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Abstract

Estimation of the number of major pollution sources, the source composition profiles, and the source contributions are the

main interests in multivariate receptor modeling. Due to lack of identifiability of the receptor model, however, the estimation

cannot be done without some additional assumptions.

A common approach to this problem is to estimate the number of sources, q, at the first stage, and then estimate source

profiles and contributions at the second stage, given additional constraints (identifiability conditions) to prevent source rotation/

transformation and the assumption that the q-source model is correct. These assumptions on the parameters (the number of

sources and identifiability conditions) are the main source of model uncertainty in multivariate receptor modeling.

In this paper, we suggest a Bayesian approach to deal with model uncertainties in multivariate receptor models by using

Markov chain Monte Carlo (MCMC) schemes. Specifically, we suggest a method which can simultaneously estimate

parameters (compositions and contributions), parameter uncertainties, and model uncertainties (number of sources and

identifiability conditions). Simulation results and an application to air pollution data are presented. D 2002 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Multivariate receptor modeling aims to identify the

pollution sources and assess the amounts of pollution

by resolving the measured mixture of chemical spe-

cies into the contributions from the individual source

types. Its basic physical model comes from the laws

of chemistry (the principles of mass conservation and

chemical mass balance [1]). Let p be the number of

chemical species (measured variables) and q be the

number of sources. Based on the chemical mass

balance equation and the assumption that the relative

amounts of the chemical species remain approxi-

mately the same as particles/gases travel from sources

to the receptor, a multivariate receptor model takes

the form of:

yt ¼
Xq
k¼1

atkPk þ et; t ¼ 1;: : :; n: ð1:1Þ

Here, yt = ( yt1, yt2,: : :, ytp) is the tth observation

at the receptor, Pk = ( pk1, pk2,: : :, pkp) is the kth
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source composition profile consisting of the frac-

tional amount of each chemical species in the emis-

sions from the kth source, atk is the contribution

from the kth source at time t, and et = (et1, et2,: : :,
etp) is the measurement error in the t th observation.

In a vector form, model (1.1) can be equivalently

written as:

yt ¼ atP þ et ð1:2Þ

where at = (at1, at2,: : :, atq) and P is a q� p source

composition matrix of which rows are the source

composition profiles.

Statistically, model (1.2) can be considered as a

latent variable model (see, e.g., Ref. [2]), specifi-

cally, as a factor analysis model in which y is a set

of p variables that can be directly observed (mani-

fest variables), a is a set of q variables that are

unobservable (latent variables or factors), P is the

unknown q� p factor loading matrix, and q is the

unknown number of factors. The goal of latent vari-

able models (multivariate receptor models) is to

make inferences on q (the number of major sources),

P (source composition profiles), and a (source con-

tributions) based on y (data). As a matter of fact, this

goal cannot be achieved without additional assump-

tions on the model.

The unknown number of factors (sources), q, is

the first obstacle that we encounter, since P and a
explicitly depend on q in model (1.2). Traditionally, q

has been first estimated based on the sample corre-

lation matrix or sample covariance matrix without

necessarily using model (1.2) (see Refs. [3,4] and

references therein for practical methods of estimating

the number of factors in a non-Bayesian context).

Except for Bartlett’s modification to the likelihood

ratio test, most of the commonly used methods such

as Percent trace (choosing enough eigenvalues to

account for a suitable proportion, say 90%, of the

trace of the sample correlation matrix or the sample

covariance matrix), Rule-of-one (choosing only

eigenvalues of the sample correlation matrix which

are greater than one), or Scree plot (choosing q at the

‘knee’ in the curve of the plot of sample eigenvalues)

are ad-hoc in nature. Even Bartlett’s test is not strictly

valid as a sequential test procedure because it does

not control the overall significance level. Other

methods mostly used in chemometrics, such as Mali-

nowski’s indicator function (see, e.g., Ref. [5]), cross-

validation [6], and the NUMFACT [3] approach also

lack a full theoretical justification in the sense that

they do not provide standard errors for the estimates.

Once q is estimated, inferences on P and a are

usually made conditionally on the q-source model.

Note that this approach ignores the uncertainty

involved in q, which can be a big part of overall

uncertainty.

Secondly, the parameters in model (1.2) are not

uniquely defined even under the assumption that q is

known, i.e., there are other parameterizations that

produce the same data (rotational indeterminacy of

factors plays a major role). This is nonidentifiability

in latent variable models/multivariate receptor mod-

els, and additional restrictions on the parameters are

required to remove it. These assumptions on the

parameters are called ‘‘identifiability conditions.’’

Park et al. [7] discussed a range of identifiability

conditions for multivariate receptor models from a

statistical point of view when the number of sources q

is assumed to be known. Just like the number of

sources q, these identifiability conditions are chosen

in advance, and the estimation of P and a is carried

out conditionally on that. This again ignores the

uncertainty involved in the selection of identifiability

conditions.

Each possible combination of q and identifiability

conditions defines a different model. The previous

approaches in multivariate receptor modeling select a

single model and make inferences, conditionally on

that model, without taking account of model uncer-

tainty. In this paper, we adopt a Bayesian approach to

provide the estimates of the model uncertainties, as

well as the estimates for the parameters and their

uncertainties within each model.

Practical model selection procedures often consist

of two stages: choose a class of reasonable models

and then select the best model within the class. For the

number of sources q, there is an upper bound such that

q< p (as a matter of fact, it is often much less than p,

see Ref. [8]). For the set of identifiability conditions,

however, there is no such bound, and there could be,

in principle, infinitely many different identifiability

conditions. For this reason, we restrict the type of

identifiability conditions to be compared to those that

are often used in a receptor modeling context. One

such type of identifiability conditions is prespecifica-
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tion of zero elements in the source composition

matrix:

C1. There are at least q� 1 zero elements in each row

of P.

C2. The rank of P(k) is q� 1, where P(k) is the

matrix composed of the columns containing the

assigned 0’s in the kth row with those assigned 0’s

deleted.

These conditions imply that some pollutants are

not contributed by a particular source type. If an

investigator does not have a priori information on

the position of zeros, then one may start with several

candidate positions for zeros and select the one giving

the highest posterior probability. Alternatively, we

may consider preassigning zeros in the source con-

tribution matrix (the matrix of a’s), which implies that

each source is missing on some days [7].

Although it has not been introduced in the receptor

modeling literature, the Schwarz criterion (also known

as the Bayesian Information Criterion or BIC) has

been a popular choice for model selection in other

contexts (including latent variable models). By penal-

izing the likelihood by a function of the number of

parameters and the sample size, it obtains a trade-off

between the bias introduced by fitting the wrong

number of parameters and the precision with which

the parameters are estimated. The BIC is, however,

ad-hoc in nature because it is a rough approximation

to twice the logarithm of the Bayes factor [9], and the

choice of the sample size and the number of param-

eters in BIC is often nontrivial.

