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Two-Step Approach to Partial Factorial Invariance:
Selecting a Reference Variable and Identifying the

Source of Noninvariance

Eunju Jung1 and Myeongsun Yoon2
1Indiana University

2Texas A & M University

To date, no effective empirical method has been available to identify a truly invariant reference
variable (RV) in testing measurement invariance under a multiple-group confirmatory factor
analysis. This study proposes a method that, in selecting an RV, uses the smallest modification
index (min-mod). The method’s performance is evaluated using 2 models: (a) a full invariance
model, and (b) a partial invariance model. Results indicate that for both models the min-mod
successfully identifies a truly invariant RV (Study 1). In Study 2, we use the RV found in Study 1
to further evaluate the performance of item-by-item Wald tests at locating a noninvariant
variable. The results indicate that Wald tests overall performed better with an RV selected in a
partial invariance model than an RV selected in a full invariance model, although in certain
conditions their performances were rather similar. Implications and limitations of the study are
also discussed.

Keywords: modification index, multiple-group confirmatory factor analysis, partial factorial
invariance, reference variable

It is common in educational and psychological research to
compare measured constructs across different groups (e.g.,
different countries, time points, languages, or modes of
test delivery; Cheung & Rensvold, 1999; McArdle, 2009;
Meredith, 1993; Schmitt & Kuljanin, 2008; Steenkamp &
Baumgartner, 1998; Vandenberg & Lance, 2000;Widaman &
Reise, 1997). As a necessary condition for making
cross-group comparisons of observed scores on measured
variables, the establishment of measurement invariance
beforehand has been seriously valued and increasingly tested
over the last two decades (Putnick & Bornstein, 2016;
Schmitt & Kuljanin, 2008; Steenkamp & Baumgartner,
1998; Vandenberg & Lance, 2000).Measurement invariance
is broadly defined as the condition in which measured vari-
ables are related to latent constructs in the same way across
different groups (McArdle, 2009; Meredith, 1993; Millsap,
2012; Vandenberg & Lance, 2000). The group difference in

observed scores can be interpreted as originating from the
group difference in latent constructs on established measure-
ment invariance (Meredith, 1993; Millsap, 2012; Millsap &
Olivera-Aguilar, 2012; Widaman & Reise, 1997, p. 282). On
the other hand, the group difference in observed scores might
be compromised by measurement bias unless measurement
invariance has been established between the groups (Horn &
McArdle, 1992; Meredith, 1993; Millsap, 2012; Millsap &
Olivera-Aguilar, 2012). If it is not so established, making
cross-group comparisons based on observed scores is dis-
couraged because the measurement at hand would operate
differentially across the groups.

Under a structural equation modeling (SEM) framework, a
multiple-group confirmatory factor analysis (MCFA) is one of
the most popular methods for testing measurement invariance
(Cheung & Rensvold, 1999; McArdle, 2009; Meredith, 1993;
Schmitt & Kuljanin, 2008; Steenkamp & Baumgartner, 1998;
Vandenberg & Lance, 2000;Widaman& Reise, 1997; Yoon &
Millsap, 2007).Measurement invariance under a CFAmodel is
called factorial invariance (Jung & Yoon, 2016; Yoon &
Millsap, 2007). Using an MCFA model, we can flexibly test
the equality of factor model parameters (factor loadings,
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intercepts, and unique variances; Jung & Yoon, 2016; Schmitt
& Kuljanin, 2008; Steenkamp & Baumgartner, 1998;
Vandenberg & Lance, 2000). The observed multiple indicators
are linearly related to latent constructs with the factor model
parameters mentioned previously. If we have k observed
indicators and l latent constructs (k > l), an MCFA model can
be expressed as follows:

Xm ¼ τm þ m�m þ δm (1)

In Equation 1, X represents a vector of k × 1 observed
indicator variables; ξ represents a vector of l × 1 latent
variables; Λ denotes a k × l matrix of factor loadings, which
are regression weights relating observed variables to latent
variables; τ stands for a k × 1 vector of intercepts, which are
the observed scores of the point where the latent score is zero;
and δ indicates a k × 1 vector of unique factor scores, which
are analogous to the errors in a regression model. However,
the unique factor score of a variable includes both random
error and the unique contribution of the variable. The sub-
script m denotes an indicator for group membership, which
allows factor model parameters (Λ, τ, and δ) to take different
values in different groups. Using Equation 1, we can test the
invariance of all factor model parameters: factor loadings
(Λm), intercepts (τm), and unique variances (θm)—variances
of unique factor scores, δm. As Widaman and Reise (1997)
outlined, factorial invariance tests are typically conducted in
a sequential manner via four steps: (a) configural invariance
(equal pattern of zero and nonzero factor loadings; Horn &
McArdle, 1992), (b) metric invariance (equal factor loadings;
Horn & McArdle, 1992), (c) scalar invariance (equal factor
loadings and intercepts; Meredith, 1993; Steenkamp &
Baumgartner, 1998), and (d) strict invariance (equal factor
loadings, intercepts, and unique variances; Widaman &
Reise, 1997). When strict invariance is established, any
observed group difference in means and variances would be
due to group differences in factor means and variances. Yet
achieving strict invariance is unnecessary when the major
focus is to compare the mean structures across groups
(Meredith, 1993; Steenkamp & Baumgartner, 1998;
Widaman & Reise, 1997). The following equation expresses
the mean structure of Equation 1:

EðXmÞ ¼ τm þ mκm (2)

Here, E(Xm) denotes a mean vector of group m’s observed
indicator variables, and κm denotes a mean vector of group
m’s latent factor scores. In Equation 2, the mean vector of
δm is not shown because the mean of δm is expected to
eventually be zero. Equation 2 implies that cross-group
mean comparison is legitimate when scalar invariance
(Λm = Λm’ and τm = τm’) is established (Meredith, 1993;
Widaman & Reise, 1997).

