2 0.05 5 20 Good

4 0.49 0.25 2.04 4 Bad

5 0.49 0.19 2.04 5.26 Reasonable

Table 1. Examples of normal approximations to FZ.
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Fig. 2 Example 1. A case of a bad normal approximation (dashes) to FZ (solid line); (a)
Density functions; (b) Distribution functions, ±0.03 band in dots; (c) ROC curve (solid), ±0.03
band in dashes.
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Fig. 3 Example 2. A case where the normal approximation (dashes) to FZ (solid line) is
reasonable; (a) Density functions; (b) ROC curve (solid), ±0.03 band in dashes.



Title Suppressed Due to Excessive Length 9

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

D
e

n
si

tie
s

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normal Distribution

Z
 D

is
tr

ib
u

tio
n

(a) (b)

Fig. 4 Example 3. A case where the normal approximation (dashes) to FZ (solid line) is very
good; (a) Density functions; (b) ROC curve (solid), ±0.03 band in dashes.
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Fig. 5 Example 4. Case of a bad normal approximation to FZ ; (a) Density functions, fZ (solid
line) and normal approximation (in dashes); (b) ROC curve (solid), ±0.03 band in dashes.
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Fig. 6 Example 5. Case of a reasonable normal approximation to FZ . (a) Density functions,
fZ (solid line) and normal approximation (in dashes); (b) ROC curve (solid), ±0.03 band in
dashes.
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6 Practical Application

Paired independent normal observations consisting of flow cytometer measure-
ments of an experimental plant (X) with unknown nuclear DNA content and the
corresponding control plant (Y ) , with a well known nuclear DNA content, were
taken for eight adult experimental plants. The goal of the experiment was to esti-
mate the nuclear genome size of the experimental plant. More details are given in
Dı́az-Francés and Sprott (2001) where proper statistical models are discussed to
obtain inferences about the common ratio β of the normal means for all pairs. The
ratio β is proportional to the DNA nuclear content of the plant of interest. Those
methods were applied to the present data set and other observations to estimate
successfully the DNA content of this experimental plant as part of the project
“Programa General de Apoyo y Desarrollo Tecnológico a la Cadena Productiva
Agave-Tequila” sponsored by the Mexican Government and the Consejo Regulador
del Tequila, where CIMAT participated providing statistical consulting.

Here the mentioned paired data set, given below in Table 2, will be used to ex-
emplify a case where the proposed normal approximation of Section 3 is practically
indistinguishable from the distribution FZ within an interval I that is also given
explicitly below. The maximum likelihood estimates of the parameters obtained
from the pairs (xi, yi) , i = 1, ..., 8, will be used to calculate the proposed normal
approximation and fZ in order to show their proximity.. These are: µ̂x = 77.125,
µ̂y = 50.154, σ̂x = 2.104, σ̂y = 1.040, β̂ = 1.5378, ρ̂ = 0.496, δ̂x = 0.0273 ,
δ̂y = 0.0208, σ̂z = 0.0528.

Pair Experimental plant Control plant

1 80.773 51.668

2 78.293 49.928

3 75.424 49.768

4 74.535 48.214

5 79.052 51.033

6 75.106 49.478

7 78.188 51.240

8 75.632 49.904
Table 2. Paired data for eight adult plants.

For example for the value λ = 0.35 (which is smaller than one as required
in Theorem 1) and for the mentioned estimates, the interval I of (11) is I =
[1.387, 1.688] . As an example, for a value of ε = 0.0038, there is an associated
value of γ (ε) = 0.02094 (obtained by trial and error), such that if δy ≤ γ (ε) ,
as in (10) , then the inequality (12) of Theorem 1 holds for any z within I. Since
the estimate δ̂y is smaller than this value of γ (ε) , consequently it will fulfill the
inequality (12) of Theorem 1 within this interval.

