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Abstract. This method, based on the adiabatic invariance of semiclassical quantisation 
conditions (Solov’ev 1978), is used to calculate the energy levels of a three-dimensional, 
non-integrable system: a hydrogen atom in crossed electric and magnetic fields. The 
results are presented for a ground state and two excited states, for various ratios of field 
strengths and angles between the fields. The limitations of the method are discussed. 

1. Introduction 

Semiclassical quantisation of non-integrable systems is important both for fundamental 
and practical reasons. It contributes to the clarification of the not completely under- 
stood relations between the classical and quantum mechanics, and also appears to be 
competitive with the corresponding quantal calculations for large quantum numbers. 
In the last case the quantal treatments become very complicated and expensive, due 
to the large number of basis states involved in calculations. 

In classical mechanics, non-integrable systems are described by non-linear 
equations (Hamilton-Jacobi equation or equations of motion), which are qualitatively 
more complicated than the corresponding linear equations of quantum mechanics, 
and so far, the problem of quantisation has not been rigorously formulated for them. 
Most practical semiclassical calculations of energy spectra of non-integrable systems 
performed up to now, used the Einstein-Brillouin-Keller (EBK) quantisation procedure 
(see, for example, Percival (1977) and references therein). The main points of this 
procedure are briefly summarised below. 

An integrable classical system of s degrees of freedom can be characterised by a 
set of fundamental frequencies {wj,  j = 1,2 ,  . . . , s}, and a set of canonically conjugate, 
angle (linear in time) and action variables: 

ej = wjt + sj 

where Si are initial phases, (Pk, q k )  are canonically conjugate momenta and coordinates 
and Cj are closed paths in phase space, defined by: 0 s ej < 2 ~ ,  ei = constant for i # j .  
Action variables Ii are single-valued integrals of motion. By fixing them one defines 
an s-dimensional hypersurface in phase space, called the invariant toroid. Any path 
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Ci from equation (1) can be deformed on the invariant toroid, leaving unchanged the 
action integral 4. According to EBK, the stationary quantal states correspond to those 
toroids whose action integrals, taken along the topologically independent paths, are 
quantised: 

4 = ( Ili +?)h j =  1 , 2 , .  . . 

where n, are integers (for vibrations n, = 0, 1 , 2 , .  . . , whilst for rotations n, = 
0, k l ,  *2, . . . ) and a, are the Maslov indices, which depend on certain topological 
characteristics of the paths C,; a, = 0 for the paths describing rotations and a, = 2 for 
the paths describing vibrations. The quantised energies are found by expressing the 
classical Hamiltonian function of the system in terms of action variables i.e. quantum 
numbers. 

If two or more fundamental frequencies are commensurable, the classical system 
is said to be degenerate. In this case, the number of single-valued integrals of motion 
is larger than the number of degrees of freedom, and the set of quantisation conditions 
(2) cannot be chosen in a unique way. In fact, the dimensionality of invariant toroids 
(the number of topologically independent paths C, in phase space), and hence the 
number of EBK quantisation conditions, is reduced. The energy of a degenerate system 
depends only on a linear combination (with integer coefficients) of action variables I,. 

When applying the EBK quantisation conditions (2) to non-integrable systems (see, 
e.g. Percival 1977), the essential hypothesis is the existence of the invariant toroids. 
This has been proved rigorously only for the systems sufficiently close to integrable 
systems (the Kolmogorov-Arnol’d-Moser theorem). The hypothesis of the existence 
of invariant toroids is an alternative to the ergodic hypothesis. This last hypothesis 
states that the trajectory in phase space, independently of initial conditions, fills up 
in time the whole isoenergetic hypersurface; i.e. the state is unambiguously defined 
by the energy and the problem of quantisation cannot be formulated. 

