About
193
Publications
37,693
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,335
Citations
Citations since 2017
Publications
Publications (193)
Numerical modeling enables a comprehensive understanding not only of the Earth's system today, but also of the past. To date, a significant amount of time and effort has been devoted to paleoclimate modeling and analysis, which involves the latest and most advanced Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). The definition of se...
Idealized numerical experiments with the INM RAS climate model are used to study the potential predictability of the temperature in the upper 300-meter layer of the Arctic Ocean. It is shown that the heat content can be predictable for up to 4–6 years. Positive anomalies of the temperature and salinity are preceded for several years by a state in w...
The influence of autumn Eurasian snow cover on the atmospheric dynamics anomalies during the following winter is studied based on the INM RAS climate model data. The North Atlantic Oscillation is the leading pattern that causes the weather and climate variability in the Northern hemisphere. We evaluate the up-to-date model version (INMCM5) ability...
Numerical modelling enables a comprehensive understanding not only of the Earth's system today, but also of the past. To date, a significant amount of time and effort has been devoted to paleoclimate modeling and analysis, which involves the latest and most advanced Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). The definition of s...
The Last Glacial Maximum (LGM, ∼ 21 000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models has been used to generate LGM simulations as part of the Paleoclimate Modelling Int...
The Last Glacial Maximum (LGM, ∼ 21 000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models has been used to generate LGM simulations as part of the Paleoclimate Modelling Int...
The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set of future climate projections, based on concentration-driven simulations, within the Coupled Model Intercomparison Project phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth syst...
We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, ∼ 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org, last access: 10 January 2021); thus, all...
The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (lig127k), designed to address the climate...
The Last Interglacial period (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models' representation of climate reconstructions is one of the objectives set up...
The study of winter seasonal predictability with the climate model INM-CM5-0 is presented. Initial conditions were produced using ERA-Interim reanalysis data for atmosphere, SODA3.4.2 reanalysis data for ocean and the bias-correction algorithm. The seasonal 5-month re-forecasts consisting of 10 ensemble members with small initial condition perturba...
. Using reanalysis data sets variability of temperature, zonal mean, amplitude-planetary waves, as well as the influence of the Arctic stratospheric polar vortex changes on the circulation of troposphere from 2016 to 2021 are studied. The results of calculations of the climate model of the INM RAS CM5 for the current and future climate are used to...
Five 50-year simulations with version 5 of the INM RAS coupled climate model revealed that the winters with El Nio are characterized by higher Arctic stratospheric temperature as compared to the seasons with La Nia. Lower stratospheric temperature in the Arctic regions as compared to the seasons with negative sea surface temperature (SST) anomalies...
Some hemispheric variation features of the near surface air and sea-surface temperatures are considered. A specially designed technique of the wavelet-based cross-correlations is used for this purpose. In-phase synchronizations of the hemispheric temperatures as whole as well as such synchronizations between land and sea temperatures are found with...
In this paper we present first results on the use of Polar WRF model for regionalization of the atmospheric circulation in the Arctic region produced by the global climate model INM-CM48 developed in INM RAS. We demonstrate that Polar WRF does not show run off effects in the first year of integration, gives reasonable results with respect to the gl...
The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Inte...
The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the primary future climate projections within the Coupled Model Intercomparison Project Phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth system models for concentration driven simulations....
Five 50-year simulations for the 5th version of the climate model of the Marchuk Institute of Numerical Mathematics, Russian Academy of Science (INM RAS), are used to analyze the interannual variability of Arctic stratospheric polar vortex and dates of spring breakup events (springtime transition) in comparison with reanalysis data. Early spring br...
Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which project...
Abstract. El Niño-Southern Oscillation (ENSO) is the strongest mode of interannual climate variability in the current climate, influencing ecosystems, agriculture and weather systems across the globe, but future projections of ENSO frequency and amplitude remain highly uncertain. A comparison of changes in ENSO in a range of past and future climate...
Abstract. The Last interglacial (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models’ representation of climate reconstructions is one of the objectives set...
Abstract. The Last Glacial Maximum (LGM, ~ 21,000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models have been used to generate LGM simulations as part of the Palaeoclimate M...
Abstract. The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to CMIP6 is the Tier 1 lig127k experiment, designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, usin...
Abstract. The mid-Holocene (6000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Pro...
Major sudden stratospheric warmings (SSWs), vortex formation and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere-troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projecte...
Simulations of 5th version of INM RAS (Institute of Numerical Mathematics of the Russian Academy of Science) climate model performed in the framework of CMIP6 project for the future climate under ssp2–4.5 (moderate) and ssp5–8.5 (business as usual or hard) scenarios of green house gases (GHG) increase are employed to analyze temperature, zonal mean...