We calculate the posterior probabilities of the

competing models, which follow easily from the

marginal likelihoods. The marginal likelihood is a

key quantity for a Bayesian model comparison and

accounting for model uncertainty [9,10]. Regardless

of its theoretical justification and ease of interpreta-

tion, the marginal likelihood has not been widely used

due to its computational difficulties. Recently, Markov

chain Monte Carlo (MCMC) has proven to be useful

in many statistical applications. In particular, Chen

[11] and Oh [12] proposed simple methods for esti-

mating marginal likehoods, and hence, the posterior

probabilities by using the MCMC output.

The remaining part of the paper is organized as

follows. In Section 2, we restate the model from a

statistical point of view. Section 3 contains estima-

tion of parameters using MCMC within a model.

Model comparison is discussed in Section 4. Section

5 presents a simulation study. In Section 6, our

method is applied to air pollution data consisting

of ambient measurements on PM10 (particulate mat-

ter with median aerodynamic diameter less than 10

mm) in the Seattle area. Finally, concluding remarks

are made in Section 7.

2. The model

Suppose, as in Section 1, that y is a p-dimen-

sional vector of observed variables, and a is a q-

dimensional vector of latent variables. Though there

could be two different types of models depending

on whether a is treated as random or fixed (struc-

tural model and functional model, respectively) from

a frequentist perspective, it is not essential to differ-

entiate these two models from the Bayesian stand-

point, since all the parameters are viewed as random

variables. A latent variable model consists of two

parts, the prior distribution (the terminology is due

to Bartholomew and Knott [2]) of the latent varia-

bles and the conditional distribution of the observed

variables given the latent variables (which depends

on the distribution of the errors). The purpose of the

latent variable models is to explain the correlations

among the observed variables by a set of q ( < p)

latent variables a. This implies that etj and etjV are

independent for j a jV in model (1.2) if all the major

sources are accounted for. We assumed that in

model (1.2), the errors et follow a multivariate

normal distribution with a mean vector 0 and the

diagonal covariance matrix S = diag(r1
2, r2

2,: : :,
rp

2), i.e.,

et � Npð0;SÞ; t ¼ 1;: : :; n: ð2:1Þ

This specifies the conditional distribution of the

observed variables given the latent variables as

ytjat�Np(atP,S).
We now need to specify the prior distribution of the

a’s. As noted in Ref. [2], the form of the prior

distribution of the latent variables is essentially arbi-

trary and largely a matter of convention. A Gaussian

distribution is commonly chosen for the distribution
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of a’s. We assume that the a’s have mean vector n and

covariance matrix F,

at � Nqðn;FÞ: ð2:2Þ
Let c = a� n and l = nP. Then, Eq. (1.2) can be re-

parameterized using the centered latent variable c as:

yt ¼ l þ ctP þ et; t ¼ 1;: : :; n: ð2:3Þ

Since any change in the scale of c can also be

absorbed into P, without loss of generality, the c’s
may be assumed to have unit standard deviations.1 If

the factors (source contributions in receptor models)

are primarily assumed to be uncorrelated, F can be

taken as an identity matrix, i.e.,

c � Nqð0; IÞ: ð2:4Þ

Equivalently, the model may be written in terms of

probability distributions as:

yAc � Npðl þ cP;SÞ ð2:5Þ

and

c � Nqð0; IÞ:

This defines a standard factor analysis model. Note

that the model depends on the number of factors

(sources) q, which is unknown. Moreover, the model

is not identified even for known q, i.e., there are other

models (parameterizations) which lead exactly to the

same joint distribution for the observed y variables.

Translation invariance [13] and rotation (see Ref. [2])

are the major sources of nonidentifiability. To remove

translation invariance, P is assumed to be of full-row

rank. In this paper, we do not consider the case where

P is rank-deficient, which corresponds to a collinear-

ity problem in receptor modeling. We leave that

problem as one of the model limitations (both in

latent variable models and multivariate receptor mod-

els) rather than as model uncertainties.

Rotational indeterminacy of the model can be

removed by imposing one of the many different types

of identifiability conditions (see Ref. [8]). The ques-

tion is whether those conditions are realistic in the

given context. We consider the type of identifiability

conditions given in Section 1, C1–C2, which are

often reasonable assumptions in the receptor modeling

context. Even within this scheme, there could be

several different choices (when there is no certain

prior information on zeros) for positions of zeros in P.

Note that each possible combination of q and posi-

tions of zeros in P defines a different model.

3. Estimation within a model

In this section, our inferences are made condition-

ally on the model that resulted from a particular

choice of q and the set of zeros in P. It follows from

Eqs. (2.4) and (2.5) that:

y � Npðl;PVP þ SÞ: ð3:1Þ

This is an integrated likelihood, which is used when

fitting the model by maximum likelihood (with the

restrictions on the parameters). Although the maximum

likelihood estimate (MLE) of l can be easily shown to

be x̄, there is no explicit formula for the MLEs of P and

S. A numerical maximization needs to be used.

Bayesian inference is based on the posterior dis-

tribution, which is proportional to the product of the

likelihood and the priors for the parameters. The term

‘likelihood’ is ambiguous (it could mean either an

integrated likelihood or a conditional likelihood) in

the present context. We use the conditional likelihood

of Y={ yt,t = 1,: : :, n} given the latent variables

C={ct,t = 1,: : :, n},

f ðYA: : :Þ ¼ A2pRA�n
2exp � 1

2
trR�1

�

�
Xn
t¼1

ðyt � l � ctPÞVðyt � l � ctPÞ
)
;

ð3:2Þ
for the ‘likelihood’ where ‘j: : :’ denotes conditioning
on all other variables. At any rate, it does not make

any difference in the posterior distribution whether to

include the distribution of the latent variables as a part

of the likelihood or as a part of the priors.

We assume independent priors p(l, P, S, C) =
p(l)p( P)p(S)p(C). The prior distribution of C=
{ct,t= 1,: : :, n} was specified in Section 2 as:

pðCÞ ¼ A2pA�n
2exp � 1

2
tr
Xn
t¼1

ctVct

( )
: ð3:3Þ1 This is just a way of eliminating scale invariance of factors by

a constant multiplication.
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For l, we take a p-variate normal prior

pðlÞ � Npðm0;M0Þ ð3:4Þ

with a p� p diagonal covariance matrix M0.

For the prior distribution for P, we assume a point

mass at zero for the q� ( q� 1) pre-selected elements

(for identifiability). Let vecP0 denote the ( q2� q)� 1

vector of these elements, and let vecP* denote the

(pq� q2� q)� 1 vector of the remaining elements of

P stacked columnwise. We use a truncated normal

distribution for vecP* to incorporate nonnegativity of

the source compositions,

vecP* � Npq�q2�qðc0;C0ÞIðvecP* 	 0Þ; ð3:5Þ

where c0 is a (pq� q2� q)-dimensional vector and C0

is a (pq� q2� q)� (pq� q2� q)-dimensional diago-

nal matrix.

