
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The MOTHRA Software Testing Environment·

Richard A. DeMillot
Eugene H. Spafford

Software Engineering Research Center
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
+ 1 404 894-3180

ABSTRACT

The value of software testing in the development of large software sys
tems is well-documented. Unfortunately, the development and employment
of an integrated test plan is often avoided due to the costs associated with
testing. These costs include more than just capital expenses associated with
obtaining test systems and software. They also include the time and effort
involved in educating personnel in the use of the testing system, the time
taken to run the tests, and the costs of rerunning the tests after errors are
found and corrected. Furthermore, some forms of testing are difficult or
impossible to run incrementally, and they produce results which may be diffi
cult to use in correcting or enhancing the tested software.

The MOTHRA Environment is an integrated set of tools and interfaces
that support the planning, definition, preparation, execution, analysis and
evaluation of tests of software systems. The support provided by MOTHRA is
applicable from the earliest stages of software design and development
through the progressively later stages of system integration, acceptance test
ing, operation and maintenance. MOTHRA has been designed to address some
of the cost concerns mentioned above. Two primary design criteria, in partic
ular, are significant in this regard. First, the MOTHRA interfaces-particularly
user interfaces-are high-bandwidth. This allows us to present more informa
tion during testing and retesting. Coupled with proper design and integration
with familiar displays, it should obviate the need for extensive training to use
MOTHRA.

Secondly, the overall MOTHRA architecture imposes no a priori con
straints on the size of the software systems that can be tested in the environ
ment. The practical meaning of this criterion is that the same architecture is
ab!e to service programs varying in size from individual module§ of less than
10 source lines to fully integrated systems of more than 10 lines. The
human user-the tester-is able to apply comparable functions across a fami
liar interface as the software being tested evolves in size and complexity by
several orders of magnitude. In fact, the only indicators of size or complexity
that have ties to the MOTHRA architecture are the operating system cost penal
ties and performance delays inherent in manipulating massive objects. All
other costs and resource demands are under the direct control of the tester.
In most cases, the tester will choose to allow critical resources such as time or
memory to grow linearly with program size and complexity. The tester may,
however, choose to conserve these resources by sacrificing other resources
(e.g., dollars) or even by reducing the fidelity of the test. These are ulti-

E. Spafford
Georgia Tech
1 of 32

mately economic decisions determined by the relative costs of tests and
failures-MOTHRA does not legislate or even favor one kind of decision in
preference to another.

An important mechanism for meeting these criteria is that MOTHRA is
reconfigurable, allowing the integration of user and system tools with which
the tester may already be familiar, and allowing the system to make use of
different underlying hardware architectures of differing capabilities. We
address this in MOTHRA by the use of thematic tools for software testing. It
has been our experience that software testing is most effective when the test
procedures can be reduced to a set of well-understood and natural activities.
Since MOTHRA supports tests of both very small and very large programs, the
details of the tools that are actually invoked vary in power and scope. How
ever, even very different tools can implement basic themes that are carried
along throughout the several phases of testing. For example, programmers in
modern development environments interact increasingly with an array of very
powerful source language debuggers. Even though formal testing methodolo
gies and debugging are very different activities, the debugging theme can be
used as a metaphor to carry the tester from tool to tool as the software being
tested evolves.

One MOTHRA system has been constructed using the AT&T Bell Lab~
Blit interactive bitmap display terminal running under the control of a UNIX
window manager called Layers. The host environment is a modestly config
ured VAX 11/780 running UNIX 4.3 BSD. Another version has been imple
mented on V AXstationsS running Ultrix 1.2 and the X Window System.
However, the architecture of MOTHRA encourages re-hosting. Furthermore,
explicit operations allow MOTHRA processes to spawn parallel and vectorized
processes for execution by a Cyber 205 (or any other powerful parallel
machine).

January 23, 1987

• The work presented in this paper was funded, in part, by RADC contract F30602-85-C-0255.
t The authors may be reached bye-mail addressed to:

Internet: rad@gatech.EDU spaf@gatech.EDU
uucp: ... I{akgua ,decvax,hplabs,seismo} Igatechl{rad ,spaf}

* UNIX is a registered trademark of AT&T Technologies.