Note that the estimated value δ̂y is fixed, so that given the selected λ = 0.35
there is a smallest value of ε for which Theorem 1 holds for the associated interval
I. This value is precisely ε = 0.0038. Theorem 1 certainly holds for any other
value of ε, smaller than this value, but then another random variable Y different
from the one considered here, with a smaller δy would be the one that would fulfill
Theorem 1.
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Figure 7a. shows the densities of the above mentioned normal approximation
and fZ ; the interval I is marked with asterisks over these curves that almost overlap
everywhere, indicating that the normal approximation is very close to fZ . Figure
7b. shows the corresponding ROC curve which practically overlaps the 45 degree
line, indicating the closeness of these distributions. A band of an arbitrary width
0.03 is marked in dashes, above and below the diagonal line. Verifying the closeness
of a normal distribution to FZ is not made in cytometry to our knowledge, even
when a normal distribution is frequently used to simplify inferences about β.
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Fig. 7 Paired data of adult experimental plants: (a) Estimated normal approximation of
Section 3 (in dashes) and fZ (solid line); (b) Corresponding ROC curve (solid line), ± 0.03
band (in dashes).

7 Conclusions

It has been proven here that for any normal random variable X with positive
mean and coefficient of variation δx ≤ 1, there exists another independent normal
variable Y with positive mean and a small coefficient of variation, fulfilling some
conditions, such that their ratio Z can be well approximated with the proposed
normal distribution in Section 3 within a given interval. Once any such Y has this
property, any other Y ∗ with a smaller coefficient of variation will satisfy this result
as well.

It was also shown here how the ROC curves are useful to check the proximity or
discrepancy between the proposed normal approximation and the distribution of
Z, for any given pair of independent normal random variables X, Y with positive
means.
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Appendix

For the proof of Theorem 1, the parametrization (β, ρ, δy) will be used first for
the sake of simpler algebraic expressions. However, the alternative parametrization
(β, δx, δy) will be used when taking limits when δy tends to zero.

Consider the arguments of the functions F ∗ given in (6) and of the proposed
normal approximation G given in (9) for z > 0, and define them as

h1 (z) =
z − β

δy
√

ρ−2 + z2
, and h2 (z) =

z − β

δy
√

ρ−2 + β2
,

respectively. That is, G (z) = Φ [h2 (z)] , and F ∗ (z) = Φ [h1 (z)] . Also, define the
difference between these two functions as

w (z) = h2 (z)− h1 (z) =
(z − β)

δy

(
1√

ρ−2 + β2
− 1√

ρ−2 + z2

)
.

Notice again that h1 and h2 differ only in a term within the square root of
their denominator.

The outline of the proof is as follows. First, it will be proved that for all
z ∈ I, h2 (z) ≥ h1 (z) , or equivalently that w (z) ≥ 0.

Second, it will be proved that w (z) is decreasing in [β−σz/λ, β) and increasing
in [β, β + σz/λ]. For that purpose its first derivative will be proved to be negative
in the former interval, while positive in the latter interval. This will imply then
that w (z) achieves its maximum, precisely at one of the endpoints of the interval
I, since it takes a minimum and a value of zero at its midpoint where w (β) = 0.
Since the right endpoint of I has a larger value of w (z) than the left endpoint,
therefore the largest difference between h1 and h2 in the interval I is achieved
precisely at the right endpoint.

Third it will be proved that this maximum difference can be made as small as
desired by making δy sufficiently small. By doing this, a bound for the difference
between G (z) and F ∗ (z) is found for all z in the interval I. Since Hinkley (1969)
proved that FZ converges uniformly to F ∗ (z) as well, then another upper bound
exists for the difference between these two functions that can be made as small as
desired by controlling δy.

Finally, applying the triangle inequality to the differences between the three
functions of interest, G (z) , F ∗ (z) and FZ (z), it is proved that the difference
between the proposed normal approximation G and FZ can be made as small as
desired.

Proof:
As mentioned, it will be proved first that for all z ∈ I, h2 (z) ≥ h1 (z) , or

equivalently that w (z) ≥ 0. This holds because for z in [β−σz/λ, β), the fact that
z < β implies that
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1√
ρ−2 + β2

≤ 1√
ρ−2 + z2

. (13)

Since (z − β) is negative in this interval, multiplying both sides of the above
inequality yields that h2 (z) ≥ h1 (z) . Now, for z in [β, β + σz/λ], the reverse
inequality holds for (13) , and since the term (z − β) is positive, after multiplying
both sides of the inequality, one obtains again h2 (z) ≥ h1 (z). Therefore, for all
z ∈ I, w (z) ≥ 0; the equality is achieved at β.