The results of simulation of extreme weather indices of modern climate by two versions of the INM RAS climate model (INMCM4, INMCM5) are considered. It is shown that the INMCM5 model simulates most of the temperature and average precipitation related indices better, but the simulation results of extreme precipitation related indices are worse. Vari...
Ensemble simulations of the 5 th version of the INM coupled climate model are employed to analyze the Northern Hemisphere storm track characteristics in the winter season. The results show similar features of the North Atlantic and North Pacific storm tracks that dominate in the Northern Hemisphere in the model simulations and reanalysis data. A co...
Detailed monitoring of soil temperature provides a unique experimental material for studying the complex processes of heat transfer from the surface layer of the atmosphere to the soil. According to air temperature monitoring data, within each of the key areas there are no significant differences between the data of the observation sites. According...
In this paper, we present the first results of the ionospheric potential (IP) calculations with the chemistryclimate model (CCM) SOCOL (Solar Climate Ozone Links). For the study, we exploit a parameterization of the difference in electric potential between Earth’s surface and lower boundary of the ionosphere as a function of thunderstorm and electr...
The simulation of extreme weather indices by two versions of INM RAS climate model (INMCM4, INMCM5) for the modern climate is considered. It is shown that the INMCM5 model simulates most of the temperature and average precipitation related indices better, but the simulation of extreme precipitation related indices became worse. Various precipitatio...
A technique is proposed for evolution equation that estimates the impact of different terms in phase change for oscillations with different frequencies. The impact is normalized in such way that sum of impacts for all terms equals 1. Proposed technique is applied for study of quasibiannual oscillation of zonal wind in equatorial stratosphere produc...
The comparison of modern climate models with reanalysis and observational data indicates significant success in general atmospheric circulation modeling and reveals the problems of climate simulation for some regions which are often associated with errors in the modeling of the vertical troposphere structure. The results of simulation of inversions...
The Earth system models have been actively developed during recent decades. They integrate the blocks describing the dynamics of the atmosphere, the ocean and the cryosphere. The Antarctic ice sheet (AIS) is one of the most important components of the Earth’s cryosphere. Therefore, the incorporation of the AIS model into the Earth system model will...
The article describes the development of the version of the SL-AV global semi-Lagrangian atmospheric model with high spatial resolution in the stratosphere. The new model version uses the vertical grid of 100 levels, grid spacing of 500 m in the layer between 100 and 10 hPa, and the upper lid at 0.04 hPa. The parameterization of the non-orographic...
Seasonal prediction and climate change modeling are carried out on the basis of the programs incorporating the global model of the atmosphere, ocean model, sea ice and land models, etc. Each component of a coupled model has to provide a fairly complete representation of the physical processes in the appropriate medium, while the other components ar...
For the evolution equation, a technique is proposed to estimate the contribution of different terms to a phase change during oscillations of different frequencies. The contribution is normalized such that a sum of contributions from all terms amounts to 1. This technique is applied to studying the quasi-biennial oscillation of the wind velocity in...
We consider simulation of the present day climate with the use of the climate model INM-CM48 in comparison with the result of the previous model INMCM4.0 which used different parameterizations of many physical processes and also in comparison with the model INM-CM5 which uses the same parameterizations, but with better spatial resolution. It is sho...
Using the data of pre-industrial experiment with the INM-CM5 climate model for the period of 1200 years, we study the mechanism of natural oscillations of Arctic climate with the period of about 60 years. It is shown that for a quarter of the period prior to the Arctic warming there is a flow of Atlantic water into the Arctic ocean (AO) being more...
Projections of possible changes in streamflow of three northern rivers (the Northern Dvina, Kolyma, and Indigirka) up to 2100 were calculated for two greenhouse gas emission scenarios: a high emissions scenario (RCP8.5) and a medium mitigation scenario (RCP4.5) used for the fifth Assessment Report of the Intergovernmental Panel on Climate Change (I...
The aim of this study was investigating the ability of the AOGCM INMCM4.0 and LSM SWAP to reproduce streamflow of nine northern Russian rivers located in the European Russia and the Eastern Siberia. SWAP was driven by two sets of meteorological forcing data: simulated by INMCM4.0 and derived from direct observations at meteorological stations locat...
The simulation of stratosphere-troposphere dynamic coupling is considered in five 50-year realizations of ensemble calculations with the 5th version of the INM-CM5 climate model developed in the Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences. The model also includes the ocean model and the improved vertical resolution in...
The simulation of extreme weather indices with the INM-CM5 and INMCM4 climate models for modern climate which were developed in the Institute of Numerical Mathematics of Russian Academy of Sciences is considered. It is shown that the INM-CM5 model improved the simulation of almost all indices concerning temperature (especially to its minimum values...