E. Spafford
Georgia Tech
2 of 32

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1. Introduction

The MOTHRA Software Testing Environment·

Richard A. DeMillot
Eugene H. Spafford

Software Engineering Research Center
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
+ 1 404 894-3180

The MOTHRA Environment is an integrated set of tools and interfaces that support the
planning, definition, preparation, execution, analysis and evaluation of tests of software sys
tems. MOTHRA is designed to be used starting at the earliest stages of software development
and continuing through the progressively later stages of system integration, acceptance test
ing, operation and maintenance.

The MOTHRA system satisfies three primary criteria. First, its interfaces-particularly
user interfaces-are high-bandwidth. Second, the overall architecture imposes no a priori
constraints on the size of the software systems that can be tested in the environment. While
these seem to be unrelated criteria that address issues at differing levels of detail, they are, in
fact, closely linked.

Since the ability to process very large integrated software is an explicit design goal,
increasing the effective feedback bit rate l along key interfaces is an obvious way to design for
acceptable functional performance. The bandwidth of the interface is simply the feedback bit
rate that it supports. Bitmap displays and windowing are the usual means of increasing the
bandwidth of user displays, for instance. Less obvious are techniques which increase the
effective bit rate by graphical compression, statistical sampling, and analog representations.
In MOTHRA information is highly compressed for presentation to the tester. This provides a
high-bandwidth user interface in which structural and dynamic information is summarized
graphically and exact representations of algorithm and program behavior are replaced by
inexact animations of behavior, higher-order descriptions of process execution, and non
procedural specifications of program function.

The practical meaning of the second requirement is that the same architect'1re should be
able to service programs varying in size from individual modules of less than 10 source lines
to fully integrated systems of more than 10 lines. That is, the human user-the tester
should be able to apply comparable functions across a familiar interface as the software being
tested evolves in size and complexity by several orders of magnitude.

In fact, virtually the only indicators of size or complexity that have ties to the MOTHRA

architecture are the operating system cost penalties and performance delays inherent in mani
pulating massive objects. All other costs and resource demands are under the direct control
of the tester. In most cases, the tester will choose to allow critical resources such as time or
memory to grow linearly with program size and complexity. The tester may, however,
choose to conserve these resources by sacrificing other resources (e.g., dollars) or even by
reducing the fidelity of the test. These are ultimately economic decisions determined by the

1 This use of the term feedback bit rale is apparently due to S. C. Johnson and refers to the natural
measures of work and efficiency in software development environments. Roughly speaking, the feedback
bit rate is the number of bits transferred across an interface (from host to user) per atomic user interface
operation.

E. Spafford
Georgia Tech
3 of 32

relative costs of tests and failures. MOTHRA does not legislate or even favor one kind of deci
sion in preference to another.

The key to this approach is to design an environment in which most primitive operations
are implemented as local transformations of data objects. Global operations, on the other
hand, are never applied to these objects but rather are defined in terms of primitive transfor
mations of more complex atomic objects.2

MOTHRA satisfies these requirements by first organizing the user interface around a
high-resolution bit map display with adequate graphics and windowing capabilities and,
second, by using the display as a tester's view into a larger (virtual) test context. A view is
defined by a consistent set of object instances that comprise a meaningful state for the
MOTHRA system. Such a state contains sufficient information for applying a set of primitive
operations and generating test-related data and results in the form of new object instances.
The tester need have only a dim idea about the representation or physical location of aspects
of the test which are not in view. As a matter of fact, the total context of a sufficiently com
plex test may not be meaningful to a software tester at all; in this instance, a large team of
testers will each have differing views of the test, the total context of which is really only
understood by systems engineers.

One of our major concerns has been to make MOTHRA reconfigurable. For the most
part, MOTHRA does not attempt to re-create capabilities provided by the environment in which
it is hosted. The guiding principle has been to structure MOTHRA as a subenvironmentDeMi86

of an overall software development or support environment. This implies both a certain clo
sure and a robust interface. The MOTHRA architecture supports as a function any meaningful
composition of basic functions. This is accomplished through an object-oriented architecture
and user interface. There are several motivations for not viewing MOTHRA as highly
integrated into a more global host environment. Foremost among these are the need for iso
lation and protection of test-related processes.