In addition to its flexibility in factorial invariance tests,
MCFA lets us compare latent means between groups more

realistically than traditional, observed score methods
(Byrne, Shavelson, & Muthén, 1989; Schmitt & Kuljanin,
2008; Steenkamp & Baumgartner, 1998; Whittaker, 2013).
Those methods assume no measurement errors across multi-
ple indicators, whereas MCFA allows modeling measure-
ment errors in the estimation of cross-group latent means
(Whittaker, 2013). Moreover, MCFA can further relax the
assumption of scalar invariance—a necessary condition for
comparing cross-group observed means. In other words, we
can compare the latent means of different groups in a partial
factorial invariance model in which the invariant constraints
of some factor loadings and intercepts are relaxed (Byrne,
Shavelson, & Muthén, 1989; Jung & Yoon, 2016; Schmitt
& Kuljanin, 2008; Steenkamp & Baumgartner, 1998;
Whittaker, 2013).

When a partial factorial invariance (PFI) model is pur-
sued, one should be careful in choosing a reference variable
(RV), which has been dominantly used to identify the
unknown scale of the latent variable of interest (French &
Finch, 2008; Johnson, Meade, & DuVernet, 2009; Whittaker
& Kojasteh, 2013; Yoon & Millsap, 2007). In an RV
method, the variance–covariance structure of the latent vari-
able is typically identified by fixing the factor loading of a
selected RV at one (Whittacker & Kojasteh, 2013; Yoon &
Millsap, 2007). Similarly, its mean structure is usually iden-
tified by constraining the intercept of a chosen RV to zero
(Whittacker & Kojasteh, 2013). As such, the parameters of
the chosen RV are assumed to be equal when we are testing
factorial invariance under an MCFA model. However, the
results of factorial invariance testing might be falsified if the
chosen RV is not invariant across groups. Yoon and Millsap
(2007) mathematically illustrated how a truly invariant vari-
able can appear to be noninvariant, and vice versa, when
one is using a noninvariant variable as an RV. In addition,
Johnson et al. (2009) conducted a simulation study in which
the role of an RV was investigated for factorial invariance
testing. They found that a noninvariant RV affected the
results of item-level factorial invariance tests by inflating
Type I error rates, whereas scale-level factorial invariance
tests were robust to the selection of a noninvariant RV.
Nevertheless, the problem of choosing a truly invariant RV
has seldom been acknowledged in the applied factorial
invariance literature. For example, Johnson et al. (2009)
reviewed studies testing partial factorial invariance from
2005 and 2007, and they found that only 4.6% of the
factorial invariance studies (N = 153) heeded the problem
of noninvariant RVs. Such a low rate is unsurprising in light
of the scarcity of effective empirical methods for differen-
tiating between invariant and noninvariant variables. It has
been pointed out that no empirical method is currently
available to accurately identify an invariant RV (Raykov,
Marcoulides, & Li, 2012). Although theories can guide
applied researchers in selecting an appropriate RV, such
theories are no guarantee either (Millsap & Olivera-
Aguilar, 2012).
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Methods for Partial Factorial Invariance Without
Choosing a Reference Variable

In the factorial invariance literature, there are noteworthy
studies that have addressed RV selection problems in testing
factorial invariance. First, Rensvold and Cheung (1998)
proposed the factor-ratio test for detecting the violation of
the factorial invariance without choosing an RV. In the
factor-ratio test, every variable serves as an RV while all
the remaining variables are being tested. Suppose that there
are five variables: X1, X2, X3, X4, and X5. When X1 is
selected as an RV, then X2, X3, X4, and X5 are tested for
invariance. The major statistical procedure is to compare an
unconstrained model (i.e., configural invariance model iden-
tified with X1) with a constrained one (i.e., model with one
more equality constraint for each of the remaining variables
in addition to the configural invariance model) using the
difference in the chi-square fit statistics (Δχ2) with 1 df. A
well-known drawback of the factor-ratio test is that the
procedure becomes cumbersome with more indicators
because it needs {k × (k – 1)}/2 tests for the cases with k
indicators (Cheung & Lau, 2011; French & Finch, 2008;
Jung & Yoon, 2016; Whittaker & Khojasteh, 2013; Yoon &
Millsap, 2007). Detailed procedures on how to conduct the
factor-ratio test can be found in several studies (Cheung &
Lau, 2011; Cheung & Rensvold, 1999; Rensvold & Cheung,
1998). After a decade from its proposal, French and Finch
(2008) evaluated the performance of the factor-ratio test
under various simulation conditions. They reported that the
factor-ratio test performed adequately, with high power and
low false positive rates.

Second, Yoon and Millsap (2007) suggested using the
largest modification index sequentially (sequential max-
mod) to isolate the source of noninvariance. Under various
simulated conditions, they systematically evaluated the per-
formance of the sequential use of the largest modification
index. Yoon and Millsap used a fully constrained metric
invariance model. The model’s variance–covariance struc-
ture was identified by fixing the variance of the first group
to 1 while freely estimating the variance of the second group
with one set of equally constrained factor loadings of the
corresponding items between groups. Instead of looking at
all retrieved modification indexes, Yoon and Millsap
focused on the modification indexes related to the equally
constrained factor loadings. They sequentially relaxed the
equality constraint of the factor loadings indicated by the
largest modification index until there was no modification
index greater than the cutoff value (3.84). The results
showed that sequential max-mod worked promisingly
under ideal conditions (data with low contaminations,
large differences in noninvariance variables, and large
samples). However, the modification index is known for
its inflated false positive rates with large sample sizes and
misspecification in the model (Whittaker, 2012; Yoon &
Millsap, 2007).

Finally, Raykov, Marcoulides, and Millsap (2013)
demonstrated how to use a multiple testing method for
factorial invariance. Their method compares two models
using the difference in chi-square fit statistics. The baseline
model is a fully constrained invariance model in which, for
example, every factor-loading pair of like items has an
invariant constraint across groups. In the tested model, one
pair of factor loadings is relaxed from the fully constrained
model. To test all variables in the model, the number of tests
needed corresponds to the number of variables. Due to the
nature of the multiple testing methods, an inflated false
positive is likely to happen. Raykov et al. (2013) adjusted
the significance value using the Benjamini–Hochberg multi-
ple testing procedures and demonstrated how to employ that
method to test factor loading invariance. However, their
study is based on only one simulated data set, and the
performance of their proposed method is yet to be evaluated
systematically under various data conditions.