Another method of semiclassical quantisation of non-integrable systems, proposed 
by one of the authors (Solov’ev 1978), relies on the adiabatic principle. This states 
that the action variables I,, from equation (l), are adiabatic invariants, i.e. they remain 
unchanged when one or a few parameters in the classical Hamiltonian function are 
slowly varying (see, for example, Landau and Lifshitz 1976). The rigorous proof of 
the adiabatic principle exists only for one-dimensional systems (see e.g. Arnol’d 1962, 
1963, 1979) although some plausible arguments can be found for integrable systems 
(see e.g. Landau and Lifshitz 1976). The method under consideration assumes that 
the principle also holds for non-integrable systems. As a supporting argument, one 
can use the fact that if the opposite were true, the correspondence principle, applied 
to the adiabatic theorem of quantum mechanics, would not be fulfilled. As a con- 
sequence of the adiabatic principle EBK quantisation conditions (2) remain unchanged, 
when an interaction in the system is slowly varying in time. This fact is used for 
semiclassical quantisation of a system described by the Hamiltonian function H in 
the following way. One starts by choosing the Hamiltonian function HO (an integrable 
one), for which the classical trajectories, obeying the EBK quantisation conditions, are 
known. After that, the interaction V = H -Ho is being adiabatically switched, and, 
by solving the classical equations numerically, the evolution of quantised trajectories 
in time is investigated. At the moment when the switching of the interaction is complete, 
the quantised trajectories and energies, corresponding to the Hamiltonian function 
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H, are obtained. The smaller the switching rate used in calculations, the more exactly 
the quantisation conditions are fulfilled. The method has been used successfully for 
semiclassical quantisation of two-dimensional non-integrable systems (Solov’ev 1978). 

The aim of the present paper is to apply the above described method to the 
semiclassical quantisation of a three-dimensional non-integrable system, i.e. to the 
non-relativistic motion of an electron in the Coulomb field of a proton (with infinite 
mass) and in crossed electric and magnetic fields. Atomic units (me  = e = ti = 1) are 
used throughout the work. 

2. The choice of the ‘proper’ initial trajectories 

We choose as Ho the unperturbed Hamiltonian function of the hydrogen atom. Due 
to the high dynamic symmetry of the Coulomb interaction, we deal here with the 
degenerate system. The classical, three-dimensional bound motion of the electron is 
characterised by one fundamental frequency: 

W O  = ( - 2 i ~ ~ ) ~ ’ ~  (3)  
where go is the electron energy. All trajectories in configuration space and all invariant 
toroids in phase space are closed lines (ellipses). We can write down just one EBK 
quantisation condition (2) ,  fixing the allowed electron energies: 

n = 1,2,  , , , . (4) 
1 

2n 
8 0  = -2 

When an external perturbation is introduced, the degeneracy is removed and the 
trajectories fill up a certain domain in the configuration space. In the phase space the 
invariant toroids arise and additional EBK quantisation conditions can be formulated, 
depending on the type (symmetry properties, etc) of the perturbation. For example, 
in the case of a spherically symmetric perturbation, as well as the energy, the electron 
orbital angular momentum is also quantised. So, if the spherically symmetric perturba- 
tion is to be adiabatically switched on, the ‘proper’ initial trajectories would be those, 
with quantised orbital angular momentum, because only they would evolve into the 
quantised trajectories of the perturbed system (see also Solov’ev 1978). 

To formulate the additional quantisation conditions for the system under consider- 
ation, we recall the semiclassical perturbation theory of a hydrogen atom in crossed 
electric and magnetic fields (see, for example, Born 1960). The unperturbed elliptical 
trajectory of the electron is defined by the principal quantum number n (or energy 
go, equation (4)), the orbital angular momentum L and the Runge-Lenz vector 

a = n (u x L - r / r )  ( 5 )  

where r is the position and U the velocity of the electron. In the presence of small 
electric E and magnetic B fields, the slow change of the unperturbed trajectory can 
be described as independent precessions of the vectors 

with the angular frequencies 



1198 T P Grozdanov and E A Solov 'ev 

respectively (c is the velocity of light), with the projections of I;: onto the hi = w i / w i  
being quantised according to 

I ,  1 1 1  (j. = k .  

ki = -(n - 1)/2, -(n - 1)/2 + 1, . . . , (n - 1)/2. 

i = 1 , 2  

(8) 

The corresponding energy levels are given by 

so that the degeneracy is completely removed. We note that result (9) and operator 
analogues of (8) were rederived quantum mechanically (Demkov et a1 1970), using 
the O(4) symmetry group of the hydrogen atom. 