This same goal is also addressed in MOTHRA by the use of thematic tools for software
testing. It has been our experience that software testing is most effective when the test pro
cedures can be reduced to a set of well-understood and natural activities. Since MOTHRA sup
ports tests of both very small and very large programs, the details of the tools that are actu
ally invoked vary in power and scope. However, even very different tools can implement
basic themes that are carried along throughout the several phases of testing. For example,
programmers in modern development environments interact increasingly with an array of
very powerful source language debuggers. Even though formal testing methodologies and
debugging are distinct activities, the debugging theme can be used as a metaphor to carry the
tester from tool to tool as the software being tested evolves. For example, program
mutationDeMi78,Budd81,Howd82 requires testers to construct sets of tests to demonstrate that
certain basic design and programming errors are not present.3 A fundamental activity in pro
gram mutation is revealing bugs in the mutant programs. Powerful debuggers are therefore
useful tools during the tests and can be carried along as thematic tools. Many other test
methodologies can, in turn, be reduced to mutation testing.Acre79,Budd81 Thus, these metho
dologies can also be supported by the thematic tools.

2 We use the term object to mean a collection of data and operations on that data. An atomic object is
one which allows only atomic operations, in the sense of view atomicity.Allc83 We do not address concepts
like reliability or fault tolerance with the design of MOTHRA. Further, the exact structure of these objects
(active or passive, etc.) does not matter. The object paradigm is intended as simply a design approach to
the construction of MorHRA.

3 In this sense, program mutation is a kind of fault detection experiment, as might be carried out to
detect faults in digital circuits. Here, the experiments are applied to software and the fault model is the
space of likely errors that programmers make. The "local transformations" mentioned previously are
simply the fault insertion operations. This technique is general enough to simulate common coverage
based tests such as statement, branch, and path coverage as well as many other systematic software tests.

E. Spafford
Georgia Tech
4 of 32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

There are subsidiary issues that are addressed in the design of MOTHRA. Foremost
among these is our belief in capitalizing the software development effort at an appropriate
level. The notion of capital-intensive software engineering and production is not a new one.
For the MOTHRA development group, this point of view has led us to a fairly cavalier attitude
toward trading machine cycles for human effort in conducting a test. Provided only that it
can be justified economically, MOTHRA will spawn machine-intensive tasks and organize them
for execution by a computer resource of appropriate power. This function is called resource
shifting and, although it is under the control of the tester, MOTHRA organizes and partitions all
test views to accommodate such remote processing.

2. User Views

Testers interact with MOTHRA through a view of the test. The tester's view presents
images representing global test status as well as local objects, attributes and processes. There
may be several views to which the tester has access at anyone time, but these views must be
accessed serially and the user cannot have two simultaneous and distinct views of tests.

Some of the objects in view are entirely local and private to the user. For example, the
user may create a temporary file as an aid in deriving appropriate test cases. These objects
are under the complete and total control of the current view, and the user who "owns" the
view can create copy, share, and destroy these objects at will. At the other extreme are those
objects that are shared by all views. These objects are typically under the control of agents
or processes external to MOTHRA. An example of such a shared object is the source listing of
the software being tested. Such objects might be the property of configuration management
and library tools residing in a host environment. These tools enforce a specified set of rights
to access or modify the shared objects. MOTHRA operations on any shared objects in view
respect the rights inherited from the external owners or managers of these objects. Inter
mediate to these private and shared objects are the public objects. Objects that are public
represent the visible activity of the test. These objects are generated by testers and by
MOTHRA tools. Public objects may include test cases and results, traceability mappings
between test events and specifications, and error/fault statistics. Some of these public objects
are transient while others are persistent. Occasionally, a transient object (e.g., test case
number 6) affects a persistent object (e.g, the error count for path number 26) and is incor
porated into the MOTHRA object base according to predefined dependencies, relationships,
and operations in much the same fashion as source code files dependencies are treated by the
UNIX make utility.Feld79 The exact nature of these dependencies define a policy that is unique
to the test and its organization. MOTHRA does not define these policies--it only enforces
them.