Simulation Studies Directly Comparing the Methods
for Partial Invariance

Whittaker and Khojasteh (2013) directly compared the methods
suggested by Cheung and Rensvold (1999) and Yoon and
Millsap (2007) under various partial metric invariance condi-
tions. They varied the study conditions by manipulating the
number of indicator variables, sample sizes, magnitude of factor
loading differences, frequency of noninvariant indicator vari-
ables, and pattern of factor loading differences. The outcome
variables of the studies were true positive rates and true negative
rates in identifying truly invariant and noninvariant indicators.
They noted that each of the methods performed more ideally
under certain circumstances and had a different pattern of
accuracy. To briefly summarize their findings, the sequential
max-mod method had lower false negative rates but higher
false positive rates than the factor-ratio test.

Most recently, Jung and Yoon (2016) proposed a forward
method using confidence intervals (forward CI method) to
address the problems of the other methods (i.e., inflated
false positive rate of the sequential use of max-mod and
labor-intensive procedure of the factor-ratio test). By the
nature of its procedure, it is less susceptible to inflating
false positive rates because it compares the model with no
invariant constraint with the model with one invariant con-
straint (Jung & Yoon, 2016). In addition, the multiple model
comparisons were simplified using the CIs of newly con-
structed variables, which are the difference of the tested
parameters for invariance between groups. Their study
directly compared the performances of the sequential use
of max-mod, the factor-ratio test, and the forward CI
method. Jung and Yoon added more layers to the previous
studies by including partial scalar invariance conditions, by
simplifying the procedure of the factor-ratio test using the
bias-corrected bootstrapping CIs, and by adding a more
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conservative cutoff value for the sequential use of max-mod.
In addition, they reported model-level false positive and
false negative rates, supplying more rigorous standards
with which to investigate the relative efficacy of the com-
pared methods. The performance of the three methods was
compared under various conditions with different locations
of noninvariance (factor loading or scalar), varying degrees
and pattern of noninvariance, and sample sizes. The results
demonstrated that the forward CI method generally outper-
formed the sequential max-mod and the factor-ratio test in
terms of perfect recovery rates—without both false positives
and false negatives. The sequential max-mod performed
comparably with the forward method when using conserva-
tive criterion (modification index value = 6.645) rather
than the typically used criterion (modification index
value = 3.841). Using the model-level false negative rates,
Jung and Yoon’s study was able to catch extremely high
false negative rates of the factor-ratio test under the condi-
tions of two noninvariant variables with the same degree of
difference in the same direction—rates that previous studies
had been unable to detect (French & Finch, 2008; Whittaker
& Khojasteh, 2013); these studies had reported only item-
level false positive and false negative rates. Although the
forward method has shown promise, it requires a prespeci-
fied RV, which should be truly invariant across groups. As
noted earlier, though, there has been little guidance on how
to choose a truly invariant RV empirically.

Proposed Method to Identify a Truly Invariant
Reference Variable

The value of a modification index indicates the approximate
decrement in the chi-square statistics (with 1 df) when the
indicated constrained parameter is released (Jöreskog &
Sörbom, 1993; Muthén & Muthén, 1998–2012). In factorial
invariance studies, the modification index has been used to
detect noninvariant variables. Based on the prespecified cri-
terion (e.g., 3.84), a variable with a modification index
exceeding the criterion was treated as a noninvariant variable,
and one with a modification index below the criterion was
treated as invariant (Jung & Yoon, 2016; Whittaker &
Khojasteh, 2013; Yoon & Millsap, 2007). We hypothesized
that the smallest modification index (min-mod) would indi-
cate the smallest difference in the set of constrained para-
meters for invariance testing, using the idea of the “all others
as anchors” (AOAA) method in the item-response theory
literature (Meade & Wright, 2012; Woods, 2009). In
AOAA, every variable is tested for invariance by comparing
two models—one with fully constrained invariance para-
meters and the other with a single freely estimated parameter
and all others fixed as invariant. The model fits of every pair
of the fully constrained invariance model and of the less
constrained model are compared using likelihood ratio tests;
the necessary number of likelihood ratio tests is equal to the
number of variables. If the result of a likelihood ratio test is

not statistically significant, the tested variable is considered to
be invariant. Compared to AOAA, which requires multiple
likelihood ratio tests, using min-mod is a much simpler
procedure because we need only one data analysis phase for
testing a fully constrained invariance model while retrieving
all modification indexes of the parameters tested for invar-
iance. However, the value of the modification index in the
misspecified model is expected to be less trustworthy than
that in the model without misspecification (Whittaker, 2012).
Therefore, we chose two baseline models for the purpose of
comparison. In one, all the invariance parameters of interest
(factor loadings or intercepts) are equally constrained in all
groups. Hereafter, this model is referred to as the full invar-
iance model. The other has no significant modification index
(3.84) and is produced by sequentially relaxing the invariant
constraint with the max-mod from the fully constrained invar-
iance model. Hereafter, this second model is referred to as the
partial invariance model. A full invariance model was simpler
to use because it required only one data analysis. A partial
invariance model was deemed to be less susceptible to the
problems arising from misspecification in the model,
however.

Study Aim

The primary aim of the study is to propose an empirical
method to identify a truly invariant RV using the smallest
modification index (min-mod) and to evaluate the accuracy
of this method under various partial factorial invariance
conditions. It is also important to correctly locate the source
of noninvariance using the chosen RV. Thus, we extend the
study to evaluate the performance of item-by-item Wald
tests using the empirically chosen RV to detect the violation
of factorial invariance in terms of perfect recovery rates,
power, and false positive rates.

METHOD

We conducted Monte Carlo simulation studies to gauge how
accurately the smallest modification index identified a truly
invariant RV (Study 1) and to examine the performance of
item-by-item Wald tests (Study 2). We generated various
partial metric and scalar invariance data conditions using
Mplus 7.0 (Muthen & Muthen, 1998–2012). The detailed
generated data conditions are presented next.

Simulated Data Conditions

To balance simplicity with comprehensiveness, some data
conditions were fixed and others of more interest were
manipulated. We considered only two groups, fixing the
number of factors to one and the number of variables to
six under all data conditions. In addition, we allowed only
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two variables to be noninvariant under all data conditions.
To obtain stable results, we also set the number of replica-
tions to 1,000 under all conditions. For the data generation,
we selected three conditions to vary: (a) location of non-
invariance, (b) size and pattern of noninvariance, and (c)
sample size. Table 1 summarizes the data conditions with
respect to the manipulated factors.