For the second part of the proof, note that the derivative of w (z) is

d w (z)

dz
=

dh2 (z)

dz
− dh1 (z)

dz
=

1

δy

[
1√

ρ−2 + β2
− ρ−2 + zβ

(ρ−2 + z2)3/2

]
.

For z in [β − σz/λ, β), since z < β,

d w (z)

dz
<

1

δy

[
1√

ρ−2 + β2
− ρ−2 + z2

(ρ−2 + z2)3/2

]

=
1

δy

[
1√

ρ−2 + β2
− 1√

ρ−2 + z2

]
< 0.

For z in (β, β + σz/λ], since z > β,

d w (z)

dz
>

1

δy

[
1√

ρ−2 + β2
− ρ−2 + zβ

(ρ−2 + zβ)3/2

]

=
1

δy

[
1√

ρ−2 + β2
− 1√

ρ−2 + zβ

]
> 0.

Therefore w (z) is decreasing in [β−σz/λ, β), since it has a negative derivative
in this interval, and increasing in (β, β+σz/λ] because of having a positive deriva-
tive here. By simplifying the following inequality, it is straightforward to prove
that

w (β − σz/λ) ≤ w (β + σz/λ) .

Therefore, w (z) reaches a maximum at the right endpoint of the interval I, at
z = β + σz/λ.

For the third part of the proof, this maximum difference at the right end-
point is the largest. For convenience, it will be expressed now as a function of the
parameters (β, δx, δy),

w (β + σz/λ) = A (δy, δx) =
1

λ
− 1

λ

√
δ2x + δ2y√

δ2x + δ2y
(
1 + 1

λ

√
δ2x + δ2y

)2 .
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Note that this quantity approaches zero when δy tends to zero; that is,

lim
δy→0

A (δy, δx) = 0.

The definition of this limit implies that for every ε1 > 0, there exists a value
η (ε1) > 0 such that if δy < η (ε1) , then

w (β + σz/λ) = A (δy, δx) < ε1.

Therefore the following holds for such δy and z ∈ I,

0 ≤ h2 (z)− h1 (z) ≤ w (β + σz/λ) < ε1. (14)

Then for z ∈ I, note that Φ [h2 (z)] ≥ Φ [h1 (z)] since the standard normal
distribution is an increasing function and h2 (z) ≥ h1 (z) . Also, for the same
reason, expression (14) implies that Φ [h1 (z)] > Φ [h2 (z)− ε1] . Then,

∣∣G (z)− F ∗ (z)
∣∣ = Φ [h2 (z)]− Φ [h1 (z)] < Φ [h2 (z)]− Φ [h2 (z)− ε1]

=

∫ h2(z)

h2(z)−ε1

ϕ (t) dt
(∗)
= ϕ (t0) ε1 ≤

ε1√
2π

. (15)

The last equality (∗) in (15) is obtained after applying the integral mean value
theorem to this expression, where ϕ (t) is the standard normal density; the value t0
is the point in the interval (h2 (z)− ε1, h2 (z)) for which the mean value theorem
holds. The last inequality holds because the maximum of ϕ (t) is 1/

√
2π. Note

that we have obtained in this way an upper bound for the difference between the
proposed normal approximation G (z) and Hinkley’s approximation F ∗ (z) that
can be made as small as desired by making δy sufficiently small. That is,

∣∣G (z)− F ∗ (z)
∣∣ < ε1√

2π
. (16)

Hinkley (1969) proved that FZ converges uniformly to F ∗ when δy → 0. There-
fore, for every ε2 > 0, there exists ν (ε2) such that if δy < ν (ε2), then

∣∣F ∗ (z)− FZ (z)
∣∣ < ε2. (17)

For the final part of the proof note that for every ε > 0, if 0 < δy < γ =

min
{
η (ε1) , ν (ε2) ,

√
λ2 − δ2x

}
and z ∈ I, then by the triangle inequality,

|G (z)− FZ (z)| ≤
∣∣G (z)− F ∗ (z)

∣∣+ ∣∣F ∗ (z)− FZ (z)
∣∣ ≤ ε1√

2π
+ ε2 = ε,

for suitable selections of ε1 and ε2 that satisfy that ε = (ε1/
√
2π + ε2).

So finally, for every ε > 0, the proposed normal approximation G (z) can be
as close as desired to FZ (z) in the interval I, for a sufficiently small value of δy.
Therefore the proof is complete.
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