In physical appearance, a view is bounded by the edges of a high-resolution bitmap
display. Each window in the view gives the tester access to certain objects and operations
that are currently meaningful. The tester selects windows, objects, and operations with a
mouse that can be used to point to windows and their contents and to pull down menu selec
tions that are displayed under user control.

MOTHRA interfaces have been implemented for the Bell Labs BUt interactive bitmap
display termina14 running under the control of a UNIX window management executive called
Layers, and on Digital Equipment's VAXstation II color and black-and-white display termi
nals running under the X Window System.Sche86 These particular instances of the user inter
face are, however, not the only ones possible. The underlying architecture effectively disas
sociates the physical properties of the display from the tools which the display accesses. In
essence, the display is treated as just another tool in the environment. Other display tools
can be substituted provided that the environment's interface conventions are satisfied.

4 The AT&T 5620 Dot-Mapped Display. See[pilce84], for example.

E. Spafford
Georgia Tech
5 of 32

2.1. Functions and Operations

We will begin by briefly describing a typical set of functions that the tester invokes.
These functions are generally invoked in a sequence of views, called a run. Runs may be
suspended (saving the complete view at the time of suspension) and resumed at any time.
However, atomic operations are non-interruptible. Therefore, the view that is actually asso
ciated with a suspended run may contain objects resulting from values returned at a later time
by on-going atomic operations. These are managed by a data- and event-driven harness.
The same mechanism is used to manage multiple views of a test. A single display, for
instance, may be used to invoke a series of functions applied to two different source
modules. Since only one view at a time can be available, the tester can invoke a set of
atomic actions and suspend the run to begin a run for the second module.

2.1.1. Run Initiation

The key shared objects are the source files. S A run is initiated by identifying a set of
source files and associating the name of the run with those files. MOTHRA handles the parsing
of the source files to a convenient internal form and also manages the naming conventions for
modules and other syntactic units contained in those files.

2.1.2. Test Level Selection

A test plan may specify any of several levels of testing to be performed.Budd81 Examples
of these levels are statement analysis. predicate and domain analysis, Whit78 and coincidental
correctness analysis. Statement analysis is used for determining that every statement in the
program has been executed and has some effect on the functional behavior of the program.
Predicate and domain analysis are used to determine that all branches and specified paths are
properly selected and that domains associated with these predicates are properly defined.
Coincidental correctness analysis is used to test for the presence of a wide variety of compu
tational errors, including various arithmetic, data flow, and interface errors. Good79

Within each level, the user may also choose a strength of test, represented by a percen
tage. The exact meaning of a strength value depends on the specific level of testing and cer
tain subsets of the levels that may be selected. For example, if the user selects the statement
analysis level at 100%, the test can only be passed by constructing tests that fully exercise
every statement in the program. Within the predicate and domain analysis level at 90%
strength, the tester will be required to construct tests that with 90% certainty determine the
boundaries of predicate domains.

The levels of test are defined in terms of certain mutant operators.Budd78 That is, source
code transformations that implement the desired level of testing. For example, in the state
ment analysis level, mutant operators called san and adl are used to determine whether each
statement has been executed and to what effect. The san operator replaces each source state
ment by a special statement called trap that raises an exception. Unless test cases are pro
vided that raise all possible exceptions, all statements cannot have been exercised. On the
other hand, the operator sdl replaces each statement by a no-op. Unless the transformed
programs behave differently than the program being tested, the test data does not demon
strate that the given statements have any functional effect on program behavior.

Within the levels, classes of these mutant operators may be selected by the tester. In
these cases, the tester will use the selected operators to implement specialized testing
strategies.Acre79 These selections may be made on the basis of known or suspected
weaknesses, or perhaps upon economic considerations (e.g.,the tester may only have the
resources available to test 25% of the mutants in a specified time span).

5 MOTHRA is a multi· lingual environment. In the current version, MOTHRA is limited to processing
Fortran 77 (the complete language) and Ada (a large subset). Later versions are planned for C, Modula 2,
Lisp, and possibly others.

