About
47
Publications
4,688
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,422
Citations
Introduction
Eunwoo Song currently works at the Clova AI, Naver. Eunwoo does research in statistical speech synthesis.
Additional affiliations
March 2017 - present
September 2010 - February 2019
Publications
Publications (47)
For personalized speech generation, a neural text-to-speech (TTS) model must be successfully implemented with limited data from a target speaker. To this end, the baseline TTS model needs to be amply generalized to out-of-domain data (i.e., target speaker's speech). However, approaches to address this out-of-domain generalization problem in TTS hav...
Several fully end-to-end text-to-speech (TTS) models have been proposed that have shown better performance compared to cascade models (i.e., training acoustic and vocoder models separately). However, they often generate unstable pitch contour with audible artifacts when the dataset contains emotional attributes, i.e., large diversity of pronunciati...
This paper proposes an effective emotional text-to-speech (TTS) system with a pre-trained language model (LM)-based emotion prediction method. Unlike conventional systems that require auxiliary inputs such as manually defined emotion classes, our system directly estimates emotion-related attributes from the input text. Specifically, we utilize gene...
Recent advances in synthetic speech quality have enabled us to train text-to-speech (TTS) systems by using synthetic corpora. However, merely increasing the amount of synthetic data is not always advantageous for improving training efficiency. Our aim in this study is to selectively choose synthetic data that are beneficial to the training process....
Data augmentation via voice conversion (VC) has been successfully applied to low-resource expressive text-to-speech (TTS) when only neutral data for the target speaker are available. Although the quality of VC is crucial for this approach, it is challenging to learn a stable VC model because the amount of data is limited in low-resource scenarios,...
This paper proposes a spectral-domain perceptual weighting technique for Parallel WaveGAN-based text-to-speech (TTS) systems. The recently proposed Parallel WaveGAN vocoder successfully generates waveform sequences using a fast non-autoregressive WaveNet model. By employing multi-resolution short-time Fourier transform (MR-STFT) criteria with a gen...
This paper proposes voicing-aware conditional discriminators for Parallel WaveGAN-based waveform synthesis systems. In this framework, we adopt a projection-based conditioning method that can significantly improve the discriminator's performance. Furthermore, the conventional discriminator is separated into two waveform discriminators for modeling...
In this paper, we propose a text-to-speech (TTS)-driven data augmentation method for improving the quality of a non-autoregressive (AR) TTS system. Recently proposed non-AR models, such as FastSpeech 2, have successfully achieved fast speech synthesis system. However, their quality is not satisfactory, especially when the amount of training data is...
This paper proposes a modeling-by-generation (MbG) excitation vocoder for a neural text-to-speech (TTS) system. Recently proposed neural excitation vocoders can realize qualified waveform generation by combining a vocal tract filter with a WaveNet-based glottal excitation generator. However, when these vocoders are used in a TTS system, the quality...
In this paper, we propose an improved LPCNet vocoder using a linear prediction (LP)-structured mixture density network (MDN).
The recently proposed LPCNet vocoder has successfully achieved high-quality and lightweight speech synthesis systems by combining a vocal tract LP filter with a WaveRNN-based vocal source (i.e., excitation) generator.
Howe...
We propose Parallel WaveGAN, a distillation-free, fast, and small-footprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distributio...
In this paper, we propose a high-quality generative text-to-speech (TTS) system using an effective spectrum and excitation estimation method. Our previous research verified the effectiveness of the ExcitNet-based speech generation model in a parametric TTS framework. However, the challenge remains to build a high-quality speech synthesis system bec...
This paper proposes an effective probability density distillation (PDD) algorithm for WaveNet-based parallel waveform generation (PWG) systems. Recently proposed teacher-student frameworks in the PWG system have successfully achieved a real-time generation of speech signals. However, the difficulties optimizing the PDD criteria without auxiliary lo...
This paper proposes a WaveNet-based neural excitation model (ExcitNet) for statistical parametric speech synthesis systems. Conventional WaveNet-based neural vocoding systems significantly improve the perceptual quality of synthesized speech by statistically generating a time sequence of speech waveforms through an auto-regressive framework. Howeve...
This paper proposes speaker-adaptive neural vocoders for statistical parametric speech synthesis (SPSS) systems. Recently proposed WaveNet-based neural vocoding systems successfully generate a time sequence of speech signal with an autoregressive framework. However, building high-quality speech synthesis systems with limited training data for a tar...
In this paper, we propose a unified training framework for the generation of glottal signals in deep learning (DL)-based parametric speech synthesis systems.
The glottal vocoding-based speech synthesis system, especially the modeling-by-generation (MbG) structure that we proposed recently, significantly improves the naturalness of synthesized spee...
This paper proposes a novel noise compensation algorithm for a glottal excitation model in a deep learning (DL)-based speech synthesis system.
To generate high-quality speech synthesis outputs, the balance between harmonic and noise components of the glottal excitation signal should be well-represented by the DL network.
However, it is hard to acc...
In this article, we report research results on modeling the parameters of an improved time-frequency trajectory excitation (ITFTE) and spectral envelopes of an LPC vocoder with a long short-term memory (LSTM)-based recurrent neural network (RNN) for high-quality text-to-speech (TTS) systems. The ITFTE vocoder has been shown to significantly improve...
This paper proposes a multi-class learning (MCL) algorithm for a deep neural network (DNN)-based statistical parametric speech synthesis (SPSS) system. Although the DNN-based SPSS system improves the modeling accuracy of statistical parameters, its synthesized speech is often muffled because the training process only considers the global characteri...
This paper proposes a deep neural network (DNN)-based statistical parametric speech synthesis system using an improved time-frequency trajectory excitation (ITFTE) model. The ITFTE model, which efficiently reduces the parametric redundancy of a TFTE model, improved the perceptual quality of the vocoding process and the estimation accuracy of the tr...
This paper proposes a constrained two-layer compression technique for electrocardiogram (ECG) waves, of which encoded parameters can be directly used for the diagnosis of arrhythmia. In the first layer, a single ECG beat is represented by one of the registered templates in the codebook. Since the required coding parameter in this layer is only the...
This paper proposes an improved time-frequency trajectory exci-tation (TFTE) modeling method for a statistical parametric speech synthesis system. The proposed approach overcomes the dimensional variation problem of the training process caused by the inherent nature of the pitch-dependent analysis paradigm. By reducing the redundancies of the param...
This paper proposes a speech enhancement algorithm for pathological voices using a time-frequency trajectory excitation (TFTE) modeling. The TFTE model has a capability of delicately controlling the periodic and non-periodic excitation components by taking a single pitch based decomposition process. By investigating the difference of frequency char...