
Motion Control of a Spinning Disc on Rotating Earth

Fangxu Jing, Eva Kanso and Paul Newton

Department of Aerospace & Mechanical Engineering

Viterbi School of Engineering

University of Southern California, Los Angeles, CA 90089-1191

Abstract— This paper considers the motion control of a
particle and a spinning disc on rotating earth. The equations
of motion are derived using Lagrangian mechanics. Trajectory
planning is studied as an optimization problem using the
method referred to as Discrete Mechanics and Optimal Control.

I. INTRODUCTION

This paper considers the motion control of a particle and a

spinning disc on earth. In particular, we derive the governing

equations using Lagrangian mechanics and study trajectory

planning as an optimization problem using the method re-

ferred to as Discrete Mechanics and Optimal Control, [4],[5].
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Fig. 1. The earth (oblate spheroid) is modeled as a rotating sphere with an
added potential used to emulate the effect of the eccentricity which produces
a non-zero horizontal component of gravity.

A. Problem Description

Consider the horizontal motion on earth in the absence

of friction and pressure gradient forces. A perfect sphere

model fails to capture the dynamical effects associated

with the horizontal component of gravity due to the ec-

centricity of the earth, as shown in Figure 1 and discussed

in [1], [10], [11], [12] and [13] for a particle moving on

rotating earth. It also plays an important role in the unsteady

dynamics of a spinning disc on rotating earth as investigated

in [6], [14] and [15] as a model for geophysical vortex

motion. In both problems, the authors emulated the effect of

the earth eccentricity by adding an artificial potential to the

perfect sphere model. In this paper, we use the same model

to address the problem of planning the motion on earth as

an optimization problem based on a Lagrangian formulation.

More specifically, we investigate optimal trajectories that

steer the particle or the spinning disc from an initial position

and velocity to a final position and velocity while minimizing

a prescribed cost function such as the control effort.

B. Motivation

The main motivation for these problems comes from

atmospheric sciences where one needs to track atmospheric

drifters over periods of days, weeks, or even months. In

the simplest case, these drifters are high altitude balloons

which, to a first order approximation, can be thought of as

passive tracers. However, if complex dynamical maneuvers

are required, it is useful to include more complicated internal

dynamics, such as rotational motion, which adds interesting

new effects. These kinds of finite-dimensional models have

also been used as mechanical models of vortex motion

in some geophysical settings [6] and one could imagine

thinking of the spinning disc model, in the limit as the

ratio of the disc radius to the radius of the sphere goes

to zero, as a “point-vortex”, a collection of which might

approximate a distribution of vorticity [8]. Interestingly,

systems of interacting rotating millimeter-sized discs floating

on a liquid-air interface have been used recently [3] to study

self-assembly of patterns in models that have some of the

same pattern forming features as a wide range of vortex

lattice systems. We consider the optimal control problems

treated in this paper as a first step in the process of attempting

to implement control and motion strategies in these contexts.

C. Organization of the Paper

In Section II, we formulate the dynamics of a particle

and a spinning disc moving on earth, and address the

question of motion planning in Section III. The numerical

implementation and discussion of the results are presented

in Section IV.

II. DYNAMICS ON ROTATING EARTH

Consider a particle of mass m moving on a sphere of

radius R and subject only to a gravitational force pointing

towards the center of the sphere and a supporting force

normal to the surface of the sphere (i.e., pointing in the

opposite direction of gravity). One distinguishes two types

of behavior relative to a fixed inertial frame {Ei}i=1,2,3 as
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follows: if the initial velocity is zero, the particle remains

at rest for all time, otherwise, it moves along a great circle

which passes through the starting position and is tangent to

the direction of the initial velocity at the starting point. If

the sphere is rotating, say with an angular velocity vector

Ω = ΩE3 where Ω = 2π/1day, the motion of the particle

can be described relative to either a fixed inertial frame or

a frame rotating with the sphere {ei}i=1,2,3 with e3 = E3.
In the inertial frame, one sees the same types of trajecto-

ries as in the stationary sphere case. The motion appears

more complicated in the rotating frame where Coriolis and

centrifugal forces need to be taken into consideration. An

important observation here is that a particle starting at rest

relative to the moving frame does not remain at rest due

to the horizontal component of the centrifugal force, i.e.,

the component in the direction tangent to the earth surface.