For the diagonal elements of S, we assume a

common inverse gamma prior,

r�2
j � Gða0; b0Þ; j ¼ 1;: : :; p; ð3:6Þ

with the parameterization in which the mean and

variance are a0/b0 and a0/b0
2, respectively.

From Eqs. (3.2)–(3.6), the joint posterior distribu-

tion for (l, P, S, C), is given by

pðl;P;S;CAY~Þf ðYA: : :Þpðl;P;S;CÞ

¼ A2pSA�n
2exp � 1

2
trS�1

Xn
t¼1

ðyt � l � ctPÞ0
(

� ðyt � l � ctPÞ
)
A2pA�n

2exp � 1

2
tr
Xn
t¼1

ctVct

( )

� A2pM0A�1
2exp � 1

2
ðl � m0Þ

�

�M�1
0 ðl � m0ÞV

�

� A2pC0A�1
2exp � 1

2
ðvecP*� c0ÞVC�1

0

�

� ðvecP*� c0Þ
�
IðvecP* 	 0ÞIðvecP0 ¼ 0Þ

�
Yp
j¼1

ba0
0

Cða0Þ
1

r2
j

 !a0þ1

exp � b0

r2
j

 !
: ð3:7Þ

Posterior inferences on the parameters require

high-dimensional integration of the joint posterior

density. Obviously, the integrals are analytically in-

tractable in this case, and a direct simulation from this

density is not possible either due to complexity of Eq.

(3.7). We therefore employ a Markov chain Monte

Carlo (MCMC) approach (see, e.g., Refs. [14,15]). In

particular, we use the Gibbs sampling algorithm by

Gelfand and Smith [16] since all of the full condi-

tional distributions can be easily obtained. In our

Gibbs sampling algorithm, one sweep consists of four

updating procedures: updating l, updating P, updating
S, updating c. Now we give details of each updating

procedure.

3.1. Updating l

The full conditional posterior distribution of l is

given by:
lA: : : � Npðm;MÞ;
where M ¼ ðnR�1 þM�1

0 Þ�1
and m ¼ fnðȳ� c̄PÞ

S � 1 +m0M0
� 1}M. Sample generation from the dis-

tribution is straightforward.

3.2. Updating P

Under the truncated normal prior Eq. (3.5), the full

conditional posterior distribution p(vecP * j: : :) is

again a truncated normal distribution. Due to high-

dimensionality of vecP*, it is much more efficient to

sample a sub-vector of vecP* that corresponds to each

column of P (after deleting zero elements) rather than

sampling the entire vector vecP*. Let Pj* be the jth

sub-vector of vecP* that corresponds to the jth col-

umn of P (after deleting zero elements if there is any).

For the columns of P with no zero elements, we have:

Pj � A: : : � Nqðcj;CjÞ 
 IðPkj 	 0; k ¼ 1;: : :; qÞ;

where cj ¼ Cjfr�2
j CVðYj � lj1nÞ þ C�1

0j c0jg; Cj ¼
ðr�2

j CVC þ C�1
0j Þ

�1; c0j is a q-dimensional prior mean

vector of Pj*, C0j is a corresponding submatrix of C0,

and Yj is the jth column of Y. For the columns of P

containing zero elements, let q* be the number of

nonzero elements for that column. Then,

P�
j A: : : � Nq� ðc�j ; C�

j Þ 
 IðPkj 	 0; k ¼ 1;: : :; qÞ;
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whereC�
j ¼ ðr�2

j C�
j VC

�
j þ C��1

0j Þ�1; c�j ¼ C�
j C

�
j Vfr�2

j

C�
j VðYj � lj1nÞ þ C��1

0j c�0jg; c�0j is a q*-dimensional

prior mean vector of Pj
*, C�

0j is a corresponding sub-

matrix of C0, and Cj* consists of the columns of C
corresponding to nonzero elements of the jth column

of P. Sample generation from the truncated multi-

variate normal distribution can be done by rejection

sampling or Metropolis–Hastings algorithm (see Ref.

[14]) or by applying the Gibbs sampler for each

element of Pj*.

3.3. Updating S

The full conditional posterior distribution of the jth

diagonal element rj
2 of S is given by:

r�2
j A: : : � Gamma a0 þ

1

2
n; b0 þ

1

2
dj

	 

;

where dj is the jth diagonal element of d=(Y� 1n
�l�CP)V(Y� 1n�l�CP), and sample generation

is easy.

3.4. Updating C

It can easily be shown that the full conditional

posterior distribution of the tth row ct of C is given by:

ctA: : :fNqðbt;BÞ

where B=( PS � 1PV + Iq)
� 1, bt=( yt� l)S� 1PVB.

Again, sample generation is straightforward.

4. Model comparison

Assume that there are G candidate models. Under

the gth model,

Mg : y ¼ lg þ cgPg þ e; efNpð0;RgÞ;

g ¼ 1;: : :;G:

Here, each model comes from different combinations

of the number of sources q and identifiability con-

ditions. When there are G competing models, a typical

Bayesian model selection procedure computes the

posterior model probability, P(MgjY ), of model Mg

given the data Y, for each g = 1,: : :, G, and then selects

the model with the highest posterior model probabil-

ity. From a basic probability law, the posterior model

probability P(MgjY) is given by:

PðMgAY Þ~lðYAMgÞpðMgÞ;

where p(Mg) is the prior probability of model Mg. The

prior p(Mg) is often chosen to be uniform so as not to

favor one model over another a priori. Under the

indifference model prior probabilities, the posterior

model probability is proportional to l(YjMg). The

quantity l(YjMg) is called the marginal likelihood or

integrated likelihood of model Mg which is given by,

again from the basic probability law,

lðYAMgÞ ¼
Z

lðYAhg;MgÞpðhgAMgÞdhg; ð4:1Þ

where hg is the vector of unknown parameters in mo-

delMg, l(Yjhg,Mg) is the likelihood of hg under model

Mg, and p(hgjMg) is the prior of hg under model Mg.

In latent variable models (multivariate receptor

models), however, Eq. (4.1) is not given in a closed

form and a numerical approximation is necessary.

Among many methods for approximating the mar-

ginal likelihood, the method proposed by Oh [12] can

be easily implemented here. From the relation:

pðhgAY ;MgÞ ¼
lðYAhg;MgÞpðhgAMgÞ

lðYAMgÞ
;

one can estimate the marginal likelihood of model Mg

by

l̂ðYAMgÞ ¼
lðYAh�g;MgÞpðh�gAMgÞ

p̂ðh�gAY ;MgÞ
; ð4:2Þ

where hg* is a point of hg and p̂(hg | Y,Mg) is the

estimated posterior density function of hg given Y

under model Mg. Thus, one only needs to obtain

p̂(hg * |Y,Mg), for each g = 1,: : :, G.
Now we give a brief description of Oh’s method

for p̂(hg | Y,Mg). For simplicity, we suppress the index

g for the rest of the section. Let h=(h1,: : :, hm) where
hi is the ith block of h which can be an element or a

vector of elements. Oh [12] showed that

pðh�AY ;MÞ ¼ E½pðh�1Ah�2;: : :; h
�
mÞ

�pðh�2Ah1; h
�
3;
: : :; h�mÞ: : :

�pðh�3Ah1;: : :; hm�1Þ�; ð4:3Þ
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where the expectation is with respect to the joint

distribution of h under model M, and hence, it can

be estimated by the sample average of the product

of the full conditional posterior density functions,

using the posterior sample of h under model M.

