
Evgeny Krivosheev- Post-Doc
- University of Trento
Evgeny Krivosheev
- Post-Doc
- University of Trento
About
21
Publications
1,514
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
223
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (21)
3D point cloud semantic segmentation is fundamental for autonomous driving. Most approaches in the literature neglect an important aspect, i.e., how to deal with domain shift when handling dynamic scenes. This can significantly hinder the navigation capabilities of self-driving vehicles. This paper advances the state of the art in this research fie...
3D point cloud semantic segmentation is fundamental for autonomous driving. Most approaches in the literature neglect an important aspect, i.e., how to deal with domain shift when handling dynamic scenes. This can significantly hinder the navigation capabilities of self-driving vehicles. This paper advances the state of the art in this research fie...
Training data creation is increasingly a key bottleneck for developing machine learning, especially for deep learning systems. Active learning provides a cost-effective means for creating training data by selecting the most informative instances for labeling. Labels in real applications are often collected from crowdsourcing, which engages online c...
Data integration has been studied extensively for decades and approached from different angles. However, this domain still remains largely rule-driven and lacks universal automation. Recent developments in machine learning and in particular deep learning have opened the way to more general and efficient solutions to data-integration tasks. In this...
Data integration has been studied extensively for decades and approached from different angles. However, this domain still remains largely rule-driven and lacks universal automation. Recent developments in machine learning and in particular deep learning have opened the way to more general and efficient solutions to data-integration tasks. In this...
In this paper we address multi-target domain adaptation (MTDA), where given one labeled source dataset and multiple unlabeled target datasets that differ in data distributions, the task is to learn a robust predictor for all the target domains. We identify two key aspects that can help to alleviate multiple domain-shifts in the MTDA: feature aggreg...
Hybrid crowd-machine classifiers can achieve superior performance by combining the cost-effectiveness of automatic classification with the accuracy of human judgment. This paper shows how crowd and machines can support each other in tackling classification problems. Specifically, we propose an architecture that orchestrates active learning and crow...
In this paper, we explore how to efficiently combine crowdsourcing and machine intelligence for the problem of document screening, where we need to screen documents with a set of machine-learning filters. Specifically, we focus on building a set of machine learning classifiers that evaluate documents, and then screen them efficiently. It is a chall...
Crowdsourcing is a challenging activity for many reasons, from task design to workers' training, identification of low-quality annotators, and many more. A particularly subtle form of error is due to confusion of observations, that is, crowd workers (including diligent ones) that confuse items of a class i with items of a class j , either because t...
Data integration has been studied extensively for decades and approached from different angles. However, this domain still remains largely rule-driven and lacks universal automation. Recent development in machine learning and in particular deep learning has opened the way to more general and more efficient solutions to data integration problems. In...
This paper discusses how crowd and machine classifiers can be efficiently combined to screen items that satisfy a set of predicates. We show that this is a recurring problem in many domains, present machine-human (hybrid) algorithms that screen items efficiently and estimate the gain over human-only or machine-only screening in terms of performance...
This paper discusses how crowd and machine classifiers can be efficiently combined to screen items that satisfy a set of predicates. We show that this is a recurring problem in many domains, present machine-human (hybrid) algorithms that screen items efficiently and estimate the gain over human-only or machine-only screening in terms of performance...
In this paper and demo we present a crowd and crowd+AI based system, called CrowdRev, supporting the screening phase of literature reviews and achieving the same quality as author classification at a fraction of the cost, and near-instantly. CrowdRev makes it easy for authors to leverage the crowd, and ensures that no money is wasted even in the fa...
In this paper and demo we present a crowd and crowd+AI based system, called CrowdRev, supporting the screening phase of literature reviews and achieving the same quality as author classification at a fraction of the cost, and near-instantly. CrowdRev makes it easy for authors to leverage the crowd, and ensures that no money is wasted even in the fa...
In this paper we describe how crowd and machine classifier can be efficiently combined to screen items that satisfy a set of predicates. We show that this is a recurring problem in many domains, present machine-human (hybrid) algorithms that screen items efficiently and estimate the gain over human-only or machine-only screening in terms of perform...
Systematic literature reviews (SLRs) are one of the most common and useful form of scientific research and publication. Tens of thousands of SLRs are published each year, and this rate is growing across all fields of science. Performing an accurate, complete and unbiased SLR is however a difficult and expensive endeavor. This is true in general for...
Literature reviews allow scientists to stand on the shoulders of giants, showing promising directions, summarizing progress, and pointing out existing challenges in research. At the same time conducting a systematic literature review is a laborious and consequently expensive process. In the last decade, there have a few studies on crowdsourcing in...
Literature reviews allow scientists to stand on the shoulders of giants, showing promising directions, summarizing progress, and pointing out existing challenges in research. At the same time conducting a systematic literature review is a laborious and consequently expensive process. In the last decade, there have a few studies on crowdsourcing in...