In our calculations we shall adiabatically switch-on the fields according to the law: 

E = AtEo B AtBo (10) 

where A is the switching rate, and EO and Bo are given vectors. In this way, the angle 
between the fields ( e  = &(E, B )  = &(Eo, Bo)),  the ratio of their magnitudes (E /B  = 
Eo/Bo),  and consequently the unit vectors 91,2, are time independent. Now, we can 
define the 'proper' initial trajectories as those, obeying (apart from the energy quantisa- 
tion condition (4)) additional conditions (8). 

3. Numerical solution of the classical equations 

In Descartes coordinate system, centred on the proton, we define in the yz plane the 
vectors 

Eo = EON, 091) 

A = -AtBo(y cos 8,0, x sin e}. 

Bo = Bo{O, sin 6, cos 0 )  (11) 

(12) 

and introduce the vector potential ( B  =rot A)  

The classical equations for the electron are 

d2r r 1 1 aA 
d t 2  r3 C c at 
-+ -= -E - - ( 0  X B )  + - - 

with E and B given by (10) and (11)). The last term on the RHS of equation (13) is 
the additional force arising as a consequence of the time dependence of the magnetic 
field. Although this force, being proportional to A, disappears in the adiabatic limit 
(A +O), it cannot be neglected. For example, it ensures the adiabatic invariance in 
the case of a pure magnetic field ( E  = 0). Obviously, if it were neglected in the last 
case, the electron energy would be conserved exactly, independently of the time 
variation of the magnetic field. 

The initial conditions associated with (13) were chosen in accordance with the 
preceeding section. Without losing generality, we can assume that the vectors I1,2 
(and consequently L and a )  are located in the yz plane at t = 0. With the help of 
relations a L = 0 and a2 + L2 = n2, equations (8) can be solved for a and L, defining 
the proper initial trajectory. The initial position and velocity of the electron can be 
arbitrarily taken on that trajectory (see appendix). 
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Prior to numerical integration, the classical equations (1 3) were regularised follow- 
ing the Kustanheimo-Steifel regularisation procedure, borrowed from the celestial 
mechanics (for details and further references see Stiefel and Schiefele 1971). Besides 
the overall improvement of the numerical accuracy, this procedure eliminates the 
Coulombic singularity from the equations of motion. This is advantageous for our 
application, since the domain in the configuration space spanned by the electron 
trajectory could, eventually, contain the centre of Coulomb force. 

In the course of numerical integration, at each step, the classical energy of the 
electron is calculated: 

According to the basic (adiabatic) hypothesis adopted in our method, the quantity 
(14) represents the quantised energy of the system at corresponding, instantaneous 
values of electric and magnetic fields. 

Figure 1 shows the ground-state (small-field quantum numbers: n = 1, kl = 0, 
kz = 0) energy shift as a function of the field strengths (with constant parameters 
B/cE = 1, cos 6 = O S ) ,  for two different values of switching rate. The energy exhibits 
the complicated oscillations, caused by the change of the interaction in one part of 
the classically accessible region, while the electron is moving in another one. Roughly 
speaking, the amplitude of these oscillations is proportional to the switching rate A, 
the frequency is of the order of magnitude of the characteristic frequencies of the 
electron motion and the phase depends on the initial conditions. These oscillations 
have no relation to the adiabatic principle, since the latter contains the statements 

Blc (au) x10-2 
0 1 2 3 4 

x10’ -2 I I 1 

Figure 1. Ground-state energy level shift as a function of field strength with constant 
parameters B/cE = 1, cos 0 = 0.5 and for two values of switching rate: A = 1 X au 
(open circles), A = 2.5 x au (dots). {n, kl, kz} = {1, 0, O}.  
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concerning the quantities averaged over the characteristic periods of electron motion. 
By decreasing A the amplitude of the oscillations is also decreased, enabling us to 
achieve the desired numerical accuracy. 