However, a particle starting at rest relative to the rotating

earth remains at rest for all time. Indeed, in a more accurate

model of the earth where the effect of eccentricity is taken

into account, the horizontal component of the centrifugal

force Fcent is counterbalanced by the horizontal component

of the gravitational force Fg . Recall that Fcent is given by:

Fcent = −mΩ × (Ω × R), (1)

where R denotes the position vector of the particle on

the sphere. It is convenient to introduce spherical coordi-

nates (φ, λ) measured relative to the moving frame {ei},

see Figure 1, and an associated right-handed orthonormal

basis {eφ, eλ, eR}. The centrifugal force Fcent can then be

expressed as follows:

Fcent = mRΩ2 sinφ (sinφ eR + cosφ eφ). (2)

To cancel the horizontal component of Fcent, the particle

should be subject to a horizontal force opposite in direction

and of magnitude equal to mRΩ2 sinφ cosφ. One way to

incorporate this effect yet retain the obvious advantages of

spherical coordinates with constant radius is to introduce

a potential function Va whose gradient in the horizontal

direction produces such force, [13], namely,

Va =
1

2
mR2 Ω2 sin2 φ. (3)

A. Equations of Motion for a Particle

The Lagrangian function for the system is given by:

L(q, q̇) = T − V, (4)

where T and V denote the kinetic and potential energies,

respectively, while q parameterizes the position of the par-

ticle on earth and can be chosen as q = (φ, λ). Lagrange’s

equations of motion are given by Hamilton’s principle (also

known as the least action principle). This principle amounts

to taking variations of the action, between a fixed initial time

t0 and a fixed final time tf ,

S =

∫ tf

t0

Ldt (5)

with respect to arbitrary variations δq of the path that keep

the endpoints q(t0) and q(tf ) fixed. The pointwise equations

of motion thus obtained are of the form:

d

dt

∂L

∂q̇
−
∂L

∂q
= 0. (6)

The kinetic energy T of the particle can be expressed in

terms of spherical coordinates as:

T =
1

2
mR2

[

φ̇2 + (λ̇+ Ω)2 sin2 φ
]

. (7)

The potential energy is the sum of two parts, the gravitational

potential Vg which is a constant and therefore can be set

to zero, and the artificial potential Va introduced in (3).

Lagrange’s equations (6) read as:

φ̈− λ̇Ω sin 2φ−
1

2
λ̇2 sin 2φ = 0,

λ̈+ 2 φ̇ (λ̇+ Ω) cotφ = 0.
(8)

Finally, note that, since L is not an explicit function of

longitude λ and time t, by Noether’s theorem, one has

two integrals of motion (conserved quantities) associated

with these symmetries. The angular momentum in the eλ-

direction is conserved,

πλ = mR2(λ̇+ Ω) sin2 φ = constant,

and the total energy E is conserved

E =
1

2
mR2

[

φ̇2 + (λ̇+ Ω)2 sin2 φ
]

+
1

2
mR2Ω2 sin2 φ

= constant.

B. Equations of Motion for a Spinning Disc

Consider a thin disc, of radius a and uniformly distributed

mass m, tangent to the earth surface such that its center

of mass lies on earth and can be parameterized by (φ, λ).
The disc is free to rotate or spin about its axis of symmetry

which, by assumption, remains normal to the earth surface

at all time. That is, the disc is free to spin about the eR-axis.

The Lagrangian function of the spinning disc is given

by (4). The kinetic energy can be decomposed into a trans-

lation kinetic energy which has the same form as in (7) and

a rotational kinetic energy Trot, which can be expressed as:

Trot =
1

2
Ih ω

2
φ +

1

2
Ih ω

2
λ +

1

2
Iv ω

2
ψ, (9)

where Iv = 1
2ma

2 and Ih = 1
4ma

2 are the moments of

inertia of the disc about eR and about the horizontal axes

eφ and eλ, respectively. In (9), the components of the angular

velocity relative to the spherical basis {eφ, eλ, eR} are given

by:

ωφ = φ̇, ωλ = (λ̇+Ω) sinφ, ωψ = ψ̇+(λ̇+Ω) cosφ. (10)

Now, use M = mR2, substitute (10) in (9) and add (7) to

get the total kinetic energy

T =
1

2
(M + Ih)

[

φ̇2 + (λ̇+ Ω)2 sin2 φ
]

+

1

2
Iv

[

ψ̇ + (λ̇+ Ω) cosφ
]2

.
(11)
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Fig. 2. Free motion of a particle of mass m on a rotating earth and rotating sphere, the solid line is the trajectory on earth, dashed line is on sphere.