Great advantages of the method are that estimation

of p(h * jY,M) can be done during the routine

MCMC simulation without generating additional

samples, and that it can be very easily implemented

when all the full conditional posterior density func-

tions are known. In theory, the point h* can be ar-

bitrary. For efficiency, however, h* should be chosen

from the region with high posterior density. An

approximate mode of h, which can be obtained from

a preliminary MCMC run, would be a reasonable

choice for h*.
For the standard factor analysis models with

restrictions on P, we can apply the method with l,
C, S, and each nonzero element of P as blocks of h.
Note that the full conditional posterior distribution of

l, C, and the diagonal elements of S are multivariate

normal, multivariate normal, and Inverse Gamma,

respectively, and that of any nonzero element of P is

a univariate truncated normal distribution. Thus, all

the necessary full conditional posterior density func-

tions for Eq. (4.3) are given, and estimation of

p(l*,C*,P*,S * jY,M) is straightforward.

5. Simulation

5.1. Application to simulated data

The first data sets are generated as follows: the

sample size n is taken to be 100, the number of

variables p is 9, and the true number of sources q0
is 3. The true model has the factor loading matrix

(source composition matrix),

P ¼

0:10 0 0 0:99 0:25 0:05 0:05 0:05 0:50

0 0:35 0 0:05 0:05 0:95 0:60 0:05 0:50

0:70 0 0:50 0 0:50 0:05 0:90 0:90 0:30

2
66664

3
77775;

and the overall mean l = 5
1p where 1p is a p-dimen-

sional row vector of 1’s. The factors are generated

randomly and independently from ct�N(0,I3),

t= 1,: : :, n, and the errors are generated randomly

and independently from et�N(0,S), t = 1,: : :, n

where

R ¼ diagð0:03; 0:02; 0:03; 0:02; 0:01; 0:04; 0:02;

0:03; 0:03Þ;

which results in approximately 13–34% of the error

standard deviations to the model standard deviations.

Then the y’s are obtained using Eq. (2.3),

yt ¼ l þ ctP þ et t ¼ 1;: : :; n:

In our simulation, the candidate models may be

defined by varying the number of factors ( q) and the

identifiability conditions (the position of zeros).

Recall that under the indifference prior model proba-

bilities, the posterior probability, P(MgjY ), of model

Mg is proportional to the marginal likelihood, l(YjMg),

of model Mg. Thus, we only need to calculate the

marginal likelihood of each model for model compar-

ison. For simplicity of presentation, we first change

the number of factors ( q= 1, 2, 3, 4, 5) with the most

plausible identifiability conditions for each q-factor

model. Note that there may possibly be confounding

effects between the number of factors and the identi-

fiability conditions on the marginal likelihoods. For

the purpose of model selection, it does not matter as

our interest is to see whether the estimated marginal

likelihood is the highest for the true model.

The simulation is repeated 50 times. Throughout

the simulation, the values for P, l, C, and S remain

the same as given above, and only the errors are

regenerated to obtain the observations at each simu-

lation. The following hyperparameter values are used

for generating MCMC samples: a0 = 2, b0 = 1 for S,
m0 = 5
1p, M0 = 100
Ip for l, and c0 = 0.5, C0 = 10 for

nonzero elements of P, which yield vague priors. The

estimated marginal likelihoods for each q-factor

model are reported in Table 1 on a log scale (only

10 cases are shown for space). Recall that, with

indifference prior for competing models, the posterior

model probability is proportional to the marginal

likelihood.

We also calculate BIC for each model. The BIC is

defined as:

BIC ¼ �2logðmax likelihoodÞ

þðlogNÞðnumber of parametersÞ: ð5:1Þ
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For max likelihood in Eq. (5.1), we use the integrated

likelihood in Eq. (3.1), with MLE for (l, P, S)
plugged in. It is well known that the MLE for (l, P,
c, S), based on the conditional likelihood in Eq. (3.2),

do not exist (see, e.g., Ref. [8]), and as mentioned in

Section 3.1, even the MLE based on the integrated

likelihood requires the use of some sort of an iterative

procedure or an EM algorithm. Here, we can easily

obtain the approximate MLE for (l, P, S) by directly

evaluating the integrated likelihood function using the

posterior samples generated from MCMC. Note, how-

ever, that the number of observations, N, and the

number of parameters in Eq. (5.1) are often not clearly

defined. We use N = n, and

ðnumber of parametersÞ ¼ pqþ pþ p� qðq� 1Þ

¼ pðqþ 2Þ � qðq� 1Þ;

which is the number of free parameters in the inte-

grated likelihood. The calculated BIC for each model

is also reported in Table 1.

Table 2 summarizes the performance of each

method. The method based on the marginal like-

lihood chooses q having the maximum logMD (log

of marginal likelihood) and BIC chooses q having

the minimum BIC. Both methods select the true

model ( q = 3) for all of 50 simulations. We also

monitor the R2 values between the true factor load-

ings and the estimated factor loadings for q = 3.

Throughout the simulation, R2 values are all close

to 0.99, which indicates that the estimated loadings

agree well with the true loadings once the true model

is selected.

Table 1

Log of marginal likelihood of q (within an additive constant) and BIC for q= 1, 2, 3, 4, 5 ( q0 = 3), n= 100, p= 9

Methods Data set Number of factors ( q)

1 2 3 4 5 Selected number

of factors

LogMD 1 � 773.26 � 598.95 � 541.01 � 615.21 � 655.05 3

2 � 757.36 � 606.81 � 538.85 � 616.58 � 653.20 3

3 � 763.48 � 604.69 � 550.82 � 626.49 � 672.71 3

4 � 788.20 � 773.84 � 564.68 � 641.31 � 671.84 3

5 � 764.11 � 598.38 � 540.38 � 612.81 � 663.31 3

6 � 777.91 � 769.70 � 553.47 � 621.07 � 664.61 3

7 � 770.69 � 607.16 � 548.04 � 638.96 � 674.52 3

8 � 778.43 � 604.55 � 539.08 � 605.47 � 662.29 3

9 � 757.52 � 589.23 � 536.48 � 612.77 � 642.69 3

10 � 774.98 � 605.71 � 553.10 � 641.27 � 656.85 3

BIC 1 1427.85 911.93 711.35 891.45 1028.76 3

2 1395.07 935.40 683.13 901.21 1013.56 3

3 1401.83 932.98 709.26 932.55 1051.33 3

4 1464.57 1339.75 752.60 962.42 1064.17 3

5 1408.79 907.77 685.75 882.71 1005.87 3

6 1437.50 1323.34 725.21 919.26 1054.64 3

7 1418.25 913.23 731.88 948.16 1045.54 3

8 1433.06 928.37 696.14 885.26 1012.51 3

9 1390.03 895.20 669.03 890.62 993.47 3

10 1434.51 931.58 725.75 939.91 1053.72 3

Table 2

Comparison of model uncertainty assessment methods based on 50

simulated data sets, n= 100, p= 9, q0 = 3

Method q

q= 1 q= 2 q= 3 q= 4 q= 5

LogMD 0 0 50 0 0

BIC 0 0 50 0 0
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Secondly, we consider the case where the true

number of factors ( q0) is 5. The factor loading matrix

is given as follows:

P ¼

0:10 0 0 0:99 0:25 0:0 0:0 0:05 0:50

0 0:35 0 0 0 0:95 0:60 0:05 0:50

0:70 0 0:50 0 0 0 0:90 0:90 0:30

0:10 0 0:80 0:10 0:20 0 0 0 0:90

0:10 0:05 0:05 0 0 0:70 0 0 0:40

2
6666666666664

3
7777777777775
:

For l and S, the same values as in the 3-factor model

case are used, i.e., l = 5
1p and S = diag(0.01, 0.05,

0.03, 0.01, 0.01, 0.08, 0.06, 0.08, 0.08). We use

the following hyperparameter values in generating

MCMC samples: a0 = 2, b0 = 0.5 for S, m0 = 5
1p,
M0 = 100
Ip for l, and c0 = 0.5, C0 = 2 for nonzero

elements of P, which yield vague priors. The

marginal likelihood and BIC of each model with

the number of factors ( q = 3, 4, 5, 6) are reported in

Table 3. Both methods perform well in choosing the

true model ( q = 5) as can be seen in Table 4. The

Table 3

Log of marginal likelihood of q (within an additive constant) and BIC for q= 3, 4, 5, 6, ( q0 = 5), n= 100, p= 9

Methods Data set Number of factors ( q)

3 4 5 6 Selected number

of factors

LogMD 1 � 832.48 � 751.09 � 730.51 � 788.95 5

2 � 889.30 � 745.87 � 738.74 � 806.37 5

3 � 826.35 � 743.81 � 732.03 � 785.78 5

4 � 832.21 � 737.14 � 729.93 � 784.59 5

5 � 831.22 � 733.67 � 721.69 � 772.05 5

6 � 816.78 � 725.58 � 723.00 � 776.74 5

7 � 826.81 � 736.83 � 733.27 � 792.06 5

8 � 836.27 � 747.40 � 729.22 � 781.81 5

9 � 830.81 � 731.77 � 718.95 � 783.63 5

10 � 839.08 � 742.46 � 739.87 � 786.85 5

BIC 1 1511.62 1279.24 1235.38 1393.11 5

2 1609.07 1294.33 1233.03 1416.47 5

3 1504.86 1287.04 1216.44 1404.25 5

4 1509.25 1251.24 1203.21 1386.09 5

5 1505.54 1251.32 1174.42 1370.92 5

6 1479.15 1244.52 1197.39 1359.30 5

7 1487.11 1273.86 1205.45 1380.78 5

8 1523.58 1282.80 1211.89 1395.95 5

9 1489.98 1241.19 1195.51 1364.05 5

10 1525.09 1274.42 1231.22 1404.69 5

Table 4

Comparison of model uncertainty assessment methods based on 50

simulated data, n= 100, p= 9, q0 = 5

Method q

q= 3 q= 4 q= 5 q= 6

LogMD 0 0 50 0

BIC 0 0 50 0

Table 5

Hyperparameter specifications, m0 = a 
 1p, M0 = b 
 Ip, c0 =

c
1pq� q
2
� q, C0 = d
Ipq� q

2
� q

a0 b0 a b c d

I 2 0.1 5 100 0.5 100

II 2 0.01 5 100 0.5 100

III 2 1 5 100 0.5 100

IV 2 1 5 100 1 100

V 2 1 5 100 0 100

VI 2 1 5 10 0 100

VII 2 1 5 10 0 10

VIII 2 1 5 1 0 10

VI 2 0.1 5 1 1 10

X 2 0.5 5 5 0.5 3
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R2 values between the true P and the estimated P

(with q = 5) are also close to 0.99 throughout the

simulation.

5.2. Sensitivity analysis and robustness

It is known that the marginal likelihoods might be

sensitive to the priors. To make sure that our analysis

results do not change with prior specification, a

sensitivity analysis is carried out with a range of

different priors. The data are generated from the 3-

factor model given in Section 5.1. We try 10 different

sets of hyperparameter values given in Table 5. The

log of marginal likelihoods for each set of hyper-

parameters are shown in Table 6. Although the values

change with hyperparameter specification, the overall

pattern of them is consistent (showing the maximum

at q = 3), and so our decision is not affected. Also,

estimates for l, P, and S under the chosen model (3-

factor model) show only negligible changes.

It was mentioned in Section 2 that the form of prior

distribution of c is largely a matter of convention. To

ascertain that the method is robust to misspecification

of the prior distribution of c, we first simulate n = 100

observations from the q = 3 factor model with the

same values for l, P, and S as in Section 5.1 but

different distributions for c: truncated normal distri-

bution and lognormal distribution. The simulation is

repeated 10 times for each case. Our method (with a

standard normal prior on c) chooses the correct model

in all simulations (and parameter estimates under the

selected model are all close to the true values).

The method is also applied to the generated data

using correlated factors. We simulate n = 200 obser-

vations from a q = 3 factor model defined by para-

meters:

P ¼

0:90 0 0 0:99 0:25 0:05 0:05 0:05 0:50

0 0:90 0 0:05 0:05 0:95 0:60 0:05 0:50

0:70 0 0:90 0 0:50 0:05 0:90 0:90 0:30

2
66664

3
77775;

l = 5
1p, S = diag(0.015, 0.01, 0.015, 0.01, 0.005,

0.02, 0.01, 0.015, 0.015), and c�N(0,F) where,

U ¼

1 0:7 0:7

0:7 1 0:7

0:7 0:7 1

2
66664

3
77775:

Simulation is repeated 10 times, and again, our

method (with a standard normal prior on c) chooses
the correct model 100% of time, and the estimated

parameters under the chosen model are all close to

the true values. The sample correlation matrix of the

estimated C is given as:

RC ¼

1 0:69 0:67

0:69 1 0:72

0:67 0:72 1

2
66664

3
77775;

which resembles the true F. Note that maximum

likelihood estimation, based on the integrated like-

lihood Eq. (3.1), would not be able to find this

correlated factor structure because C is integrated

out using the assumption that c�Nq(0,I). From a

Bayesian standpoint, F can be viewed as a hyper-

parameter of the prior distribution for factors rather

than the underlying assumption in the model.