Location of noninvariance

An RV should be selected for either factor loadings or
intercepts in testing scalar invariance. Although scalar invar-
iance is a necessary condition for testing cross-group latent
mean comparisons, studies that investigate methods of testing
factorial invariance have more often selected noninvariance
in factor loading (French & Finch, 2008; Johnson et al., 2009;
Whittaker & Khojasteh, 2013; Yoon &Millsap, 2007). In this
study, we imposed noninvariance on both factor loadings and
intercepts to evaluate the performance of the min-mod at
identifying a truly invariant RV for metric invariance and
scalar invariance tests. To simplify the analysis, however,
we did not consider conditions under which noninvariance
was manipulated for both factor loadings and intercepts.

Size and pattern of noninvariance

To examine the performance of the min-mod comprehen-
sively, we generated four levels of the size and pattern of
noninvariance. Depending on the magnitude and direction
of the differences, these were (a) small-magnitude, (b) large-
magnitude, (c) mixed-magnitude, and (d) mixed-direction

conditions. The terms small magnitude and large magnitude
do not imply any absolute magnitude values; we used the
terms simply to examine the relative effects of different
magnitudes of noninvariance in our study conditions.

Under all partial factor loading invariance conditions, the
second and third factor loadings (λ2 and λ3) were manipu-
lated to be noninvariant. Also serving as noninvariant para-
meters, under all partial intercept invariant conditions, were
the second and third intercepts (τ2 and τ 3). Under the small-
magnitude condition, the difference between the manipu-
lated parameters in the two groups was set to .2 (λm2 –
λm’2 = λm3 – λm’3 = .2; τm2 – τm’2 = τm3 – τm’3 = .2). Under
the large-magnitude condition, the difference between the
manipulated parameters was .4 (λm2 – λm’2 = λm3 – λm’3 = .4;
τm2 – τm’2 = τm3 – τm’3 = .4). Under the mixed-magnitude
condition, two noninvariant parameters had varying degrees
of difference between the groups (λm2 – λm’2 = .3, λm3 –
λm’3 = .5; τm2 – τm’2 = .3, τm3 – τm’3 = .5). Under the mixed-
direction condition, two noninvariant parameters had the
same magnitude of difference in opposite directions (λm2 –
λm’2 = .3; λm3 – λm’3 = –.3; τm2 – τm’2 = .3, τm3 – τm’3 = –.3).

Sample size

Whereas the ratio of sample sizes among the groups was
held constant for simplicity, we manipulated the total sample
sizes into four levels: Ntotal = 200, 400, 1,000, and 2,000. The
resulting sample size per group was N = 100, 200, 500, or
1,000. This was done to include a wide range of sample sizes
in real research settings.

TABLE 1
Simulation Conditions

Group 2

Group 1 Small Magnitude Large Magnitude Mixed Magnitude

Factor loading
λx1 0.90 0.90 0.90 0.90 0.90
λx2 0.70 0.50 0.30 0.40 0.40
λx3 0.60 0.40 0.20 0.10 0.90
λx4 0.80 0.80 0.80 0.80 0.80
λx5 0.70 0.70 0.70 0.70 0.70
λx6 0.60 0.60 0.60 0.60 0.60

Intercept
τx1 −0.15 −0.15 −0.15 −0.15 −0.15
τx2 0.25 0.05 −0.15 −0.05 −0.05
τx3 0.15 −0.05 −0.25 −0.35 0.45
τx4 −0.25 −0.25 −0.25 −0.25 −0.25
τx5 −0.10 −0.10 −0.10 −0.10 −0.10
τx6 0.10 0.10 0.10 0.10 0.10

Unique variances
εx1—εx6 0.30 0.30

Factor variance
φ 1.00 1.30

Factor mean
κ 0.00 0.30

Note. All conditions presented in the table have four levels of sample size (N = 100, 200, 500, and 1,000 per group).
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Analytic Procedure

Study 1: Selecting a reference variable using the
smallest modification index

In Study 1, we evaluated the accuracy of min-mod in
identifying a truly invariant RV. As references to the min-
mod, we selected the following two models: (a) a full
invariance model, and (b) a partial invariance model. An
RV for factor loadings was selected only in the conditions
that imposed noninvariance on factor loadings. To select an
RV for intercepts, we used the data conditions under which
only intercepts were manipulated for noninvariance.

As an outcome, we examined the rate of accuracy in
choosing a truly invariant variable as an RV. When the
chosen factor loading or intercept belonged to the truly
invariant parameter group, it was coded as accurate. When
it did not, it was coded as inaccurate. The mean accuracy
was calculated across 1,000 replications for each condition,
by sample size and with respect to the location of noninvar-
iance, as follows:

Mean accuracy ¼ Accurate cases

Total cases ð¼ 1000Þ

We also examined the congruency level of the chosen RV
using the min-mod under each model. We calculated the
level by dividing the number of cases in which the chosen
RVs were the same by the number of replications
(N = 1,000), as follows:

Congruency level ¼
Cases in which the same variable

was chosen as an RV
Total cases ð¼ 1000Þ

Study 2: Locating noninvariant variables

The fundamental reason for choosing an invariant RV is
to correctly differentiate noninvariant variables from invar-
iant variables when full factorial invariance is rejected. As a
subsequent procedure, to locate the source of noninvariance,
we conducted item-by-item Wald tests. The baseline model
for the Wald test was a configural invariance model that had
one equality constraint for identification across groups using
the chosen RV. The compared model had one more equality
constraint across groups for testing invariance. Because we
conducted multiple Wald tests, to test every variable except
the chosen RV, we used the critical value adjusted by the
Bonferroni correction. The resulting critical value was
α = 0.01 because we divided α = 0.05 by five, which is
the number of variables we tested. We simplified the process
of carrying out multiple Wald tests by using the “Model
Test” command (see Appendix A).

For outcome variables, we calculated perfect recovery
rates, power, and false positive rates in the final specified
model. Perfect recovery is a case in which truly invariant

variables are not detected as noninvariant and truly noninvar-
iant variables are detected as such. In other words, a perfectly
recovered model includes neither false positives nor false
negatives. We calculated the perfect recovery rate by dividing
the number of perfectly recovered cases by 1,000 (the number
of replications). To isolate the source of imperfect recovery,
we also calculated power and false positive rates through
1,000 replications under each condition.