End time is 3 days for all examples, initial conditions are: (a) (φ0, λ0) = (π/4, 0), (φ̇0, λ̇0) = (0, 2); (b) (φ0, λ0) = (3π/8, 0), (φ̇0, λ̇0) = (0.92, 0);

(c) (φ0, λ0) = (3π/8, 0), (φ̇0, λ̇0) = (1.366, 0); (d) (φ0, λ0) = (3π/8, 0), (φ̇0, λ̇0) = (0,−2π).

To simplify the expression for the potential energy, we

assume that a ≪ R and treat the gravitational and artificial

potentials, Vg and Va, as functions of the center of mass only.

In addition to Vg and Va, the disc is subject to a potential

function Vd of the form

Vd =
1

2
Iv Ω2 cos2 φ, (12)

which, as Va, is due to the fact that the dynamics is described

in a rotating frame. To better understand the potential Vd,

consider the special case when the disc is stationary in

inertial frame and its center of mass is placed at the north

pole φ = 0. Clearly, relative to the rotating frame, the disc is

not stationary and has total energy 1
2IvΩ

2, which is exactly

Vd|φ=0. The total potential energy V = Vg + Va + Vd can

then be expressed as

V =
1

2
Ω2(M sin2 φ+ Iv cos2 φ), (13)

where, as before, Vg is constant and is set equal to zero.

Lagrange’s equations (6) for the spinning disc, with q =
(φ, λ, ψ) and Iv = 2Ih = 2I , yield

(M + I)φ̈ = − 2Iψ̇(λ̇+ Ω) sinφ+

1

2

[

(M − I)(λ̇+ Ω)2 − (M − 2I)Ω2
]

sin 2φ,

(M + I)λ̈ sinφ = 2Iψ̇φ̇− 2M(λ̇+ Ω)φ̇ cosφ,

(M + I)ψ̈ sinφ = − 2Iψ̇φ̇ cosφ +
[

M(1 + cos2 φ) + I sin2 φ
]

(λ̇+ Ω)φ̇.

(14)

The Lagrangian function L does not depend explicitly on λ,

ψ and time t which implies the existence of three integrals

of motion. The angular momenta πλ and πψ in the eλ and

eR directions are conserved,

πλ = (M + I)(λ̇+ Ω) sin2 φ +

2I
[

ψ̇ cosφ+ (λ̇+ Ω) cos2 φ
]

= constant,

πψ = Iv

[

ψ̇ + (λ̇+ Ω) cosφ
]

= constant,

as well as the total energy

E =
1

2
MΩ2 sin2 φ+

1

2
(M + I)

[

φ̇2 + (λ̇+ Ω)2 sin2 φ
]

+

I

{

[

ψ̇ + (λ̇+ Ω) cosφ
]2

+ Ω2 cos2 φ

}

= constant.

An approximate solution to (14) can be sought under the as-

sumption that the disc translational velocity is much smaller

than the velocity of the earth, i.e., φ̇ ≪ Ω and λ̇ ≪ Ω. The

approximate solution, referred to as “steady drift” in [6], is:

φ ≈ φ0, ψ̇ ≈ ψ̇0, λ̇ ≈
1

2

Iv
M

ψ̇0

cosφ0
. (15)

The comparison between this approximate solution and our

direct numerical integration of (14) suggests that this is a

good approximation under additional conditions (see Sec-

tion IV for more details). Namely, ψ̇ has to be much larger

than Ω, say of the order O(10Ω). Also, it should be clear

that the latitude φ must not be chosen close to the equator

where λ̇ obtained above is not accurate and the motions in

φ and ψ are too significant to ignore.

III. MOTION PLANNING

The main point of this article is to investigate the problem

of motion planning for the particle and the spinning disc

moving on earth. In the case of the particle, we introduce

control forces in both eφ and eλ direction and solve for

optimal control forces that steer the particle from an initial

position and velocity to a desired final position and velocity.

For the spinning disc, we apply a control torque about the

axis of symmetry of the disc, i.e., a torque that controls

the spin ψ of the disc. Clearly, this spinning disc is under-

actuated and questions of solvability and controllability are

important.