4. Results 

In order to explore the limitations of the method, the calculations have been carried 
out, up to the unrealistically strong fields where the ionisation occurs (note that: 
B(T) = 2.35 x 10SB/c(au) and E(V m-l) = 5.142 x 101'E(au)). If a highly excited state 
were treated this might not be the case, since the characteristic electric field scales 
with the principal quantum number as n-4 and magnetic field as n - 3 .  Also, a graphical 
presentation of results is preferred, since the large number of parameters are involved 
in calculations: quantum numbers, magnitudes of both magnetic and electric fields, 
as well as the angle between them. 

4.1. Ground state 

The small-field quantum numbers which define the ground state are {n, k l k z }  = 
{1,0,0}. As seen from (9), the first-order perturbation theory shift is zero, and we 
expect the effects of quadratic and higher-order terms to appear in this case. Figure 2 
shows the energy levels (full curves) of the ground state as a function of field strengths, 
for different combinations of constant parameters a = B/cE and cos 8. As a limit, 
quantum-mechanical results (chain curves) for the ground-state energies of a hydrogen 
atom in a magnetic field only ( E  = 0) and in an electric field only (B  = 0) are shown. 
The curve labelled by E = 0 is the result of Cabib et a1 (1972), obtained by diagonalis- 
ing the energy matrix in an extensive basis of hydrogenic wavefunctions. The curve 
labelled by B = 0 is a quantal fourth-order perturbation theory result (see, for example, 
Silverstone 1978). Note that, in figure 2, the lower (electric field) scale is common to 
all curves (except to E = 0) whereas the upper (magnetic field) scale corresponds only 
to curves labelled by E = 0 and a = 9. The arrows in figure 2 indicate the points where 
the classical overbarrier ionisation occurs (the electron escapes to infinity accelerated 
by the electric field). 

' In a pure electric field case (B  = 0) the level is shifted downwards and the critical 
field for ionisation is related to electron binding energy through the relation 2E,, = 8' 
(see, for example, Bethe and Saltpeter 1957). The effect of an applied magnetic field 
(a  = 1) is to shift the level upwards and to move the ionisation threshold through the 
larger electric fields. In the case labelled by a = 3,  the influences of electric and 
magnetic fields are almost compensated and the level is slightly shifted upwards. When 
relatively stronger magnetic fields are applied (the curves labelled by a = 9) the level 
is shifted upwards strongly and the situation is more similar to the pure magnetic field 
case (E  = 0). 

The structures, shown by broken curves (especially in the cases labelled by a = 9, 
cos 8 = 0.1 and cos 8 = 0.5), indicate the violation of the adiabatic evolution of the 
system. Most probably, this is caused by the approach of the quantised energy level 
to the top of certain complicated three-dimensional barriers. This hypothesis is suppor- 
ted by the fact that such a non-adiabatic behaviour was not found in the case a = 9, 
cos 8 = 0.9. By decreasing the switching rate A this structure could not be eliminated. 
Also, in all cases, similar behaviour (but less pronounced) has been found near the 
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Figure 2. Ground-state energy levels (full curves) as functions of field strength for various 
combinations of parameters a = B/cE and cos 8. In all cases, the switching rate used in 
calculations was A = 2.5 x lo-' au. Chain curves are the quantal results for the cases of 
pure electric (Silverstone 1978) and magnetic (Cabib et al 1972) fields. Broken curves 
demonstrate the non-adiabatic evolutions of the system, and the arrows indicate ionisation. 
The electric field scale is common to all curves (except to E = 0), while the magnetic field 
scale corresponds to curves labelled by E = 0 and a = 9. {n, k l ,  k2}  = {I, 0,O). 

ionisation thresholds. At the end, we note that the overall energy level dependance 
on the mutual orientation of the fields is less pronounced in the cases of smaller ratios 
(a = 1 and a = 3, not shown in figure 2 )  than in the a = 9 case. 

4.2. Excited states 

The same method has been applied in calculating excited-state energy levels. Figure 3 
shows the results (full curves) for the states defined by the small-field quantum 
numbers (n l ,  kl, k2) = (3, -1, -1} (the levels shifted downwards) and (n ,  kl, k2}  = 
{3, 1, 1) (the levels shifted upwards). The angle between the fields has been kept 
constant (cos e = 0.5) and the results are presented for two different ratios of field 
strengths: a = 9 and a = 27. Again, the electric field scale is common to all curves 
and the magnetic field scale refers only to the curves labelled by a = 27. 

