
Evgenii ZheltonozhskiiTechnion - Israel Institute of Technology | technion · Faculty of Computer Science
Evgenii Zheltonozhskii
About
30
Publications
17,476
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
415
Citations
Citations since 2017
Introduction
Publications
Publications (30)
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 tri...
Graph neural networks (GNNs) have shown broad applicability in a variety of domains. These domains, e.g., social networks and product recommendations, are fertile ground for malicious users and behavior. In this paper, we show that GNNs are vulnerable to the extremely limited (and thus quite realistic) scenarios of a single-node adversarial attack,...
Deep neural networks are known to be vulnerable to malicious perturbations. Current methods for improving adversarial robustness make use of either implicit or explicit regularization, with the latter is usually based on adversarial training. Randomized smoothing, the averaging of the classifier outputs over a random distribution centered in the sa...
Autonomous scene exposure and exploration, especially in localization or communication-denied areas, useful for finding targets in unknown scenes, remains a challenging problem in computer navigation. In this work, we present a novel method for real-time environment exploration, whose only requirements are a visually similar dataset for pre-trainin...
Autonomous scene exposure and exploration, especially in localization or communication-denied areas, useful for finding targets in unknown scenes, remains a challenging problem in computer navigation. In this work, we present a novel method for real-time environment exploration, whose only requirements are a visually similar dataset for pre-trainin...
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is v...
Despite their growing popularity, graph neural networks (GNNs) still have multiple unsolved problems, including finding more expressive aggregation methods, propagation of information to distant nodes, and training on large-scale graphs. Understanding and solving such problems require developing analytic tools and techniques. In this work, we propo...
The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order...
Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that...
Convolutional Neural Networks (CNNs) are very popular in many fields including computer vision, speech recognition, natural language processing, etc. Though deep learning leads to groundbreaking performance in those domains, the networks used are very computationally demanding and are far from being able to perform in real-time applications even on...
The success of learning with noisy labels (LNL) methods relies heavily on the success of a warm-up stage where standard supervised training is performed using the full (noisy) training set. In this paper, we identify a "warm-up obstacle": the inability of standard warm-up stages to train high quality feature extractors and avert memorization of noi...
We present a novel method for neural network quantization. Our method, named UNIQ , emulates a non-uniform k -quantile quantizer and adapts the model to perform well with quantized weights by injecting noise to the weights at training time. As a by-product of injecting noise to weights, we find that activations can also be quantized to as low as 8-...
The demand for running NNs in embedded environments has increased significantly in recent years due to the significant success of convolutional neural network (CNN) approaches in various tasks, including image recognition and generation. The task of achieving high accuracy on resource-restricted devices, however, is still considered to be challengi...
Graph neural networks (GNNs) have shown broad applicability in a variety of domains. Some of these domains, such as social networks and product recommendations, are fertile ground for malicious users and behavior. In this paper, we show that GNNs are vulnerable to the extremely limited scenario of a single-node adversarial example, where the node c...
Unsupervised learning has always been appealing to machine learning researchers and practitioners, allowing them to avoid an expensive and complicated process of labeling the data. However, unsupervised learning of complex data is challenging, and even the best approaches show much weaker performance than their supervised counterparts. Self-supervi...
Convolutional Neural Networks (CNNs) have become common in many fields including computer vision, speech recognition, and natural language processing. Although CNN hardware accelerators are already included as part of many SoC architectures, the task of achieving high accuracy on resource-restricted devices is still considered challenging, mainly d...
Even though deep learning have shown unmatched performance on various tasks, neural networks has been shown to be vulnerable to small adversarial perturbation of the input which lead to significant performance degradation. In this work we extend the idea of adding independent Gaussian noise to weights and activation during adversarial training (PNI...
Deep neural networks are known to be vulnerable to inputs with maliciously constructed adversarial perturbations aimed at forcing misclassification. We study randomized smoothing as a way to both improve performance on unperturbed data as well as increase robustness to adversarial attacks. Moreover, we extend the method proposed by arXiv:1811.09310...
Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that...
Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving visual processing tasks. One of the major obstacles hindering the ubiquitous use of CNNs for inference is their relatively high memory bandwidth requirements, which can be a main energy consumer and throughput bottleneck in hardware accelerators. A...
Convolutional neural networks (CNNs) achieve state-of-the-art accuracy in a variety of tasks in computer vision and beyond. One of the major obstacles hindering the ubiquitous use of CNNs for inference on low-power edge devices is their relatively high computational complexity and memory bandwidth requirements. The latter often dominates the energy...
Recently, deep learning has become a de facto standard in machine learning with convolutional neural networks (CNNs) demonstrating spectacular success on a wide variety of tasks. However, CNNs are typically very demanding computationally at inference time. One of the ways to alleviate this burden on certain hardware platforms is quantization relyin...
Convolutional Neural Networks (CNN) are very popular in many fields including computer vision, speech recognition, natural language processing, to name a few. Though deep learning leads to groundbreaking performance in these domains, the networks used are very demanding computationally and are far from real-time even on a GPU, which is not power ef...
We present a novel method for training deep neural network amenable to inference in low-precision arithmetic with quantized weights and activations. The training is performed in full precision with random noise injection emulating quan-tization noise. In order to circumvent the need to simulate realistic quantization noise distributions, the weight...
We present a novel method for training deep neural network amenable to inference in low-precision arithmetic with quantized weights and activations. The training is performed in full precision with random noise injection emulating quantization noise. In order to circumvent the need to simulate realistic quantization noise distributions, the weight...
Deep neural networks (DNNs) are used by different applications that are executed on a range of computer architectures, from IoT devices to supercomputers. The footprint of these networks is huge as well as their computational and communication needs. In order to ease the pressure on resources, research indicates that in many cases a low precision r...