A. Solvability and Controllability

The problem for the spinning disc is to find

optimal torques that steer
(

φ(t0), λ(t0), λ(t0)
)

to
(

φ(tf ), λ(tf ), λ(tf )
)

. For some given initial and final

conditions, there may be no control torque that achieves the

desired motion. In this case the optimization problem has

no solution.
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Fig. 3. Free motion of a spinning disc on rotating earth, the solid line is the result of direct numerical integration, dashed line is an approximate solution.

We present φ̇, λ̇ and ψ̇ in three columns respectively. Initial conditions and end times are: (a) (φ0, λ0) = (π/4, 0), (φ̇0, λ̇0, ψ̇0) = (0, 0,Ω), end time 3

days; (b) (φ0, λ0) = (π/4, 0), (φ̇0, λ̇0, ψ̇0) = (0, 0, 10Ω), end time 3 days; (c) (φ0, λ0) = (π/2 − 0.1, 0), (φ̇0, λ̇0, ψ̇0) = (0, 0, 10Ω), end time 15
days.

In Section IV, we provide numerical evidence that the

spinning disc can achieve a net motion on the earth surface

under control mechanism. This suggests that the problem

may be controllable or, at least, controllable in some finite

regions of the earth surface. For a rigorous proof of control-

lability, one needs to appeal to controllability theorems for

systems with drift, see, e.g., [9]. Such undertaken, although

very important, is beyond the scope of the present paper.

B. Motion Control as an Optimization Problem

Take q to be the state variables and let f be the control

force. For the case of a particle, one has q = (φ, λ) and

f = (fφ, fλ) while for the spinning disc q = (φ, λ, ψ) and

f = (0, 0, fψ). The motion planning problem can then be

stated as follows. Given the boundary conditions q(t0) = q0,

q̇(t0) = q̇0 and q(tf ) = qf , q̇(tf ) = q̇f , find f that minimizes

the cost function
∫ tf

t0

C(q, q̇, f) dt (16)

subject to the Lagrange-D’Alembert principle

δ

∫ tf

t0

L(q, q̇) dt +

∫ tf

t0

f · δq dt + p0 · δq0 − pf · δqf = 0,

(17)

for all arbitrary variations δq. That is, the least action prin-

ciple outlined in Section II is restated here as the Lagrange-

d’Alembert principle (to account for external control forces)

and without the a priori assumption that the variations vanish

at the end points t0 and tf . Rather, this condition is imposed

using the boundary constraints

δq0 = q(t0)−q0 = 0 , δqf = q(tf )−qf = 0, (18)

and their associated Lagrange multipliers

p0 =
∂L

∂q̇

∣

∣

∣

∣

t0

, pf =
∂L

∂q̇

∣

∣

∣

∣

tf

. (19)

C. Discretization

We discretize the optimal control problem using the novel

method devised by [4] where the idea is to discretize the

cost function (16) and the variational principle (17) directly

using global discretization of the states and the controls. To

this end, a path q(t), where t ∈ [t0, tf ], is replaced by a

discrete path qd : {0, h, 2h, . . . , Nh = tf ], N ∈ N. Here,

qd(nh) := qn is viewed as an approximation to q(tn = nh),
n ∈ N and n ≤ N . Similarly, the continuous force f is

approximated by a discrete force fd such that fn = fd(nh).
The cost function (16) is approximated on each time

interval [nh, (n+ 1)h] by

Cd(qn, qn+1, fn, fn+1) ≈

∫ (n+1)h

nh

C(q, q̇, f) dt, (20)

which yields the discrete cost function

Jd(qd, fd) =

N−1
∑

n=0

Cd(qn, qn+1, fn, fn+1). (21)

The action integral (17) is approximated on each time

interval [nh, (n+ 1)h] by a discrete Lagrangian

Ld(qn, qn+1) ≈

∫ (n+1)h

nh

L(q, q̇) dt. (22)

We also approximate
∫ tn+1

tn
f · δq ≈ f−n · δqn+ f+

n · δfn+1,

where f−n and f+
n are called left and right discrete torques,

respectively. The discrete version of (17) requires one to find

paths {qn}
N
n=0 such that for all variations {δqn}

N
n=0, one has

δ

N−1
∑

n=0

Ld(qn, qn+1) +

N−1
∑

n=0

(f−n · δqn + f+
n · δqn+1)+

p0 · δq0 − pf · δqf = 0.

