• Home
  • Eugenio Urdapilleta
Eugenio Urdapilleta

Eugenio Urdapilleta
  • PhD
  • Researcher at Centro Atómico Bariloche & Instituto Balseiro

About

40
Publications
10,599
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
262
Citations
Current institution
Centro Atómico Bariloche & Instituto Balseiro
Current position
  • Researcher

Publications

Publications (40)
Article
Voltage-gated potassium conductances g K play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing g K in cortex and other br...
Preprint
Full-text available
Understanding how photoreceptor cells respond to light is crucial for comprehending the intricacies of vision. These cells, known as rods and cones, play a pivotal role as they convert light into electrical signals that the brain can interpret. If these cells share this exquisite machinery, how photoresponses can be so different? In this work, we s...
Article
In this work, we introduce a phenomenological model for the cone-horizontal cell assembly, including spatial integration and formation of receptive field-like structures. The model extends our previous dynamical adaptation description with gain control accounting for processes in single cones, valid in severe nonlinear regimes. Here, a spatially ex...
Article
Full-text available
Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendri...
Article
Full-text available
The retina hosts all processes needed to convert external visual stimuli into a neural code. Light phototransduction and its conversion into an electrical signal involve biochemical cascades, ionic regulations, and different kinds of coupling, among other relevant processes. These create a nonlinear processing scheme and light-dependent adaptive re...
Article
Full-text available
Inhibitory neurons form an extensive network involved in the development of different rhythms in the cerebral cortex. A transition from an incoherent state, where all inhibitory neurons fire unrelated to each other, to a synchronized or locked state, where all or most neurons define a tight firing pattern, is maybe the most salient process to analy...
Cover Page
Full-text available
Velarde O, Urdapilleta E, Mato G, Dellavale D (2019), Bifurcation structure determines different phase-amplitude coupling patterns in the activity of biologically plausible neural networks, NeuroImage, Vol. 202, No. 116031, DOI: 10.1016/j.neuroimage.2019.116031 Source code freely available at: https://github.com/damian-dellavale/Time-Locked-Index
Article
Cross-frequency coupling (CFC) refers to the nonlinear interaction between oscillations in different frequency bands, and it is a rather ubiquitous phenomenon that has been observed in a variety of physical and biophysical systems. In particular, the coupling between the phase of slow oscillations and the amplitude of fast oscillations, referred as...
Article
Full-text available
Background Cross-frequency coupling (CFC) refers to the non linear interaction between oscillations in different frequency bands, and it is a rather ubiquitous phenomenon that has been observed in a variety of physical and biophysical systems. In particular, the coupling between the phase of slow oscillations and the amplitude of fast oscillations,...
Article
Objective Spectral harmonicity of the ictal activity was analyzed regarding two clinically relevant aspects, (1) as a confounding factor producing ‘spurious’ phase-amplitude couplings (PAC) which may lead to wrong conclusions about the underlying ictal mechanisms, and (2) its role in how good PAC is in correspondence to the seizure onset zone (SOZ)...
Article
Full-text available
Cover legend: The cover image is based on the Research Article Partial coherence and frustration in self‐organizing spherical grids by Federico Stella et al, https://doi.org/10.1002/hipo.23144.
Preprint
Full-text available
Objective Spectral harmonicity of the ictal activity was analyzed regarding two clinically relevant aspects, (1) as a confounding factor producing ‘spurious’ phase-amplitude couplings (PAC) which may lead to wrong conclusions about the underlying ictal mechanisms, and (2) its role in how good PAC is in correspondence to the seizure onset zone (SOZ)...
Article
Full-text available
Phase-amplitude cross frequency coupling (PAC) is a rather ubiquitous phenomenon that has been observed in a variety of physical domains; however, the mechanisms underlying the emergence of PAC and its functional significance in the context of neural processes are open issues under debate. In this work we analytically demonstrate that PAC phenomen...
Article
Full-text available
Nearby grid cells have been observed to express a remarkable degree of long‐range order, which is often idealized as extending potentially to infinity. Yet their strict periodic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent gri...
Preprint
Full-text available
Nearby grid cells have been observed to express a remarkable degree of long-range order, which is often idealized as extending potentially to infinity. Yet their strict periodic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent gri...
Article
Full-text available
A unique topographical representation of space is found in the concerted activity of grid cells in the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexagonal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the vertices of a triangular grid, the spacing and orie...
Article
In this paper we have addressed the question of whether a simple set of functions being the solution of a model, namely the damped harmonic oscillator with a general driving force, can satisfactorily describe data corresponding to ocular movements produced during a visual search task. Taking advantage of its mathematical tractability, we first focu...
Preprint
Spike generation in neurons produces a temporal point process, whose statistics is governed by intrinsic phenomena and the external incoming inputs to be coded. In particular, spike-evoked adaptation currents support a slow temporal process that conditions spiking probability at the present time according to past activity. In this work, we study th...