The first empirical orthogonal function (EOF) of intraannual evolution of temperature averaged along the circle of latitude in the 0-60-km layer is calcul ated using the data of the 500-year preindustrial experiment with the climate model of the Institute of Numerical Mathematics of Russian Academy of Sciences (INM RAS). It is shown that the first...
The results of numerical experiments on the sensitivity of the INMCM48 Earth System model (Institute of Numerical Mathematics, Russian Academy of Science (INM RAS)) to the various parameterizations of convection induced by the formation of a new ice are presented and analyzed. It is shown that the response in temperature and salinity is observed no...
Climate changes observed in 1850–2014 are modeled and studied on the basis
of seven historical runs with the climate model INM-CM5 under the scenario
proposed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). In
all runs global mean surface temperature rises by 0.8 K at the end of the
experiment (2014) in agreement with the observation...
Variations in the temperature of the Earth’s surface over the period 1850–2014 are reproduced and analyzed using seven historical calculations in the INM-CM5 climate model following the scenarios suggested for the CMIP6 project of comparison of climate models. In all calculations, the mean surface temperature increased by 0.8 K to the date of final...
Sea ice formation is accompanied by the rejection of salt which in nature tends to be mixed vertically by the formation of convective plumes. Here we analyze the influence of a salt plume parameterization (SPP) in an atmosphere-sea ice-ocean model. Two 330 years long simulations have been conducted with the AWI Climate Model. In the reference simul...
In the framework of the study of the Eemian interglacial we consider the role of the Greenland ice sheet in the rise of the mean level of the World Ocean. Its contribution estimated as 2 m confirms the newest estimates based on the model results and on the proxy data analysis. In the beginning of the Eemian interglacial (earlier than 126 thousand y...
The paper analyzes the results ofthe numerical experiment aiming at the reconstruction of climate ofthe penultimate (Eemian) interglacial (last interglacial, LIG) obtained using the Earth system model developed in the Institute of Numerical Mathematics of RAS. Orbital parameters were set with the periodicity of one thousand years and were further i...
Climate changes observed in 1850-2014 are modeled and studied on the basis of seven historical runs with the climate model INM-CM5 under the scenario proposed for Coupled Model Intercomparison Project, Phase 6 (CMIP6). In all runs global mean surface temperature rises by 0.8 K at the end of the experiment (2014) in agreement with the observations....
Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporatio...
Currently, the Earth system models are widely used for studying present-day climate dynamics and for palaeoreconstructions. A full Earth system model should include dynamical ice sheet models of Greenland and Antarctica as subsystems. To couple the latters with the atmospheric and with the oceanic blocks, it is necessary to introduce a special proc...
The results of simulations performed by the CORE-II scenario using the two Russian OGCMs, INMOM and INMIO, are presented. The models use different coordinate systems in the basic set of primitive equations and different numerical techniques. Both models are used as oceanic components of the INM RAS coupled models. Simulations have shown that reprod...
In this paper we present the fifth generation of the INMCM climate model that is being developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INMCM5). The most important changes with respect to the previous version (INMCM4) were made in the atmospheric component of the model. Its vertical resolution was increased to...
The Last Glacial Maximum (LGM, 21 000 years ago) is one of the
suite of paleoclimate simulations included in the current phase of the
Coupled Model Intercomparison Project (CMIP6). It is an interval when
insolation was similar to the present, but global ice volume was at a
maximum, eustatic sea level was at or close to a minimum, greenhouse gas
con...
The results of joint analysis of temperature variations near mesopause from long-term measurements at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics RAS in 1960–2015 and variations of surface air temperature characterizing global climate change. Together with variations of temperature at the mesopause Tms from mea...
The INMCM5.0 numerical model of the Earth’s climate system is presented, which is an evolution from the previous version, INMCM4.0. A higher vertical resolution for the stratosphere is applied in the atmospheric block. Also, we raised the upper boundary of the calculating area, added the aerosol block, modified parameterization of clouds and conden...
The Last Glacial Maximum (LGM, 21,000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concent...
We present a detailed description of a new approach for the extraction of principal nonlinear dynamical modes (NDMs) from high-dimensional data. The method of NDMs allows the joint reconstruction of hidden scalar time series underlying the observational variability together with a transformation mapping these time series to the physical space. Spec...
The purpose of the authors of this collective monograph was to present some results of the work carried out at
the Institute of Numerical Mathematics RAS to create the numerical model of the Earth System that meets modern
requirements and is at the global forefront of scientific and technological activities in this direction. This model is used
to