(23)

The discrete variational principle (23) yields the following

equality constraints

D2Ld(qn−1, qn) +D1Ld(qn, qn+1) + f+
n−1 + f−n = 0,

p0 +D1Ld(q0, q1) + f−0 = 0,

−pf +D2Ld(qN−1, qN ) + f+
N = 0.

(24)

IV. IMPLEMENTATION AND NUMERICAL RESULTS

We now present some numerical results for free motion

and motion planning of a particle and a spinning disc on

earth.
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Fig. 4. Optimal control results of particle on rotating earth, the solid line is trajectory under control, and dashed line is equator. Initial and final conditions

for case (a) and (b) are: (φ0, λ0) = (π/4, 0), (φ̇0, λ̇0) = (0, 0), (φf , λf ) = (π/4, π/3), (φ̇f , λ̇f ) = (0, 0), and the end times: (a) tf =1 day, (b) tf =3

days. Initial and final conditions for case (c) and (d) are: (φ0, λ0) = (π/3, 0), (φ̇0, λ̇0) = (0, 0), (φf , λf ) = (π/8, 0), (φ̇f , λ̇f ) = (0, 0), and the end
times: (c) tf =1 day, (d) tf =3 days.

A. Direct Numerical Integration

The free motion of a particle on rotating earth is shown

in Figure 2. In order to illustrate the effect of the artificial

potential Va, we integrated (8) for Va = 0 and for Va given

in (3) and plotted trajectories for the same initial conditions

in Figure 2. The solid line corresponds to trajectories on

earth while the dashed line is for trajectories on the sphere

(Va = 0). The end time is 3 days in all examples. One

can observe that due to the existence of Va, with some

initial conditions (Figure 2(a)) the particle doesn’t have

enough momentum in the latitudinal direction to overcome

the peak of Va on the equator, therefore the trajectories are

constrained within one hemisphere, while the trajectories

on the sphere always cross the equator when φ̇0 6= 0.

In Figure 2(b), the trajectories asymptotically approach the

equator. In Figure 2(c), the trajectories appear to have an

“8” shape and the cross point is always on the equator

(also mentioned in Paldor and Sigalov [11]), note this is

also observed in the sphere model but with different initial

conditions. Note that, since the motion on earth is actually

motion on a sphere under a potential Va, the trajectories are

similar to those of a spherical pendulum, see Figure 2(d).

Here, for the same initial conditions, the particle under no

potential (Va = 0) moves along a latitudinal circle.

Equations (14) for the free motion of a spinning disc on

earth are integrated numerically and the results are shown

in Figure 3. All examples are chosen to have zero initial

translational velocity, which in the particle case will lead to

a stationary state for all time. By comparing all three sets of

initial conditions, we affirm our conclusions in Section II-

B on the validity of the approximate solution. Namely, if

ψ̇ is too small (Figure 3(a)), the “steady drift” velocity is

not as good an average of λ̇ as the case where ψ̇ is larger

(Figure 3(b)). If the motion takes place near the equator

(Figure 3(c)), oscillations in all directions become too large

to be ignored.

B. Implementation of the Optimization Problem

We employ the mid-point approximation to obtain the

discrete quantities in Section III. The cost function is a

measure of total control effort, defined by

J =

∫ tf

t0

(f2
φ + f2

λ)dt, J =

∫ tf

t0

f2
ψdt, (25)

for the particle and the spinning disc, respectively. The left

and right discrete forces are approximated by f−n = f+
n =

4
h
(fn + fn+1) and the discrete Lagrangian is given by

Ld(qn, qn+1) = hL

(

qn + qn+1

2
,
qn+1 − qn

h

)

. (26)

The discrete cost function for the particle is of the form

Jd =

N−1
∑

n=0

h

4

[

(fφ,n + fφ,n+1)
2 + (fλ,n + fλ,n+1)

2
]

, (27)

while that for spinning disc is

Jd =
N−1
∑

n=0

h

4
(fψ,n + fψ,n+1)

2. (28)

Solution procedure is as follow: (i) guess the trajectory

for a small number of discrete steps, often the geodesic

connecting starting and ending positions; (ii) solve the

discrete optimization problem using sequential quadratic

programming (SQP) method to obtain optimized trajectory

and cost, done in Matlab; (iii) use result in (ii) as a reference

in generating initial condition for more discrete steps, repeat

(ii); (iv) compare the results, if the difference is small

enough, numerical solution is obtained, otherwise repeat (iii).