Although F = I is misspecified for these data, the

correlation structure in c may be uncovered by

estimated c’s. Finally, we look at the case when c
is generated from the lognormal distribution with

correlated factors, i.e., logc�Nq(0,F). Again, the

method shows robustness to violations of both

assumptions (the distributional form and the corre-

lation structure in c).

6. Analysis of Seattle PM10 data

We apply our methods to PM10 data obtained

from 10 monitoring sites in the Seattle area during

1992–1996. The monitoring sites are from north to

Table 6

LogMD for each set of hyperparameters

q= 1 q= 2 q= 3 q= 4 q= 5

I � 765.07 � 509.52 � 384.66 � 459.73 � 541.98

II � 792.71 � 536.67 � 384.74 � 505.69 � 556.59

III � 783.67 � 620.87 � 555.55 � 625.16 � 697.40

IV � 784.85 � 615.78 � 557.25 � 611.85 � 662.50

V � 783.37 � 621.28 � 559.97 � 617.08 � 681.92

VI � 772.00 � 604.99 � 553.19 � 623.27 � 663.01

VII � 762.51 � 588.93 � 518.87 � 599.48 � 635.68

VIII � 752.39 � 584.65 � 515.89 � 591.27 � 625.70

VI � 735.87 � 472.31 � 338.70 � 453.85 � 478.37

X � 736.35 � 698.58 � 431.93 � 486.52 � 530.44
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south (see the map in Fig. 1): Marysville, Everett,

Lake Forest Park, Harbor Island, Duwamish, South

Park, Kent, two sites in Tacoma (one from a resi-

dential area, Tacoma-R, and the other from an

industrial area, Tacoma-I), and Puyallup. At most

of the monitoring sites, PM10 was measured only

Fig. 1. PM10 monitoring sites in Greater Seattle.

E.S. Park et al. / Chemometrics and Intelligent Laboratory Systems 60 (2002) 49–67 59



every 6 days (as 24-h average concentrations), so we

used those 6-day measurements for the analysis. The

goal is to identify major sources (source regions) of

PM10. Here, the 10 monitoring sites play the role of

different variables in our basic multivariate receptor

model. The source profile, consisting of the relative

amounts of PM10 that are conveyed to the 10

monitoring sites in this case, represents the spatial

pattern of underlying PM10 concentration from each

source. These source profiles (spatial profiles) were

used in Ref. [7] to locate the major source regions in

the Grand Canyon. The underlying assumptions for

this approach are:

A1. There are a few underlying spatial patterns (P),

and they do not vary with time.

A2. The environmental factors such as wind do not

interact with P, i.e., the overall spatial wind flow

patterns (on which the spatial source patterns depend)

are approximately constant.

It is suspected that in Seattle, there might be some

changes in the source regions between the dry season

(July to September, referred to as ‘Summer’ hereafter)

and the wet season (October to March, referred to as

‘Winter’ hereafter). The PM10 level is higher on

average during Winter than during Summer (the

difference is as big as 10 mg/m3 for some sites such

as Marysville, Lake Forest Park, Duwamish, and

Tacoma-I, see Table 7). Table 7 also shows that there

is a big variation in the PM10 level during Winter. It is

of interest to determine if there is an additional

(major) source during Winter in Seattle.

We analyze the data separately for Summer and

Winter to deal with seasonal variation. For each

season, the assumption A1 seems to be justified. Also,

it is unlikely that there is a significant change in the

major source regions within each season during the 5

years of observation (no big point source was added to

or removed from this area during that period, Ref.

[17]). The methods can be extended to account for

violation of A1 by using dynamically varying mean lt

and source profiles Pt, but this is beyond the scope of

this paper.

Analyzing the data separately for each season also

has an advantage of coping with the dependence of

the regional pattern of PM10 concentration on shifting

wind patterns. It is known that the main variability of

regional wind pattern is between seasons, and it is

fairly constant in any given season of the year. For

Seattle, the prevailing wind direction is southerly in

Winter and northerly in Summer, which is almost

aligned with the monitoring sites. This also justifies

A2.

After deletion of missing values, 66 observations

are retained for Summer, and 129 for Winter. For q,

we try the values q= 1, 2, 3, 4, for each season. As

noted in Section 2, each possible combination of q

and positions of zeros in the source composition

matrix P yields a different model. For candidate

positions of zeros in P, we use the results from

UNMIX [18] rather than going through an infinitive

number of possible combinations. For each q ( q = 1,

2, 3, 4), we first obtain UNMIX source composition

matrix PUNMIX, and try the elements giving the low

Table 7

Sample mean and standard deviation of PM10 data for each season

Summer (n= 66) Winter (n= 129)

Sample mean

(in mg/m3)

Sample standard

deviation

Sample mean

(in mg/m3)

Sample standard

deviation

Marysville 19.61 7.23 28.16 19.18

Everett 19.82 6.78 21.76 12.20

Lake Forest Park 17.30 5.11 30.09 16.85

Harbor Island 26.03 9.32 33.41 15.72

Duwamish 27.58 10.22 36.43 17.89

South Park 22.50 9.85 28.10 15.92

Kent 26.67 9.86 28.56 16.57

Tacoma-R 25.41 12.36 25.47 16.84

Tacoma-I 25.85 10.21 36.48 20.31

Puyallup 22.82 12.42 27.03 18.02
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proportions in PUNMIX as the candidate zeros ( q� 1

zeros for each row). Note that UNMIX profiles are

used only to find out the plausible sets of identifi-

ability conditions under each q-source model. Other

than that, the candidate models do not depend on the

UNMIX analysis. It is possible to try different sets of

zeros within each q. For Summer, we come up with a

total of 11 candidate models, and 15 candidate models

for Winter (see Tables 8 and 9).

Our MCMC analysis, conducted separately for

Summer and Winter, uses the following hyperpara-

meters for the prior distributions. For l, m0 = 20
1p for
Summer and m0 = 30
1p for Winter are used since it is

a priori expected that the mean concentration of PM10

would be much higher in Winter than in Summer. For

S, b0 = 10 for Summer and b0 = 20 for Winter due to

the similar reason as before. For all other hyper-

parameters, we use the same values for Summer and

for Winter: c0 = 5, C0 = 100 for nonzero elements of P,

a0 = 2, and M0 = 100
Ip for all models compared. For

each model, an approximate posterior mode is

obtained from a preliminary MCMC run, and this is

used for h*=(l*,P*,S*,C*) at which the marginal

likelihood is calculated. For the preliminary MCMC

run, the iterations are started from Ȳ for l, a uniform

random matrix with zeros preassigned for P, and

diag(s1
2,: : :, sp

2)/20, where sj
2 is the sample variance

of the jth column of Y for S. An approximate

posterior mode is obtained by evaluating the joint

posterior density for 20,000 iterations after the first

10,000 draws are discarded. A main MCMC is then

started from h*=(l*,P*,S*,C*, and the samples are

collected for 30,000 iterations without additional

burn-in. The marginal likelihood for each model is

calculated in sample generation without storing the

samples.

