About
75
Publications
15,167
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,527
Citations
Citations since 2017
Introduction
Additional affiliations
June 2009 - August 2011
Publications
Publications (75)
CCCTC-binding factor (CTCF) is an organizer of higher-order chromatin structure and regulates gene expression. Genetic studies have implicated mutations in CTCF in intellectual disabilities. However, the role of CTCF-mediated chromatin structure in learning and memory is unclear. We show that depletion of CTCF in postmitotic neurons, or depletion i...
Recent studies have determined that the microbiome has direct effects on behavior, and may be dysregulated in neurodevelopmental conditions. Considering that neurodevelopmental conditions, such as autism, have a strong genetic etiology, it is necessary to understand if genes associated with neurodevelopmental disorders, such as Shank3, can influenc...
Autism Spectrum Disorder (ASD) is a complex neuropsychiatric syndrome whose etiology includes genetic and environmental components. Since epigenetic marks are sensitive to environmental insult, they may be involved in the development of ASD. Initial brain studies have suggested a dysregulation of epigenetic marks in ASD. However, due to cellular he...
The core behavioral symptoms of Autism Spectrum Disorders (ASD) include dysregulation of social communication and the presence of repetitive behaviors. However, there is no pharmacological agent that is currently used to target these core symptoms. Epigenetic dysregulation has been implicated in the etiology of ASD, and may present a pharmacologica...
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by dysfunction in social interaction, communication and stereotypic behavior. Genetic and environmental factors have been implicated in the development of ASD, but the molecular mechanisms underlying their interaction are not clear. Epigenetic modifications h...
CCCTC-binding factor (CTCF) is a regulator of chromatin organization and has direct effects on gene transcription. Mutations in CTCF have been identified in individuals with neurodevelopmental conditions. There are wide range of behaviors associated with these mutations, including intellectual disabilities, changes in temperament, and autism. Previ...
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by early onset deficits in social behavior and repetitive behavior. Chromodomain helicase DNA binding protein (CHD8) is one of the genes with the strongest association to autism. Alongside with the core symptoms of ASD, individuals with ASD are reported to have gastrointe...
Alzheimer’s disease (AD) is the most common cause of senile dementia and one of the greatest medical, social, and economic challenges. According to a dominant theory, amyloid-β (Aβ) peptide is a key AD pathogenic factor. Aβ-soluble species interfere with synaptic functions, aggregate gradually, form plaques, and trigger neurodegeneration. The AD-as...
The etiology of Autism Spectrum Disorders (ASD) includes a strong genetic component and a complicated environmental component. Recent evidence indicates that maternal diabetes, including gestational diabetes, is associated with an increased prevalence of ASD. While previous studies have looked into possible roles for maternal diabetes in neurodevel...
Background:
Partial or an entire deletion of SHANK3 are considered as major drivers in the Phelan-McDermid syndrome, in which 75% of patients are diagnosed with autism spectrum disorder (ASD). During the recent years, there was an increasing interest in stem cell therapy in ASD, and specifically, mesenchymal stem cells (MSC). Moreover, it has been...
Background & Aim Background
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by three core symptoms that include social interaction deficits, cognitive inflexibility, and communication disorders. They have been steadily increasing in children over the past several years, with no effective treatment.
2% of all ASD patie...
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with main core symptoms including deficits in social-communication abilities and repetitive behaviors/restricted interests. ASD affects 1 of 88 children worldwide and currently there is no sufficiently effective treatment that alleviates its core deficits. In our previous studies, we h...
Background: Partial or an entire deletion of SHANK3 are considered as major drivers in the Phelan McDermid syndrome, in which 75% of patients are diagnosed with autism spectrum disorder (ASD). During the recent years, there was an increasing interest in stem cell therapy in ASD, and specifically, mesenchymal stem cells (MSC). Moreover, it has been...
Background: Partial or an entire deletion of SHANK3 are considered as major drivers in the Phelan McDermid syndrome, in which 75% of patients are diagnosed with autism spectrum disorder (ASD). During the recent years, there was an increasing interest in stem cell therapy in ASD, and specifically, mesenchymal stem cells (MSC). Moreover, it has been...
There is growing evidence for the involvement of the gut-microbiota in the regulation of emotions, behavior, and higher cognitive functions through the 'microbiome-gut-brain axis'. This relationship between the gut microbiota and the brain is pivotal for the development of the newborn, which receives its commensal microbiota at birth; dysbiosis may...
Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-tran...
Autism spectrum disorder (ASD) presents a wide, and often varied, behavioral phenotype. Improper assessment of risks has been reported among individuals diagnosed with ASD. Improper assessment of risks may lead to increased accidents and self-injury, also reported among individuals diagnosed with ASD. However, there is little knowledge of the molec...
During the past decade, there has been a substantial rise in the knowledge about the effects of gut microbiota on host physiology and behavior, including depressive behavior. Initial studies determined that gut microbiota can regulate host tryptophan levels, which is a main serotonin precursor. A dysfunctional serotonergic system is considered to b...
Stressful life events are considered a risk factor for autoimmune disorders, though the mechanisms are unclear. Here we demonstrate that chronic social stress induces virulence-associated transcriptional patterns in the murine gut microbiota. The stress-influenced microbiota increased the presence of effector T helper cells in the mesenteric lymph...
Background & Aim
Mesenchymal stem cells (MSC) have shown to have regenerative and immunomodulatory abilities when they are transplanted into a tissue. we have previously demonstrated that stereotactical injection of MSC into the brains of BTBR mice - idiopathic autism mice model, leads to a significant amelioration of all the autistic-like symptoms...
Abstract Accumulating evidence demonstrates that the gut microbiota affects brain function and behavior, including depressive behavior. Antidepressants are the main drugs used for treatment of depression. We hypothesized that antidepressant treatment could modify gut microbiota which can partially mediate their antidepressant effects. Mice were chr...
The urea cycle is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). Arginase-I (ARGI) accumulation at sites of amyloid-beta (Aβ) deposition is associated with L-arginine deprivation and neurodegeneration. An interaction between the arginase II (ARGII) and mTOR-ribosomal protein S6 kinase β-1 (S6K1) pathways promotes inflammation...
Recent studies have determined that the microbiome has direct effects on behavior, and may be dysregulated in neurodevelopmental conditions. Considering that neurodevelopmental conditions, such as autism, have a strong genetic etiology, it is necessary to understand if genes associated with neurodevelopmental disorders, such as Shank3, can influenc...
Cognitive decline during Alzheimer's disease (AD) is partially associated with binding of soluble β-amyloid peptides (Aβ) to the α7 nicotinic acetylcholine receptor (AChR) of the brain. To competitively inhibit this binding, we designed and chemically modified a snake α-neurotoxin, α-cobratoxin (mToxin), using phenylglyoxal, which is known to react...
Urea cycle plays a role in the Alzheimer's disease (AD) pathogenesis. Arginase-I accumulation at sites of Aβ deposition is associated with neurodegeneration. Moreover, positive interaction between arginase-II and mTOR-S6K1 pathway promotes inflammation and oxidative stress. Ribosomal protein S6 kinase beta-1 (S6K1) activity is higher in AD mouse mo...
The urea cycle plays a role in the pathogenesis of Alzheimers disease (AD). Arginase-I accumulation at sites of amyloid-beta deposition is associated with L-arginine deprivation and neurodegeneration. Moreover, a positive interaction between the arginase-II and mTOR-S6K1 pathways promote inflammation and oxidative stress. In this study, we treated...
Arginine is one of the most versatile semi-essential amino acids. Further to the primary role in protein biosynthesis, arginine is involved in the urea cycle, and it is a precursor of nitric oxide. Arginine deficiency is associated with neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s diseases (AD). In this study, we adm...
While both individual transcription factors and cis-acting sites have been studied in relation to psychiatric disorders, there is little knowledge of the relative contribution of trans-acting and cis-acting factors to gene transcription in the brain. Using an RNA-seq approach in mice bred from two evolutionary-distinct mice strains, we determined t...
Recent genetic and technological advances have determined a role for chromatin structure in neurodevelopment. In particular, compounding evidence has established roles for CTCF and cohesin, two elements that are central in the establishment of chromatin structure, in proper neurodevelopment and in regulation of behavior. Genetic aberrations in CTCF...
In recent decades it has become clear that Autism Spectrum Disorder (ASD) possesses a diverse and heterogeneous genetic etiology. Aberrations in hundreds of genes have been associated with ASD so far, which include both rare and common variations. While one may expect that these genes converge on specific common molecular pathways, which drive the...
