
Evgeny AlexeevUniversity of Cambridge | Cam · Department of Engineering
Evgeny Alexeev
PhD
About
27
Publications
9,482
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,431
Citations
Citations since 2017
Introduction
Additional affiliations
October 2019 - present
October 2019 - present
June 2015 - September 2019
Publications
Publications (27)
Janus transition-metal dichalcogenide monolayers are fully artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving direct-bandgap optical transitions in a uniform potential lands...
When a twist angle is applied between two layered materials (LMs), the registry of the layers and the associated change in their functional properties are spatially modulated, and a moiré superlattice arises. Several works explored the optical, electric, and electromechanical moiré-dependent properties of such twisted LMs but, to the best of our kn...
Group-IV colour centres in diamond are a promising light-matter interface for quantum networking devices. We demonstrate multiaxis coherent control of the SnV spin-qubit via an all-optical stimulated Raman drive between the ground and excited states.
Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices. The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing and robust cyclicity of its optical transitions toward spin-photon-entanglement schem...
Interlayer excitons in layered materials constitute a novel platform to study many-body phenomena arising from long-range interactions between quantum particles. Long-lived excitons are required to achieve high particle densities, to mediate thermalisation, and to allow for spatially and temporally correlated phases. Additionally, the ability to co...
Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices. The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing and robust cyclicity of its optical transitions towards spin-photon entanglement sche...
Energy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer transition metal dichalcogenides in optoelectronics. The primary stages of carrier relaxation affect a plethora of subsequent physical mechanisms. Here we measure light scattering and emission in tungsten diselenide...
While the tin-vacancy center in diamond (SnV) has demonstrated excellent optical properties [1], spin control has remained elusive. We demonstrate multi-axis control of the SnV spin via an all-optical drive, and use this to demonstrate T 2 = 0.30(8) ms.
Van der Waals heterobilayers based on 2D transition metal dichalcogenides have been recently shown to support robust and long-lived valley polarization for potential valleytronic applications. However, the roles of the chemical composition and geometric alignment of the constituent layers in the underlying dynamics remain largely unexplored. Here w...
The availability of accessible fabrication methods based on deterministic transfer of atomically thin crystals has been essential for the rapid expansion of research into van der Waals heterostructures. An inherent issue of these techniques is the deformation of the polymer carrier film during the transfer, which can lead to highly non-uniform stra...
Energy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer (1L) transition metal dichaclogenides (TMDs) in optoelectronics. We measure light scattering and emission in 1L-WSe$_2$ close to the laser excitation energy (down to~$\sim$0.6meV). We detect a series of periodic max...
Van der Waals heterobilayers based on 2D transition metal dichalcogenides have been recently shown to support robust and long-lived valley polarization for potential valleytronic applications. However, the role of the band structure and alignment of the constituent layers on the underlying dynamics remains largely unexplored. Here we study spin-val...
Interlayer excitons in layered materials constitute a novel platform to study many-body phenomena arising from long-range interactions between quantum particles. The ability to localise individual interlayer excitons in potential energy traps is a key step towards simulating Hubbard physics in artificial lattices. Here, we demonstrate spatial local...
Chemical vapour deposition (CVD) growth is capable of producing multiple single-crystal islands of atomically thin transition metal dichalcogenides (TMDs) over large areas. Subsequent merging of perfectly epitaxial domains can lead to single-crystal monolayer sheets, a step towards scalable production of high quality TMDs. For CVD growth to be effe...
The availability of accessible fabrication methods based on deterministic transfer of atomically thin crystals has been essential for the rapid expansion of research into van der Waals heterostructures. An inherent issue of these techniques is the deformation of the polymer carrier film during the transfer, which can lead to highly non-uniform stra...
CVD growth is capable of producing multiple single crystal islands of atomically thin TMDs over large area substrates, with potential control of their morphology, lateral size, and epitaxial alignment to substrates with hexagonal symmetry. Subsequent merging of epitaxial domains can lead to single-crystal monolayer sheets - a step towards scalable...
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation. Consequently, an overarching periodicity emerges in the local atomic registry of the constitu...
For many of the envisioned optoelectronic applications of graphene it is crucial to understand the sub-picosecond carrier dynamics immediately following photoexcitation, as well as the effect on the electrical conductivity - the photoconductivity. Whereas these topics have been studied using various ultrafast experiments and theoretical approaches,...
Strong-coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can...
Strong-coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can...
We report on the exciton and trion density dynamics in a single layer of MoSe$_2$, resonantly excited and probed using three-pulse four-wave mixing (FWM), at temperatures from 300K to 77K . A multi-exponential third-order response function for amplitude and phase of the heterodyne-detected FWM signal including four decay processes is used to model...
By vertically stacking monolayer crystals of transition metal dichalcogenides (TMD) and other layered materials, a new type of heterostructures can be achieved, exhibiting novel opto-electronic properties. Such van der Waals heterostructures offer a platform for developing a new generation of atomically thin, transparent and flexible devices. The p...
We present a detailed investigation of the exciton and trion dynamics in naturally doped MoSe2 and WSe2 single atomic layers as a function of temperature in the range 10-300K under above band-gap laser excitation. By combining time-integrated and time-resolved photoluminescence (PL) spectroscopy we show the importance of exciton and trion localizat...
The modification of single layer graphene due to intense, picoseconds
near-infrared laser pulses is investigated. We monitor the stable changes
introduced to graphene upon photoexcitation using Raman spectroscopy. We find
that photoexcitation leads to both a local increase in hole doping and a
reduction in compressive strain. Possible explanations...