RESULTS

Study 1: Selecting an Invariant Reference Variable
Using the Min-Mod

To identify an invariant RV, we used the min-mod in two
models: (a) a full invariance model, in which every invar-
iance parameter was equally constrained in all groups, and
(b) a partial invariance model without any significant mod-
ification index (> 3.84). We refer to the selected RV in a full
invariance model as an RVF and the selected RV in a partial
invariance model as an RVP. Table 2 shows the accuracy of
the min-mod according to the location of noninvariance,
size and pattern of noninvariance, and sample size.
Overall, its accuracy was nearly perfect regardless of the
model except for some conditions with N = 100. The aver-
age accuracy of RVF in identifying a truly invariant factor
loading was 0.998 (SD = 0.009) and that of RVP was 0.994
(SD = 0.016). Except for some conditions with small sam-
ples combined with small magnitude of differences, both
methods perfectly or almost perfectly identified a truly
invariant factor loading as an RV. Both methods had the
lowest accuracy in the small-magnitude condition with
N = 100. However, the error rate was still very low for
both methods (RVF = 3.5%, RVP = 6.1%). In identifying a
truly invariant intercept as an RV, the average accuracy of
RVF was 0.995 (SD = 0.014) and that of RVP was 0.994
(SD = 0.016). In comparison to the baseline accuracy rate of
guessing (0.667, given two noninvariant variables among
the six variables), the accuracies of the RVF and RVP were
very high. We could observe a similar pattern of accuracy in
identifying an RV for factor loading. Both methods showed
the lowest accuracy in the small-magnitude condition with
N = 100 while maintaining perfect or almost perfect accu-
racy in most conditions. The maximum error rates were
5.5% and 7.1% for RVF and RVP.

We were also interested in whether the selected RV in
either model was congruent. Table 2 shows the congruency
levels of the RVF and RVP. The average congruency in
selecting an RV for factor loadings was 0.192 (SD = 0.115),
and for intercepts 0.251 (SD = 0.187). Interestingly, the
congruency was higher under the mixed-direction condition
than under the others. In the mixed-direction condition, the
average congruency for factor loading was 0.346
(SD = 0.104), and for intercepts 0.547 (SD = 0.042).
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Figure 1 shows how each model selected an RV. The min-
mod using a full invariance model tended to select more
variables with lower factor loadings for both factor loading
and intercept conditions than the variables with higher factor
loadings, except under the mixed-direction conditions. This
tendency was stronger with larger samples. However, the
min-mod using a partial invariance model tended to select
every invariant variable as an RV proportionately.

Study 2: Locating Noninvariant Variables Using Wald
Test

Although the min-mod performed adequately in selecting a
truly invariant RV, our ultimate objective in testing factorial
invariance was to locate the source of noninvariance. In

Study 2, we tested every variable for invariance through a
Wald test with one of the selected RVs and the min-mod
found on the different models. We examined the perfect
recovery rate of each approach to see how each method
perfectly recovered the original data conditions. We also
examined the power and false positive rates of each
approach. Figure 2 also demonstrates perfect recovery
rates, power, and false positive rates Wald test with an
RVF (Wald-RVF) and with an RVP (Wald-RVP).

Perfect recovery rates

Table 3 presents the perfect recovery rates of Wald-RVF
and Wald-RVP, by the location of noninvariance, size and
pattern of noninvariance, and sample size. When the non-
invariance variables were located in factor loadings, the
average perfect recovery rates of Wald-RVF and Wald-
RVP were 0.779 (SD = 0.295) and 0.841 (SD = 0.266).
When the noninvariant variables existed in intercepts, the
mean perfect recovery rates of Wald-RVF and Wald-RVP
were 0.719 (SD = 0.325) and 0.817 (SD = 0.273), respec-
tively. Wald-RVP had a higher perfect recovery rate than
Wald-RVF in most conditions. Both methods generally
showed the lowest perfect recovery rates across all condi-
tions with N = 100.

Power

Table 4 shows the power of each method to detect non-
invariant variables according to the location of noninvar-
iance, size and pattern of noninvariance, and sample size.
For factor-loading noninvariance, the mean powers of Wald-
RVF and Wald-RVP were 0.805 (SD = 0.308) and 0.852
(SD = 0.269), respectively. For intercept noninvariance, the
mean powers of Wald-RVF and Wald-RVP were 0.736
(SD = 0.342) and 0.828 (SD = 0.277). Overall, the Wald-
RVF had the lower average power. This was due mainly to
lower powers in the conditions with small magnitudes of
difference and smaller sample sizes than the Wald-RVP.

False positives

Table 5 gives the false positive rates of Wald-RVF and
Wald-RVP. When noninvariance was manipulated for factor
loadings, the average false positive rates of Wald-RVF and
Wald-RVP were 0.030 (SD = 0.022) and 0.015 (SD = 0.006),
respectively. When noninvariance was imposed in intercepts,
the mean false positive rates of Wald-RVP were 0.034
(SD = 0.023) and 0.019 (SD = 0.011). Wald-RVP had lower
false positive rates than Wald-RVF under most conditions
other than the mixed-direction one. Although Wald-RVP had
false positive rates below the nominal level (α = 0.05) under
all conditions, Wald-RVF also showed promising false posi-
tive rates. Although its false positive rates were greater than
the nominal levels in some conditions, they were very close
to those levels.

TABLE 2
Accuracy of Selecting a Truly Invariant Reference Variable

Accuracy

Sample Size RVF RVP Congruency

Factor loading
Small magnitude 100 0.965 0.939 0.336

200 0.999 0.992 0.123
500 1.000 1.000 0.069

1,000 1.000 1.000 0.117
Large magnitude 100 1.000 1.000 0.125

200 1.000 1.000 0.094
500 1.000 1.000 0.134

1,000 1.000 1.000 0.171
Mixed magnitude 100 0.999 0.999 0.132

200 1.000 1.000 0.082
500 1.000 1.000 0.137

1,000 1.000 1.000 0.176
Mixed direction 100 1.000 0.980 0.441

200 1.000 1.000 0.443
500 1.000 1.000 0.328

1,000 1.000 1.000 0.208
Intercept
Small magnitude 100 0.945 0.929 0.300

200 0.996 0.991 0.097
500 1.000 0.998 0.092

1,000 1.000 1.000 0.147
Large magnitude 100 0.999 0.996 0.059

200 1.000 0.999 0.119
500 1.000 1.000 0.167

1,000 1.000 1.000 0.232
Mixed magnitude 100 0.988 0.999 0.083

200 0.999 1.000 0.140
500 1.000 1.000 0.175

1,000 1.000 1.000 0.220
Mixed direction 100 1.000 0.992 0.483

200 1.000 1.000 0.567
500 1.000 1.000 0.564

1,000 1.000 1.000 0.572

Note. N = sample size per group; RVF = reference variable selected
under the full invariance model; RVP = reference variable selected under
the partial invariance model. The baseline accuracy rate by guessing is
0.667 given four invariant factor loadings among the six variables.
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DISCUSSION