Article
Full-text available
Spike generation in neurons produces a temporal point process, whose statistics is governed by intrinsic phenomena and the external incoming inputs to be coded. In particular, spike-evoked adaptation currents support a slow temporal process that conditions spiking probability at the present time according to past activity. In this work, we study th...
Article
Full-text available
In one-dimensional systems, the dynamics of a Brownian particle are governed by the force derived from a potential as well as by diffusion properties. In this work, we obtain the first-passage-time statistics of a Brownian particle driven by an arbitrary potential with an exponential temporally decaying superimposed field up to a prescribed thresho...
Article
Full-text available
The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet, one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses shou...
Preprint
Full-text available
The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses shoul...
Article
Full-text available
Sensory neurons are often described in terms of a receptive field, that is, a linear kernel through which stimuli are filtered before they are further processed. If information transmission is assumed to proceed in a feedforward cascade, the receptive field may be interpreted as the external stimulus' profile maximizing neuronal output. The nervous...
Article
Full-text available
Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this wor...
Conference Paper
Full-text available
Where in the brain is outside space represented? In the mammalian brain, quite clearly it is represented multiple times, and with some differences from species to species. A remarkable representation, however, is that by grid cells, discovered in 2005 in rodents, in the medial entorhinal cortex. Subsequently conjunctive grid-by-head-direction cells...
Article
Full-text available
We derive the first-passage-time statistics of a Brownian motion driven by an exponential time-dependent drift up to a threshold. This process corresponds to the signal integration in a simple neuronal model supplemented with an adaptation-like current and reaching the threshold for the first time represents the condition for declaring a spike. Bas...
Preprint
Negative serial correlations in single spike trains are an effective method to reduce the variability of spike counts. One of the factors contributing to the development of negative correlations between successive interspike intervals is the presence of adaptation currents. In this work, based on a hidden Markov model and a proper statistical descr...
Article
Full-text available
Negative serial correlations in single spike trains are an effective method to reduce the variability of spike counts. One of the factors contributing to the development of negative correlations between successive interspike intervals is the presence of adaptation currents. In this work, based on a hidden Markov model and a proper statistical descr...
Preprint
The survival probability and the first-passage-time statistics are important quantities in different fields. The Wiener process is the simplest stochastic processwith continuous variables, and important results can be explicitly found from it. The presence of a constant drift does not modify its simplicity; however, when the process has a time-depe...
Article
Full-text available
The survival probability and the first-passage-time statistics are important quantities in different fields. The Wiener process is the simplest stochastic process with continuous variables, and important results can be explicitly found from it. The presence of a constant drift does not modify its simplicity; however, when the process has a time-dep...
Preprint
The coding properties of cells with different types of receptive fields have been studied for decades. ON-type neurons fire in response to positive fluctuations of the time-dependent stimulus, whereas OFF cells are driven by negative stimulus segments. Biphasic cells, in turn, are selective to up/down or down/up stimulus upstrokes. In this paper, w...
Article
Full-text available
The coding properties of cells with different types of receptive fields have been studied for decades. ON-type neurons fire in response to positive fluctuations of the time-dependent stimulus, whereas OFF cells are driven by negative stimulus segments. Biphasic cells, in turn, are selective to up/down or down/up stimulus upstrokes. In this article,...
Article
Full-text available
Variability in neural responses is a ubiquitous phenomenon in neurons, usually modeled with stochastic differential equations. In particular, stochastic integrate-and-fire models are widely used to simplify theoretical studies. The statistical properties of the generated spikes depend on the stimulating input current. Given that real sensory neuron...
Preprint
Variability in neural responses is an ubiquitous phenomenon in neurons, usually modeled with stochastic differential equations. In particular, stochastic integrate-and-fire models are widely used to simplify theoretical studies. The statistical properties of the generated spikes depend on the stimulating input current. Given that real sensory neuro...
Article
In this paper we present a model to describe the electrical properties of a confluent cell monolayer cultured on gold microelectrodes to be used with electric cell-substrate impedance sensing technique. This model was developed from microscopic considerations (distributed effects), and by assuming that the monolayer is an element with mean electric...
Article
Full-text available
Resumen Los circuitos termofluidodinámicos de convección natural están cobrando es- pecial importancia en el diseño de reactores nucleares avanzados, debido a que la convección natural suministra un sistema eficiente de remoción de calor completamente pasivo. Interesa entonces analizar las condiciones bajo las cua- les existen inestabilidades termo...

Network

Cited By