E. Spafford
Georgia Tech
6 of 32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Selection of levels, mutant types, and strengths may also be associated with source code
components. For example, during a unit test, the user may select only a certain subroutine
for a particular level and strength of testing. During software integration testing, the tester
may choose an incremental (i.e., bottom-up) strategy in which a given level and strength are
successively applied to units, then to integrating software that calls these subroutines, and so
on.

2.1.3. Test Data Selection and Execution

An important test function is the construction of tests and the execution of the program
on the test data. The creation of a set of test cases is essentially an editing function. The
editing may be under the control of the human tester, who is trying to meet some specified
level of testing (e.g., testing for the presence of all coincidental correctness errors of a given
type), an automated test data generator, a simulator, or even some data capture device that
records digitalized inputs from sensors, operators and communications channels. Creation of
appropriate tests is a key function. We will return to it again after some other supporting
functions have been described.

The actual testing is carried out by executing programs on the test data. The results are
observed by an oracle that decides whether or not the program has behaved properly. The
notion of proper . behavior can be quite complex. In unit and module testing, the concept is
usually identified with functional correctness-that is, consistency with a written formal or
informal specification. In later views of a more highly integrated software system or subsys
tem, correctness is less important than meeting functional or user requirements. The oracle
mediates all of these authorities. If a formal specification is available, the oracle consults it.
If a human user is the authority, the oracle takes advice from this source. If the behavior
cannot be assessed without additional instrumentation, the oracle receives instrumented out
put and reacts accordingly.

If unacceptable behavior is observed, the policies in force for the test determine the
next course of action. In some cases, the test proceeds after the nature and location of the
error is recorded in a public record. In other cases, the cause of the failure is located and
fixed immediately, resulting in a new view of the test.

2.1.4. Test Status Evaluation

During the testing process, the tester eventually wants to know whether or not testing
has been completed. This determination may be subjectively made or it may be specified
quite precisely and unambiguously. The latter case is obviously the more interesting one in
MfYTHRA.

Test status is instrumented and reported as dynamic progress toward meeting test goals
specified during run initiation. The user may be interested in overall progress toward com
pleting a test specified for a given level and strength. By the same token, the user may be
interested in whether or not a test has been carried out to reveal a specific error or type of
error. In all of these cases, test status can be defined in terms of a single primitive function:
execution of a mutant program on the test data. If the test data-in the judgement of an
oracle-does not distinguish the program being tested from the mutant program, then the
mutant is said to be live and is reported as such. If, on the other hand, the oracle determines
that the mutant behavior varies significantly from the behavior of the original program, then
the mutant is marked dead.

Dynamic information on test progress can be displayed in graphical and tabular format
and is archived in public and shared objects according to test policies enforced by MfYTHRA.

2.1.5. Test Data Creation Revisited

Test status evaluation is used to guide the test creation process. The tester may elect to
stop testing at this point or to strengthen the test data by attempting to kill some live mutants.

E. Spafford
Georgia Tech
7 of 32

If all currently enabled mutants have been killed, the tester may wish to create new mutant
types or begin testing a different subroutine.

In this process, the user is aided by the evaluation displays as well as by tools that may
be imported. Suppose, for example, that the tester is attempting to kill all mutants that
replace integer constants n with n+ 1 and n-1 (as might be required for domain analysis). In
addition to reporting that these mutants remain alive, MOTHRA allows the user to examine the
effects of these mutants in the context of the original program or even to browse through
related source lines or live mutants. More powerful test case editing capabilities are available
to create new tests, modify previous tests or to capture the results of other test data genera
tors. If the user has an especially difficult time in constructing a test that kills these mutants,
he may import a debugger to attempt to exhibit that the mutants are in fact "buggy" versions
of the program.

2.2. The Display

The technology used in the display and the material presented in that display are critical
to the design of MOTHRA. The MOTHRA window layout presents the user with a view of all the
objects that were described above. Based on our classification of objects we have defined the
following subwindows (displays) within the MOTHRA display:

• Mutant Status Manipulation: The icons that define and reference specified mutant
types, aggregations of these types, and the levels and strengths of tests that can be
defined from them.

• View Status: The graphic symbols or textual displays that represent the progress of
the current view toward test objectives, or other measures of completion.

• Test Cases: Any object-whether constructed by the tester or captured from an
external source such as a simulator-that is used to stimulate the software being
tested.