The establishment of measurement invariance has been
widely practiced among educational and psychological
researchers (Sass, 2011). In particular, full scalar invariance
has been generally accepted as a prerequisite for cross-group
mean comparisons (Steenkamp & Baumgartner, 1998;
Vandenberg & Lance, 2000). When the measurement at
hand does not hold scalar invariance for all items, it might
be a more feasible decision for applied researchers to use the
imperfect measurement than to throw away the whole test.
There are two options: (a) comparing latent means made by
only the subset of the items that were found to be invariant,
and (b) comparing latent means made by all items in an
MCFA model in which the invariant constraint of the iden-
tified noninvariant items is relaxed. Whichever option is
chosen, accurate detection of invariant and noninvariant
items is of substantial importance. As Johnson et al.
(2009) demonstrated, a truly invariant RV plays a crucial
role in doing this. The majority of applied researchers,
however, have conducted factorial invariance with little
caution about how to choose a truly invariant RV (Johnson
et al., 2009). In addition, no empirical method is yet avail-
able for accurately selecting a truly invariant RV (Raykov
et al., 2012). The results suggest that this study adequately
fills the gap in the factorial invariance literature.

In this study, we proposed a two-step approach for test-
ing factorial invariance. In Study 1, we examined the

performance of the smallest modification index (min-mod)
in identifying a truly invariant RV. The min-mod was exam-
ined using two models: a full invariance model and a partial
invariance model. The results indicated that the min-mod
shows promise for selecting a truly invariant RV. Generally,
it successfully selected a truly invariant RV using both
models. Only very low error rates were found under some
conditions with small sample sizes (N = 100 and 200) in
combination with small differences. One interesting finding
was that the congruency level of selected RVs from the two
models was quite low, except under the mixed-direction
conditions. That is, the min-mod tended to select a different
RV depending on the degree of misspecification in a given
model. As shown in Figure 1, the min-mod using a full
invariance model was more likely to choose the variable
with the smallest factor loading (X6) than the variable with
the largest factor loading (X1), whereas the min-mod using
a partial invariance model tended to choose every invariant
variable more evenly than its counterpart. One possible
explanation for this is that the size of the factor loading is
more likely to contribute to the size of the corresponding
modification index when a certain degree of misspecifica-
tion exists (as in a full invariance model) than when mis-
specification is rare (as in a partial invariance model).

In Study 2, we explored the performance of item-level
Wald tests in detecting noninvariant variables using the RV
selected in the first step. As shown in Figure 1, the Wald
tests using a selected RV in a partial invariance model
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(Wald-RVP) generally showed higher perfect recovery rates
than the Wald tests using an RV selected in a full invariance
model (Wald-RVF). Both methods seem to work inade-
quately for most of the conditions with N = 100. Although
the differences in the perfect recovery rates between Wald-
RVF and Wald-RVP appeared not to be very prominent, the
two methods yielded quite different perfect recovery rates
under some conditions, with small samples combined with
small differences. In the partial metric invariance conditions,
the largest differences were found in the small-magnitude
condition with N = 200 where Wald-RVP had 24% higher
perfect recovery rates than Wald-RVF. In the partial scalar
invariance conditions, the greatest difference was found in
the mixed-magnitude condition with N = 100 in which the
perfect recovery rate of Wald-RVP was 35% higher than that
of Wald-RVP. Under those conditions, the major sources of
differences in the perfect recovery rates were false negative
rates. That is, the Wald-RVF had higher false negative rates
than did the Wald-RVP, a fact that is associated with the size

of the factor loading of the selected RV. As noted earlier, the
chosen RV was more likely to be the variable with the
smallest factor loading when a full invariance model rather
than a partial invariance model was used. As far as the
association between the selected RV and the false negative
rates is concerned, we found that the false negative rates
were higher in general when the chosen RV had a smaller
factor loading.

To examine the source of differences in the false negative
rates between the Wald-RVF and the Wald-RVP, we con-
ducted a post hoc analysis in which we closely analyzed the
pattern of false negative rates under only some conditions
with substantial differences in false negative rates (e.g.,
small-magnitude factor loading conditions with N = 200
and N = 500, and small-magnitude intercept conditions
with N = 200 and N = 500). However, we excluded the
conditions of N = 100 because it is believed that N = 200 is
the minimum sample size necessary to achieve adequate
power (as discussed in previous studies; e.g., Kim &
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Yoon, 2011; MacCallum, Widaman, Zhang, & Hong, 1999;
Meade & Bauer, 2007; Meade, Johnson, & Braddy, 2008).
We also focused on the conditions under which the chosen
RVs were not congruent and the results of the Wald-RVF
and Wald-RVP differed in false negative rates. For example,
each method chose different variables as RVs in 87.7% of
the small-magnitude factor loading conditions with N = 200
and the small-magnitude intercept conditions with N = 200.
Under those conditions, the Wald tests yielded different
results in 254 and 315 cases, respectively. Specifically, the
Wald-RVF could not detect noninvariant variables, but the
Wald-RVP detected them in the majority of cases (246 of
254 cases in the small-magnitude factor loading condition
with N = 200; 312 of 315 cases in the small-magnitude
intercept conditions with N = 200). In sum, the Wald-RVF
was prone to having an RV with a smaller factor loading,
which in turn might lead to higher false negative rates than
the Wald-RVP.