Table 8

Candidate models, logMD, and BIC for Seattle PM10 data, Summer (7–9)

Model number q Position of zeros in P LogMD BIC

1 1 none � 2056.15 (0.99996) 4090.11

2 2 profile 1: Marysville � 2070.16 (8.19� 10� 7) 4145.50

profile 2: Lake Forest Park

3 2 profile 1: Everett � 2068.54 (4.13� 10� 6) 4107.30

profile 2: Puyallup

4 2 profile 1: Marysville � 2066.50 (3.19� 10� 5) 4104.61

profile 2: Puyallup

5 2 profile 1: Lake Forest Park � 2071.12 (3.14� 10� 7) 4108.60

profile 2: Puyallup

6 2 profile 1: Kent � 2073.85 (2.05� 10� 8) 4111.91

profile 2: Puyallup

7 3 profile 1: Lake Forest Park, Puyallup � 2095.09 (1.22� 10� 17) 4165.39

profile 2: Lake Forest Park, Tacoma-R

profile 3: Tacoma-R, Puyallup

8 3 profile 1: Lake Forest Park, Puyallup � 2072.65 (6.82� 10� 8) 4139.74

profile 2: Marysville, Everett

profile 3: Tacoma-R, Puyallup

9 3 profile 1: Marysville, Puyallup � 2100.92 (3.58� 10� 20) 4194.48

profile 2: Everett, Lake Forest Park

profile 3: Marysville, Lake Forest Park

10 4 profile 1: South Park, Tacoma-R, Puyallup � 2075.48 (4.01�10� 9) 4150.55

profile 2: Marysville, Everett, Lake Forest Park

profile 3: Marysville, Everett, Tacoma-R

profile 4: Harbor Island, South Park, Tacoma I

11 4 profile 1: Everett, Lake Forest Park, Puyallup � 2087.20 (3.28� 10� 14) 4138.40

profile 2: Marysville, Everett, Tacoma-R

profile 3: Harbor Island, Duwamish, Tacoma-I

profile 4: South Park, Tacoma-R, Puyallup

The posterior probability of each model under the indifference prior is given in parenthesis after logMD.
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Tables 8 and 9 contain the estimated marginal

likelihood (in log) and BIC for each model for

Summer and Winter, respectively. The posterior prob-

ability of each model under the indifference prior is

also given in the parenthesis at the bottom of esti-

mated marginal likelihood. For Summer, both the

marginal likelihood criterion and BIC select Model

1, which corresponds to 1-source model. For Winter,

Model 6, corresponding to 3-source model, is selected

as the best model based on both criteria. This is

consistent with our expectation that there would be

additional pollution source/sources during Winter.

Table 9

Candidate models, logMD and BIC for Seattle PM10 data, Winter (10–3)

Model number q Position of zeros in P LogMD BIC

1 1 none � 4729.95 (1.06� 10� 17) 9436.88

2 2 profile 1: Lake Forest Park � 4711.14 (1.56� 10� 9) 9440.90

profile 2: Tacoma-R

3 2 profile 1: Everett � 4728.38 (5.07� 10� 17) 9447.52

profile 2: Tacoma-R

4 2 profile 1: Marysville � 4747.12 (3.69� 10� 25) 9504.62

profile 2: Puyallup

5 2 profile 1: Marysville � 4720.32 (1.61�10� 13) 9424.38

profile 2: Tacoma-R

6 3 profile 1: Harbor Island, Tacoma-R � 4690.86 (0.99986) 9388.25

profile 2: Marysville, Everett

profile 3: Lake Forest Park, Puyallup

7 3 profile 1: South Park, Tacoma-R � 4711.07 (1.67� 10� 9) 9401.38

profile 2: Marysville, Everett

profile 3: Lake Forest Park, Puyallup

8 3 profile 1: Tacoma-R, Tacoma-I � 4707.11 (8.76� 10� 8) 9411.95

profile 2: Marysville, Everett

profile 3: Marysville, Puyallup

9 3 profile 1: Harbor Island, Tacoma-R � 4699.90 (0.00012) 9405.67

profile 2: Marysville, Everett

profile 3: Marysville, Lake Forest Park

10 3 profile 1: Harbor Island, Tacoma-R � 4701.51 (2.37� 10� 5) 9405.93

profile 2: Marysville, Everett

profile 3: Marysville, Puyallup

11 3 profile 1: South Park, Tacoma-R � 4709.93 (5.22� 10� 9) 9415.81

profile 2: Marysville, Everett

profile 3: Marysville, Puyallup

12 3 profile 1: South Park, Tacoma-R � 4707.97 (3.71�10� 8) 9419.13

profile 2: Marysville, Everett

profile 3: Marysville, Lake Forest Park

13 4 profile 1: Harbor Island, South Park, Tacoma-R � 4704.14 (1.71�10� 6) 9443.66

profile 2: Marysville, Everett, Tacoma-R

profile 3: Lake Forest Park, Harbor Island, Duwamish

profile 4: Marysville, Tacoma-R, Puyallup

14 4 profile 1: Harbor Island, Kent, Tacoma-I � 4716.94 (4.72� 10� 12) 9434.19

profile 2: Marysville, Tacoma-R, Puyallup

profile 3: Lake Forest Park, Harbor Island, Duwamish

profile 4: Marysville, Everett, Tacoma-R

15 4 profile 1: Kent, Tacoma-R, Tacoma-I � 4710.43 (3.17� 10� 9) 9440.40

profile 2: Marysville, Tacoma-R, Puyallup

profile 3: Lake Forest Park, Harbor Island, Duwamish

profile 4: Marysville, Everett, Tacoma-R

The posterior probability of each model under the indifference prior is given in parenthesis after logMD.
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We report some of the posterior summaries for

parameters l, P, and R, in Tables 10 and 11 for the

best model selected for each season. Posterior inter-

vals and simultaneous posterior regions for the param-

eters can also be easily constructed based on the

posterior samples, though we do not report those

results here due to limited space (see, e.g., Ref.

[19]). Note that the estimates for P are with reference

to scaling (normalization) that makes the correspond-

ing source contributions (c) have unit variances.