• Source Language Representations: Each view of the test defines a fragment of the
software being tested, and a source language representation of such a fragment is a
high-level description of the fragment. By definition, the most primitive constructs
in any source language representation are the source lines of code; all other
representations associate text or graphical information with sets of source lines.

• Command Line: Terse communications, prompts and system status reports are
directed to a degenerate (one line) window called the command line.

Testers may query and modify attributes displayed in any of these subwindows. Tran
sient information and data are displayed by whatever means is most appropriate for the
display tool. In our implementation, such transient data are displayed in windows that over
lay (and may sometimes obscure) the fixed windows just described. An example of a tran
sient object might be one of the thematic tools mentioned in Section 1. The tester must make
any explicit interfaces and functional dependencies between transient objects and MOTHRA

objects since none are implicit in our design of MOTHRA.

The MOTHRA Display handles "global" information in two distinct ways. First, it gives
the tester access to objects not in the current view. For example, to initiate the testing ses
sion, the tester provided file names that were meaningful to the host's file system, even
though MOTHRA does not contain file management capabilities. Second, simply touching and
changing the attributes of objects in the Display can have affects on the other windows in the
view-thus the Display encapsulates a set of "global" relationships for the rest of the view.
For example, selecting a random sampling of substitution mutants results in a propagation of
mutant status information to the other subwindows, such as the View Status suhwindow.

Attributes of objects displayed in each window can be modified dynamically, so that,
for instance, the display format of the source language text can be changed to bring the live
mutants into view. More complex interactions between view and source windows are

E. Spafford
Georgia Tech
8 of 32

I
I
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II

--------------- - ---

possible. For example, the tester can point to a histogram "bar" in the view window and
cause the corresponding live mutants to appear in the source window.

3. Subenvironment Architecture

Supporting the user display is a collection of tools bound together by an information
interface and hosted on another environment. Specified access pathways and ports allow
information, commands, and signals to flow between MOTHRA and the host environment.
While most of these have operating system dependencies, they have been hidden in higher
level constructs that appear to be primitives to MOTHRA. Although the overall design is
robust, implementing these primitives is easier in some environments than in others.

For example, one of the reasons for conceiving MOTHRA as a subenvironment of a host
is the need to control and manipulate faulty processes. Unlike most programming environ
ments, the intent of MOTHRA is to execute faulty processes. While most software developers
would like to consider failure to be an abnormal condition, the MOTHRA user deliberately
seeks it out through the process of killing mutant programs. Many of the failures induced in
this way are benign (the mutant program runs to completion but delivers incorrect results).
Approximately one fourth of the mutants generated,6 however, are not benign. They gen
erate processes that run seriously amok and must be tightly controlled. The modes of failure
in these processes run from simple errors such as division by zero to storage allocation and
concurrency errors that could harm unrelated processes if allowed to proceed unconstrained.

An important aspect of these definitions is that the system defines a process at each time
n, rather than just a state. This is a key idea for several reasons. First, the atomicity of
actions may result in several intermediate states before any other MOTHRA function can be
applied. Second, the display architecture and logical driver together constitute a data and
event driven network of autonomous processes and unique definitions of sequences of states
may not be possible in certain circumstances, whereas definitions of sequences of processes
can be defined in terms of the external actions needed to invoke them. Third, error recovery
and roll-back procedures as well as look·ahead optimization are easier to define and imple
ment. Fourth, we anticipate the use of MOTHRA in conjunction with nondeterministic system
testing procedures; recording and replaying test scenarios and associating internal test events
with software inputs is relatively easy to implement if each major time step of the environ
ment corresponds to a history of states.

The information interface is the MOTHRA backplane. In many respects, MOTHRA com
bines the features of both open and closed programming systems. MOTHRA is closed in that
the fixed windows of a view and the objects, attributes and operations associated with them
define an Entity-Relationship (E-R) modelchenSO that cannot be modified. Thus the process
monitors, test data generators, instrumentation and other tools associated with the fixed win
dows can always count on certain dependencies and relationships among essential objects in
view-ensuring, for instance, reproducible behaviors.