As another post hoc investigation, we explored the effect of
the number of RVs for the condition with the smallest perfect
recovery rates (mainly due to the low power). We conducted
Wald tests using two RVs (those with the smallest and second-
smallest measurement invariances), which were selected in a
partial invariance model. In the small-magnitude partial metric
invariance condition withN = 200, the perfect recovery rate was
0.665 (only a 4.6% increase over the Wald test with one RV).
Although the false negative rates decreased approximately
20.5%, the false positive rates increased 17.6%. In the small-
magnitude partial scalar invariance condition with N = 200, the
perfect recovery rate was 0.591 (only a 0.2% increase over the
Wald test with one RV). Although the false negative rates
decreased approximately 2.2%, the false positive rates increased
2.1%. Therefore, it is not worth using more than one RV to test
partial factorial invariance. Our findings indicate that, for higher
power, the magnitude of the factor loading of the selected RV is
more important than the number of RVs.

TABLE 3
Perfect Recovery Rates

Sample Size Wald-RVF Wald-RVP

Factor loading
Small magnitude 100 0.116 0.237

200 0.379 0.619
500 0.864 0.966

1,000 0.945 0.984
Large magnitude 100 0.894 0.919

200 0.953 0.984
500 0.944 0.985

1,000 0.953 0.991
Mixed magnitude 100 0.676 0.792

200 0.864 0.958
500 0.941 0.985

1,000 0.95 0.992
Mixed direction 100 0.192 0.238

200 0.906 0.894
500 0.991 0.986

1,000 0.994 0.991
Intercept
Small magnitude 100 0.014 0.107

200 0.282 0.591
500 0.749 0.938

1,000 0.947 0.986
Large magnitude 100 0.527 0.843

200 0.934 0.990
500 0.961 0.985

1,000 0.941 0.98
Mixed magnitude 100 0.257 0.603

200 0.718 0.907
500 0.954 0.988

1,000 0.948 0.986
Mixed direction 100 0.355 0.307

200 0.932 0.891
500 0.995 0.988

1,000 0.997 0.989

Note. Wald-RVF = Wald test using a reference variable selected in a
fully constrained invariance model; Wald-RVP = Wald test using a refer-
ence variable selected in a partially constrained invariance model.

TABLE 4
Power to Detect Noninvariant Variables

Sample Size Wald-RVF Wald-RVP

Factor loading
Small magnitude 100 0.047 0.144

200 0.390 0.628
500 0.892 0.980

1,000 1.000 1.000
Large magnitude 100 0.906 0.958

200 1.000 1.000
500 1.000 1.000

1,000 1.000 1.000
Mixed magnitude 100 0.561 0.752

200 0.898 0.968
500 1.000 1.000

1,000 1.000 1.000
Mixed direction 100 0.277 0.301

200 0.906 0.901
500 1.000 0.999

1,000 1.000 1.000
Intercept
Small magnitude 100 0.014 0.107

200 0.290 0.599
500 0.760 0.946

1,000 0.998 1.000
Large magnitude 100 0.446 0.852

200 0.980 0.998
500 1.000 1.000

1,000 1.000 1.000
Mixed magnitude 100 0.265 0.614

200 0.731 0.924
500 0.997 1.000

1,000 1.000 1.000
Mixed direction 100 0.355 0.311

200 0.932 0.896
500 1.000 1.000

1,000 1.000 1.000

Note. Wald-RVF = Wald test using a reference variable selected in a
fully constrained invariance model; Wald-RVP = Wald test using a refer-
ence variable selected in a partially constrained invariance model.
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Additionally, we examined the commonly reported alterna-
tive fit indexes (AFIs): comparative fit index (CFI), root mean
square error of approximation (RMSEA), and standardized
root mean square residual (SRMR). Appendix C presents the
average CFIs, RMSEAs, and SRMRs of the configural invar-
iance model and the models with one set of equally constrained
factor loadings for the tested variable with respect to the partial
metric invariance conditions. Appendix D provides the aver-
age CFIs, RMSEAs, and SRMRs of the metric invariance
model and the model with one pair of an equally constrained
intercept for the tested variable by the partial scalar invariance
condition. As expected, there were obvious drops in the CFIs
and increments in both RMSEAs and SRMRs when either
factor loadings or intercepts of the noninvariant variables
(X2 and X3) were equally constrained. Although several stu-
dies (Chen, 2007; Cheung & Rensvold, 2002; Rutkowski &
Svetina, 2014) suggested guidelines for using the changes in
AFIs to determine the level of full factorial invariance, none of

them is directly applicable to testing partial factorial invar-
iance. Hence, we cannot evaluate the performance of the
two-step method in relation to the changes in the AFIs because
that is beyond the scope of this study. Instead, we expect future
studies to evaluate the performances of the AFIs for partial
factorial invariance and to suggest appropriate guidelines for
using the AFIs under various partial invariance scenarios.

Limitations

As with any simulation study, we examined only limited
conditions, and our results can be generalized only to data
conditions similar to those in our study. For example, we
examined only partial factorial invariance of a single factor
model with six indicators. Although we expect the results
found in this study to be generalizable to simpler and more
complex models, it is hard to say they will be before we have
tested those conditions. Second, we simulated only balanced
sample-size conditions, so we cannot be sure that the results
apply to cases with substantially imbalanced sample sizes
between groups. Another limitation is related to the number
of groups. Because we simulated only two group conditions,
the variables indicated by the smallest modification index
were the same between groups. However, we do not suppose
that the choice of RV using the smallest modification index
with more groups is as simple as this study suggests. Thus,
we would like to confine the generalization of these results to
cases with only two groups. We also examined only condi-
tions with continuous indicators, and it is unclear whether the
results can be generalized to cases with categorical indicators
(e.g., dichotomous or polytomous). To address all these lim-
itations, future studies are necessary with more varied factor
models, imbalanced sample sizes, larger numbers of groups,
and categorical variables. In addition, we simulated nonin-
variance in models without any type of misspecification. In
reality, however, data are likely to have a certain degree of
misfit irrelevant to noninvariance. Another possible future
study would thus investigate the performance of the min-
mod under the models with misspecification irrelevant to
the source of noninvariance. Finally, we want to add one
more caveat related to sampling errors. Our study results
are based on the simulated data with known conditions, and
possible sampling errors were also modeled using 1,000
replications in our simulation study. Although the results
indicate that the error rates in selecting a truly invariant RV
were very low due to sampling errors, we cannot guarantee
that similar results would be yielded from real data with
various sources of sampling errors. To put it another way,
the actual impact of the sampling errors in real data cannot be
fully addressed in this study.