C. Numerical Results of Motion Planning

The results for particle motion under optimal control are

shown in Figure 4. Initial and final velocities are set to be

zero for these simulations. Clearly, the optimal trajectories

depend not only on the initial and final conditions but also

on the time period tf − t0. In Figures 4(a) and 4(c), the

time period is 1 day while the trajectories in 4(b) and 4(d)

correspond to the same initial and final conditions but with

a time period equal to 3 days. In order to arrive at final

positions on time for 4(b) and 4(d), the particle must travel

further, while for 4(a) and 4(c) the trajectories are obviously

shorter. Yet the shorter trajectories come with the price of

larger control efforts, Jd|a = 66.2, Jd|b = 23.4, Jd|c = 54.7
and Jd|d = 14.3, which can be interpreted physically as
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Fig. 5. Optimal control results of the spinning disc on rotating earth. In the first row, we show trajectories in solid line and the equator in dotted line. In the
second row, we present the spinning velocities correspondingly. End time is 3 days for all examples. Initial and final conditions are: (a) (φ0, λ0) = (π/4, 0),

(φ̇0, λ̇0, ψ̇0) = (0, 0, 10Ω), (φf , λf ) = (π/4, 0.1), (φ̇f , λ̇f , ψ̇f ) = (0, 0, 10Ω); (b) (φ0, λ0) = (π/4, 0), (φ̇0, λ̇0, ψ̇0) = (0, 0,Ω), (φf , λf ) =

(π/4, π/3), (φ̇f , λ̇f , ψ̇f ) = (0, 0,Ω); (c) (φ0, λ0) = (π/4, 0), (φ̇0, λ̇0, ψ̇0) = (0, 0, 10Ω), (φf , λf ) = (π/4, π/3), (φ̇f , λ̇f , ψ̇f ) = (0, 0, 10Ω).

follows: although the particle in 4(b) and 4(d) cover more

distance, the fact that it has more time to reach its final

destination means that it can better exploit the rotation of

the earth.

The examples for a spinning disc under optimal control are

shown in Figure 5. The first row illustrates the trajectories

while the second row shows the corresponding spinning

velocities ψ̇. The initial and final conditions are: φ0 = φf =
π/4, λ0 = 0, and λf are chosen to be 0.1, π/3 and π/3
respectively, also φ̇0 = λ̇0 = φ̇f = λ̇f = 0, and ψ̇0 = ψ̇f
are chosen to be 10Ω, Ω and 10Ω respectively. Since the

control torque is only applied in ψ direction, the disc is

under-actuated and motion planning is harder than in the

particle case. Comparing 5(a) with 5(c), one can observe

that the trajectories have very similar behavior in the first

half period. However, in the second half period, in order to

travel further in 5(c), ψ̇ needs to be increased more than that

in 5(a), i.e., the control effort needs to be larger. Meanwhile,

trajectories in 5(b) and 5(c) have similar behavior in the

second half period, yet in the first half, the trajectories are

quite different because of the different initial conditions.

It is important to note that these examples result in net

latitudinal changes. A net longitudinal motion seems not to

be achievable by applying a control torque in ψ only. This

issue will be investigated in future work.

V. SUMMARY

The motion planning for a particle and a spinning disc

on earth was considered using an optimal control approach.

These models are relevant for understanding geophysical

vortex motion as well as for controlling the motion of atmo-

spheric drifters such as high altitude balloons. In this paper,

we employed an existing model of earth as a perfect sphere

with an additional potential, then derived the equations gov-

erning the motion of a particle and a spinning disc moving

on earth using Lagrangian mechanics, and showed solutions

using direct numerical integration. We also examined the

steady drift obtained in [6], and gave conditions for its

validity. Motion planning for the particle and spinning disc

was examined using discrete mechanics and optimal control.

Rigorous proof of controllability of the spinning disc via one

control torque about its spin axis remains an open question

to be addressed in future work. Future directions include

application of the earth model and the control methods used

in this paper to the problem of multiple vortices on a sphere

discussed in [8].
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