On the other hand, MOTHRA is open to the extent that any E-R model-respecting tool
whatsoever can be attached to the backplane. Editing is a simple example of a transient
activity that can be imported in this way. Any file can be edited by any editor provided only:

•
•
•

the file is editable by the editor in question;

the point in time at which the editor is invoked does not preempt or interrupt an
action defined to be atomic in the E-R model;

no attributes or properties are introduced by the editor's actions or side effects that
contradict attributes or properties of the E-R model.

In other words, any tool can be imported to the user's view, provided that the user is
able to plug (or wire) that tool into the backplane. This is a particularly valuable design for a

6 In our testing so far.
E. Spafford
Georgia Tech
9 of 32

testing environment, since many testing tools share common tool fragments. It also permits
some novel interactions between the host and MOTHRA environments. A software developer,
for example, can attach a mutant generation and execution capability as a background activity
during coding and debugging. This is a generalization 9f Weinberger's dynamic instruction
counting tool. Wein84 The underlying E-R model allows the processes of mutant generation
and execution to be decoupled from the integrating framework provided by the display archi
tecture (recall that the display technology is simply another tool that plugs into the back
plane). One application of this capability is the inexpensive maintenance of test status
throughout the development process by keeping killed mutant status information for object
code.

4. Resource Shifting

The process of creating and executing mutant programs on the test cases TI' T 2 , ••• ,Tk can
be done serially in one of two logical orderings. The first ordering would be to apply the test
cases, one at a time, to each live mutant and observe the results. The second ordering is
where all test cases are applied to each live mutant and the results observed. All such serial
processes consist of on the order of ~ x k independent transactions, where is the number of
enabled mutants and k is the number of tests to be executed.7 In either case, we are
presented with a series of independent tasks.

Simply spawning these independent tasks to m independent parallel processors reduces
the elapsed time for processing the test cases against the mutants to:

.... xk
-- + OVERHEAD.

m

Since the OVERHEAD can be compressed to one of the serial protocols mentioned above, this
amounts to a linear speed up on independent parallel processors. However, large blocks of
these tasks have an internal structure that can be exploited to achieve more impressive speed
gains.

For example, the substitution mutants of a simple assignment (using C-like notation)
can be written in one of the following forms:

*lhs

*lhs

*lhs

operandi x operand2 = > *lhs' = operandi x operand2

operandi x operand2 = > *lhs operand' I x operand2

operand I x operand2 = > * Ihs operand I x operand' 2

(1)

(2)

(3)

Furthermore, the order in which these mutants appear is fixed once the program is known.
At the time mutgen returns a value, the mutant statements (1)-(3) are equivalent to a vector
operation

LHS = OPERANDI ® OPERAND2 ,

where ® is the vectorized binary operation and the vectors LHS[i], OPERANDI[i], and
OPERAND2[i] are defined respectively to be *lhs, operandI' and operand2 [i] if i = O. For
i ~ 1, the vector positions are defined by the mutant definitions (1)-(3). Thus, the substitu
tion mutant executions are equivalent to a series of vector operations (followed by inner pro
duct operations to determine which mutants have been killed).

Interleaving the generation of vectorized expressions with parallel tasks can result in a
mUltiplicative speed-up. This is especially attractive for the case of substitution mutants since
for a typical n line program, the (worst-case) number of substitution mutants grows

7 Some simplification is possible by "short-circuiting" an iteration once a mutant has been killed (there
is no need to apply further test cases to a dead mutant), but we will ignore that and other optimizations in
the following presentation so as to make it more accessible.

E. Spafford
Georgia Tech
10 of 32

I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

proportional to

(")
2

which is the dominant term in the expression denoting the worst-case complexity of mutant
ge!,eration a~d execution. For moderately sized software systems (e.g., systems for which
10 s n s10) complete tests have required several days of dedicated computer time. With
interleaved parallel tasking and vectorization on processors with MIPS rates in the 50-100
range, a thousand-fold speed-up is possible, bringing these tasks to within the reach of real
time responses.

This has led us to consider seriously the possibility of shifting resources to accommodate
such processor intensive tasks. MfYI'HRA is designed to be hosted on hardware configured with
multiple machines of varying capabilities.