Conclusion and Recommendation

The findings of this study are very promising for researchers
who lack a theoretical guideline in selecting an appropriate RV

TABLE 5
False Positive Rates

Sample Size Wald-RVF Wald-RVP

Factor loading
Small magnitude 100 0.004 0.017

200 0.038 0.027
500 0.041 0.016

1,000 0.055 0.016
Large magnitude 100 0.010 0.018

200 0.047 0.016
500 0.056 0.015

1,000 0.047 0.009
Mixed magnitude 100 0.008 0.013

200 0.037 0.010
500 0.059 0.015

1,000 0.050 0.008
Mixed direction 100 0.009 0.027

200 0.000 0.010
500 0.009 0.013

1,000 0.006 0.009
Intercept
Small magnitude 100 0.009 0.049

200 0.032 0.028
500 0.036 0.012

1,000 0.052 0.014
Large magnitude 100 0.056 0.018

200 0.052 0.009
500 0.039 0.015

1,000 0.059 0.020
Mixed magnitude 100 0.062 0.027

200 0.042 0.021
500 0.044 0.012

1,000 0.052 0.014
Mixed direction 100 0.003 0.030

200 0.000 0.007
500 0.005 0.012

1,000 0.003 0.011

Note. Wald-RVF = Wald test using a reference variable selected in a
fully constrained invariance model; Wald-RVP = Wald test using a refer-
ence variable selected in a partially constrained invariance model.
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to test measurement invariance under a MCFA model. Even
those who already have a theoretical guideline for selecting an
RV can use this empirical guideline (min-mod) to provide
evidence of the adequacy of the chosen RV. Although the
min-mod using both partial and full invariance models resulted
in fairly high accuracy in identifying a truly invariant RV, the
selected RVs differed between the two models. The impact of
the difference was prominent in the detection of noninvariant
variables using the Wald tests. Generally, the Wald-RVP had
higher perfect recovery rates, lower false negative rates, and
lower false positive rates than the Wald-RVF. Across all the
simulated data conditions, the highest gap was found between
the two methods when the magnitude of noninvariance was
small and the sample size was small. In particular, the lower
perfect recovery rates of theWald-RVF were due mainly to the
higher false negative rates that were associated with the factor-
loading size of the chosen RV. Therefore, we recommend using
the Wald-RVP rather than the Wald-RVF, because it generally
produced better results in detecting noninvariant variables,
even though more procedures are required to conduct it. In
our post hoc analysis, the number of RVs did not increase the
power to detect noninvariant variables under conditions in
which the small magnitude of noninvariance was combined
with the smallest sample size. Thus, it is unnecessary to choose
more than one RV to increase the power to detect noninvariant
variables. When either full metric or scalar invariance is
rejected, the recommended practice for applied researchers is
as follows:

1. Choose the variable having the smallest modification
index as an RV using a partial invariance model after
sequentially relaxing invariant constraints until there
remains no more significant modification index (3.84).

2. Conduct item-by-item Wald tests under a model identi-
fied by the selected RV in Step 1. Refer to Appendix A
to test factor loadings and Appendix B to test intercepts.
Use a Bonferroni-adjusted p value for the Wald tests. If
the p value is below the adjusted criterion, the variables
are considered noninvariant and vice versa. After con-
ducting multiple Wald tests for all variables (except for
the chosen RV), researchers can determine which vari-
ables are noninvariant and which are invariant.

As a final remark, based on the results of the study, the
two-step approach proposed here is not recommended for
research data with small samples, such as N = 100.
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APPENDIX A

MPLUS SYNTAX FOR ITEM-BY-ITEM WALD TESTS: FACTOR LOADING
Tile: Wald test using “Model Test” command
Data: File is example.dat;
Variable:
Names are x1-x6 g;
Usev = x1-x6;
Grouping = g (1 = g1 2 = g2);
Model:
F1 by x1-x6;
Model g1:
F1 by x1@1: ! If the selected reference variable is x1.
F1 by x2-x6 (A1-A5);
F1*;
Model g2:
F1 by x1@1;
F1 by x2-x6 (B1-B5);
F1*;
Model Test:
A1 = B1; ! If you want to test invariance of the factor loading of x2.
Note. You can test each of the five factor loadings (factor loading of x2-x6) by only replacing the highlighted part (assigned names of tested parameters) under
the “Model Test” Command. For example, you can test the invariance of the factor loading of x3 by replacing “A1 = B1” with “A2 = B2”.

APPENDIX B

MPLUS SYNTAX FOR ITEM-BY-ITEM WALD TESTS: INTERCEPT
Tile: Wald test using “Model Test” command
Data: File is example.dat;
Variable:
Names are x1-x6 g;
Usev = x1-x6;
Grouping = g (1 = g1 2 = g2);
Model:
F1 by x1-x6;
Model g1:
F1 by x1-x6 (L1-L6);
F1@1;
[x1@0]; ! Selected reference variable
[x2-x6] (A1-A5);
[F1@0];
Model g2:
F1 by x1-x6 (L1-L6);
F1*;
[x1@0]; ! Selected reference variable
[x2-x6] (B1-B5);
[F1*];
Model Test:
A1 = B1; ! If you want to test invariance of the intercept of x2.
Note. You can test each of the five intercepts (intercepts of x2–x6) by only replacing the highlighted part (assigned names of tested parameters) under the
“Model Test” Command. For example, you can test the invariance of the intercept of x3 by replacing “A1 = B1” with “A2 = B2”.
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APPENDIX C

AVERAGE MODEL FIT INDEXES OF PARTIAL METRIC INVARIANCE CONDITIONS

APPENDIX D

AVERAGE MODEL FIT INDEXES OF PARTIAL SCALAR INVARIANCE CONDITIONS

Note. Configural = Model fit indexes of the configural invariance model with a reference variable for factor loadings selected under partially constrained metric
invariance model (RVP); Xi = model fit indees of the model having an additional set of equally constrained factor loadings of Xi; CFI = comparative fit index;
RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual.

Note. Metric = model fit indexes of the metric invariance model with a reference variable for intercepts selected under partially constrained scalar invariance
model (RVP); Xi = model fit indexes of the model having an additional set of equally constrained intercepts of Xi; CFI = comparative fit index; RMSEA = root
mean square error of approximation; SRMR = standardized root mean square residual.
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