Because we are using a sampling-based method, we

can easily obtain the estimates for P in terms of any

other normalization as well from the same MCMC

samples. For instance, if one prefers the source

profiles expressed in terms of proportions (so that

the rows of P sum to 100%), then one can obtain the

samples of new P by applying the corresponding

transformation (normalization) on the samples of P,

and can carry out estimation of P by using the new

samples. From Tables 10 and 11, it can be seen that

the source profiles (spatial profiles) for each season

show a different pattern. During Winter, the major

source regions seem to be near (Marysville, Lake

Forest Park, Puyallup), (Tacoma-I, Puyallup), and

(Harbor Island, Duwamish, South park), and during

Summer, the source profile is fairly spread out over

the regions Harbor Island, Duwamish, South Park,

Kent, and Tacoma. One of the source regions in

Winter, (Marysville, Lake Forest Park, Puyallup)

coincides with a high wood smoke area, which does

not appear in Summer. This supports that wood smoke

is an additional source of PM10 in Winter. Fig. 2

Table 10

Posterior summary for the parameters P, l, and S of Model 1, Summer

P l S

Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

Marysville 6.96 0.75 19.24 0.83 9.87 1.99

Everett 6.48 0.71 19.47 0.79 9.39 1.85

Lake Forest Park 4.76 0.54 17.05 0.60 6.49 1.22

Harbor Island 9.20 0.94 25.53 1.08 12.66 2.64

Duwamish 10.08 1.03 27.03 1.18 15.28 3.18

South Park 9.81 0.99 21.97 1.13 12.61 2.66

Kent 9.60 1.01 26.14 1.14 16.35 3.33

Tacoma-R 11.48 1.29 24.77 1.43 36.20 6.85

Tacoma-I 9.89 1.05 25.31 1.17 18.22 3.69

Puyallup 8.46 1.46 22.35 1.47 89.49 16.05

Table 11

Posterior summary for the parameters P, l, and S of Model 6, Winter

Source 1 Source 2 Source 3 l S

Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

Marysville 15.72 1.35 0 0 6.14 1.39 28.16 1.48 8.79 4.58

Everett 6.76 1.00 0 0 6.42 0.98 21.77 0.92 27.02 4.03

Lake Forest Park 12.13 1.28 5.43 1.08 0 0 30.08 1.33 60.17 8.73

Harbor Island 0 0 7.95 1.26 11.16 1.15 33.33 1.22 20.78 4.20

Duwamish 2.27 0.81 8.31 1.26 11.70 1.17 36.34 1.30 26.64 4.79

South Park 2.52 0.71 8.29 1.06 9.31 0.98 28.04 1.14 19.06 3.41

Kent 3.67 0.93 9.06 1.09 7.55 1.03 28.50 1.18 39.31 5.62

Tacoma-R 0 0 9.80 1.43 6.86 1.45 25.44 1.37 109.44 14.58

Tacoma-I 4.95 1.14 12.56 1.29 7.71 1.16 36.38 1.44 42.90 6.46

Puyallup 9.85 1.36 11.58 1.03 0 0 26.99 1.32 10.52 5.21
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contains the histogram of 30,000 posterior samples for

each element of P for Summer, and Fig. 3 contains the

histogram for each element of Source 1 profile (that

seems to correspond to wood smoke spatial profile)

for Winter.

For illustrative purposes, we also apply some other

commonly used methods for determining the number

of factors (see Section 1) to these data. For Summer

data, the 90 Percent trace method gives 1 (based on

the covariance matrix) or 3 (based on the correlation

matrix), Rule-of-one gives 1, Barlett’s test gives 9

(based on the covariance matrix) or 5 (based on the

correlation matrix), Malinowski’s indicator function

gives 2, World’s cross-validation approach gives 1,

NUMFACT gives 3, and modified NUMFACT gives

2.

For Winter data, the 90 Percent trace method gives

1 (based on the covariance matrix) or 3 (based on the

correlation matrix), Rule-of-one gives 1, Bartlett’s test

gives 7 (based on the covariance matrix) or 6 (based

Fig. 2. Posterior sample histogram for source profile, Summer (July–September).
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on the correlation matrix), Malinowki’s indicator

function gives 1, World’s cross-validation approach

gives 1, NUMFACT gives 3 (based on the covariance

matrix) or 4 (based on the correlation matrix), and

modified NUMFACT gives 2 (based on the cova-

riance matrix) or 3 (based on the correlation matrix).

There seems to be a fairly large uncertainty in the

number of factors for these data, which is why it is

important to report model uncertainty estimates (as in

Tables 9 and 10).

7. Discussions

In this article, we have developed a general

approach for assessing model uncertainty in multi-

variate receptor models (and standard factor analysis

models). In earlier multivariate receptor modeling,

the number of sources and identifiability conditions

were determined first, and the inferences of the

remaining model parameters were made condition-

ally on that. This approach ignores the uncertainty

involved in the number of sources and selection of

identifiability conditions. We approached the prob-

lem using the marginal likelihood. The marginal

likelihood of each model can easily be converted

to the posterior probability of the model, which may

well serve as an uncertainty estimate of the model.

Although marginal likelihoods used to be computa-

tionally intractable, recent developments in MCMC

methodology make accurate estimation of them pos-

sible. The methods using MCMC (for calculating the

marginal likelihoods) have not yet been applied in

many statistical problems. The main advantage of

Fig. 3. Posterior sample histogram for Source 1 profile, Winter (October–March).
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the MCMC approach introduced here is that the

marginal likelihood of each model can be calculated

based on the same posterior sample that is used to

make inferences on the parameters (without requir-

ing any additional sampling). Thus, using a single

posterior sample for each model, we can simulta-

neously obtain the model uncertainty estimate, the

estimates for the parameters and their uncertainties.

Although we confined ourselves, for brevity of pre-

sentation, to one type of identifiability conditions

(zeros in the source composition matrix P), the

method can be applied to other types of identifiabi-

lity conditions (e.g., zeros in the source contribution

matrix A) with a slight modification in MCMC algo-

rithm.

Throughout this article, we have assumed that the

errors are normally distributed, which makes all the

full conditionals available in closed forms. When a

nonnormal distribution for errors is assumed, some of

the full conditionals might be difficult to determine. In

that case, the general methodology in Section 4 can be

extended using the importance-weighted method of

Chen [11] and Oh [12] for the unknown conditionals,

replacing each of them by an arbitrary (weighting)

conditional density times the ratio of the posterior

kernels. Choosing a good weighting conditional den-

sity can be a challenging problem due to high dimen-

sionality of each block of parameters in multivariate

receptor models.

Another assumption we have made (in the priors)

is that the factors (the source contributions) are

uncorrelated. Although our method is shown to be

robust to violation of this assumption through a

simulation study, a further extension of the model

(and the method) would be to treat F as an additional

parameter in the model, with its own prior. This brings

the model into the form of a Bayesian hierarchical

model (the prior distribution of factors depends on the

unknown hyperparameter F). In addition to the iden-

tifiability conditions (C1–C2) to remove rotational

indeterminacy, q additional linearly independent

restrictions on the parameters such that F is a corre-

lation matrix or one of the nonzero elements in each

row of P is known, are needed to cope with indeter-

minacy of factors by a constant multiplication. Inter-

comparisons of models, when F is assumed known

and when it is unknown, using marginal likelihoods

are still under investigation.
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