In recent decades it has become clear that Autism Spectrum Disorder (ASD) possesses a diverse and heterogeneous genetic etiology. Aberrations in hundreds of genes have been associated with ASD so far, which include both rare and common variations. While one may expect that these genes converge on specific common molecular pathways, which drive the...
Background
Autism Spectrum Disorder (ASD) is a neuropsychiatric syndrome with a complex etiology. The potential for non-genetic influence to mediate part of the risk of ASD has prompted several studies to date, all showing evidence for epigenetic alterations in autistic subjects. Establishment of DNA methylation during brain development has been wi...
Social encounters are associated with varying degrees of emotional arousal and stress. The mechanisms underlying adequate socioemotional balance are unknown. The medial amygdala (MeA) is a brain region associated with social behavior in mice. Corticotropin-releasing factor receptor type-2 (CRF-R2) and its specific ligand urocortin-3 (Ucn3), known c...
Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biologica...
Recently, it has been suggested that alterations in DNA methylation mediate the molecular changes and psychopathologies that can occur following trauma. Despite the abundance of DNA methyltransferases (Dnmts) in the brain, which are responsible for catalyzing DNA methylation, their roles in behavioral regulation and in response to stressful challen...
MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). Howeve...
Schematic representation of the sampling sites in the rat brain. Schematic representation of the sampling sites in the rat brain of the paraventricular nucleus of the hypothalamus (PVN), oval (BSTov) and fusiform (BSTfu) subdivisions of the bed nucleus of the stria terminals, and central amygdala (CeA). Modified after [47].
(TIF)
Chronic variable mild stress paradigm used, primer sequences used for quantitative RT-PCR, and image analysis.
(DOC)
Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive.
Male and female rats were exposed to chronic variable mild stress (CVMS) after which immediate early gene products, corticotropin-releasing factor (CRF) mRNA and peptide, various epigenetic-associated enzyme...
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoenzyme that is important in maintaining the cellular redox state and regulating
protein degradation. The NQO1 polymorphism C609T has been associated with increased susceptibility to various age-related
pathologies. We show here that NQO1 protein level is regulated by the E3 ligase STUB1/CHIP (C term...
DNA methylation regulates gene transcription and has been suggested to encode psychopathologies derived from early life stress. We found that methylation regulated the expression of the Crf (also known as Crh) gene and that chronic social stress in adult mice induced long-term demethylation of this genomic region. Demethylation was observed only in...
The accumulation of tau and amyloid beta proteins is the major molecular pathology of Alzheimer's disease (AD). The mechanisms leading to the accumulation of these proteins are not completely clear. Hsc-70/Hsp-70, a chaperone protein, has been shown to bind both these proteins and regulate their degradation. We have previously shown that the co-cha...
Decapping protein 1a (Dcp1a) is found in P-bodies and functions in mRNA cap removal prior to its degradation. The function and binding partners of Dcp1a have been thoroughly studied, however its expression pattern is still unclear. In this study we have monitored Dcp1a expression along brain development, neuronal differentiation and during cellular...
BAG-1 protein has been well characterized as necessary for proper neuronal development. However, little is known about the function of BAG-1 in the adult brain. In this work, the expression and localization of BAG-1 in the mature mouse brain was studied. The levels of both BAG-1 isoforms decrease significantly in the brain during development. BAG-1...
Intraneuronal accumulation of phosphorylated Tau protein is a molecular pathology found in many forms of dementia, including Alzheimer disease. Research into possible mechanisms leading to the accumulation of modified Tau protein and the possibility of removing Tau protein from the system have revealed that the chaperone protein system can interact...
Alterations in the structure and function of tau protein is the primary pathology of a variety of neurodegenerative diseases, including Alzheimer's disease (AD). In these diseases, hyperphosphorylated tau protein forms aggregates which are deposited in the somadendritic regions of the neurons in the central nervous system. This series of events is...
The microtubule-associated protein tau is essential for microtubule stabilization in neuronal axons. Hyperphosphorylation and intracellular fibrillar formation of tau protein is a pathology found in Alzheimer's disease (AD) brains, and in a variety of neurodegenerative disorders referred to as 'taupathies'. In the present study, we investigated how...
Tau mRNA is axonally localized mRNA that is found in developing neurons and targeted by an axonal localization signal (ALS) that is located in the 3'UTR of the message. The tau mRNA is trafficked in an RNA-protein complex (RNP) from the neuronal cell body to the distal parts of the axon, reaching as far as the growth cone. This movement is microtub...