Unlike the ground-state case, here the linear shift, given by (9) (broken lines), 
dominates in the limit of small fields. The state (3, -1, -1) is bound stronger and the 
ionisation limit was not reached in the range of fields shown in figure3. For the 
(3, 1, 1) state the non-adiabatic behaviour was found only very close to the ionisation 
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Figure 3. Energy levels (full curves) of excited states, {n, k l ,  k 2 } = { 3 ,  -1, -1} (the levels 
shifted downwards) and {n, k , ,  k 2 } = { 3 ,  1, 1) (the levels shifted upwards), as functions of 
field strength with constant parameters (Y = B/cE = 9, 27 and cos 8 = 0.5. The switching 
rate of the fields was A = 5 X lo-’ au. Broken lines are the first-order perturbation theory 
results (9),  and the arrows indicate ionisation. Electric field scale is common to all curves, 
while the magnetic field scale corresponds to curves labelled by cy = 27. 

limits. Again, the overall dependance on the mutual orientations of the fields (not 
shown in figure) was found to be more pronounced in the cases with larger values of a. 

5. Concluding remarks 

In the present work the method, based on the adiabatic invariance of EBK quantisation 
conditions, has been applied to the semiclassical quantisation of a three-dimensional 
non-integrable system. A sufficient condition for the fulfilment of the adiabatic 
invariance seems to be the continuous deformation of the invariant toroids with a 
slow change of interaction. This demand is related to the limitations of the usual (so 
called ‘primitive’) EBK quantisation, which assumes that the motion takes place in a 
single, simply connected classically allowed region. Even for one-dimensional systems 
the adiabatic invariance is broken when the level approaches the top of a potential 
barrier (the fundamental frequency tends to zero). In that case the ‘primitive’ EBK 
quantisation also breaks down and one must resort to various uniformisation pro- 
cedures (see, for example, Strand and Reinhardt 1979, and references therein). 
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Nevertheless the method employed in this work possesses certain advantages in 
respect to the commonly used approaches for semiclassical quantisation of non- 
integrable systems. It is free of such problems like searching for the initial conditions 
which correspond to quantised trajectories, or finding the caustics of the classical 
system (see, for example, Noid and Marcus 1977). In addition, by using the present 
method, one gets all intermediate results, i.e. the quantised energies corresponding 
to the classical systems with not completely switched interaction. 

A s  far as a hydrogen atom in external fields in concerned, we make the following 
additional remarks. The cases in which the degeneracy is not completely removed 
within the first-order perturbation theory cannot be treated by using the proposed 
procedure of semiclassical quantisation. For example, one has w1 = w2 if and only if 
E * B = 0,  i.e. if the fields are orthogonal or one of the fields is zero ( E  = 0 implies 
w1 = o2 = B/2c ,  and B = 0 implies - w1 = w2 = 3nE/2) .  Also, if the fields are parallel 
(or antiparallel) and the ratio B / c E  = 3n, one of the fundamental frequencies w1,2 is 
zero and we deal with the degenerate system again (see also, Demkov et a1 1970) 
In all these cases, to make the choice of the ‘proper’ initial trajectories, one needs 
the results of the higher-order semiclassical perturbation theory, where the degeneracy 
is completely removed. 

Appendix 

We assume that at t = 0 vectors L and a lie in the y z  plane. With given unit vectors 
h1 = (0, cos pi ,  sin p i } ,  i = 1,2  from (8) and a L = 0 ,  a 2 +  L2 = n 2  one readily finds 

a, = 0 L, = o  
a, = 2n (cos 41 -cos 42)  
a, = t n  (sin 41 -sin 42)  

L, = i n  (cos 41 + cos d 2 )  
L, = i n  (sin +sin 42) 

(A .1)  

where 

Initial position and velocity of the electron can be taken arbitrarily on the trajectory 
defined by (A.1) .  A simple choice is to take that at t = 0 the electron is located at 
the aphelion, which is at the distance 

from the origin. In that case it is easy to find the initial conditions associated with 
equations (14)  

x = o  x = L/rA 

y = -rAa,/a j = O  
z = -rAaz/a i = o .  

(A.4)  
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