For example, one host might consist of the bitmap displays, object definitions, and file
services required for tester interaction. We assume also that whatever programming environ
ment serves as the host environment for M(J]'HRA can be accessed through this host. In partic
ular, editing and other transient functions do not make any demands on subsequent layers.

A second host consists of large-to-medium granularity parallel processors. Each of
these processors operates on a common memory with appropriate programmer control of
parallelism. The tester may-when local resource thresholds are exceeded- shift gears. The
result is the spawning of blocks of independent parallel tasks for each of the processors.
Coordination of destination processors and the collection and collation of the results of pro
cess execution is the responsibility of a process that resides on the first host. It is intended
that the tester have complete control over the allocation of parallel resources. At present,
however, this control is restricted to partitioning the serial tasks mentioned above in some
appropriate manner.

In the same manner, vectorization is carried out as described above and the vectorized
code and test cases are sent to a third host. Since the result of the vector operation is itself a
vector, only this result is returned from this host. The precise format of vector operations is
a machine-dependency that cannot be easily removed, although we anticipate that UNIX sys
tems capable of 100-500 scalar MIPS with powerful vector extensions to C will become
widely available. For the current version of MfYI'HRA, however, we are adopting a conserva
tive approach. For example, long chains of data dependencies within loops are being parti
tioned to avoid vectorization difficulties.

The experimental performance studies of resource-shifting will be reported in detail
elsewhere.

5. Conclusion

The MfYI'HRA environment described in this paper is currently implemented and running
in a multi-host environment consisting of Digital Equipment V AX 11/780 and 11/750 mini
computers, VAX station II workstations, AT&T Blit bitmap display terminals and a Control
Data Cyber 205 supercomputer. Version 1.0 of MfYI'HRA contains at least primitive imple
mentations for the functions described above, although many of the most desirable integrat
ing features (e.g., automating the transmission of vectorized processes from the VAX host to
the Cyber 205) are not fully functional. Thus far, MfYI'HRA has been used to test Fortran 77
programs in the 20-500 line range. With current memory and other constraints (there are no
MfYI'HRA design constraints) complete testing of 1,000-10,000 line Fortran programs seems
well within the capabilities of Version 1.0.

A second version that exploits optimization opportunities and will be tailored to
extremely large-scale applications is under design.

Although user experience with MfYI'HRA is currently confined to our development group,
we expect Version 1.0 to be available on a limited scale to a community of 30-50 software

E. Spafford
Georgia Tech
11 of 32

testers. In spite of the care we have taken to ensure that fundamental design concepts really
match the needs of realistic software testing, we anticipate that many hitherto unidentified
issues will surface. These experiences will be analyzed and reported at a later date. We are
optimistic, however, that a software testing environment architected as described above will
deliver acceptable levels of computing resources to the important problem of how to test and
evaluate the quality and reliability of large software systems. Furthermore, we anticipate
that the system will be easily learned and easily used, thus leading to improvements in testing
and software production.

References

Acre79.
Acree, A. T., R. A. DeMillo, T. A. Budd, R. J. Lipton, and F. G. Sayward, "Mutation
Analysis," TECHNICAL REPORT GIT-ICS-79/08, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA, 1979.

Allc83.
Allchin, J. E., "An Architecture for Reliable Decentralized Systems," PH.D. DISS.,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta,
GA, 1983. Also released as technical report GIT-ICS-83/23

Budd78.
Budd, T. A., R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "The Design of a Pro
totype Mutation System For Program Testing," PROCEEDINGS NCC, MIPS CONFERENCE

RECORD, pp. 623-627, 1978.

Budd81.
Budd, T. A., "Mutation Analysis: Ideas, Examples, Problems, and Prospects," in Com
puter Program Testing, ed. B. Chandrasekaran and S. Radicchi, pp. 129-148, North
Holland, 1981.

Chen80.
Chen, P. P., Entity-Relationship Approach to Systems Analysis and Design, North
Holland, 1980.

DeMi78.
De Millo , R. A., R. J. Lipton, and F. G. Sayward, "Hints on test data selection: Help
for the practicing programmer," COMPUTER, vol. 11, no. 4, pp. 34-43, IEEE, April
1978.

DeMi86.
De Millo , R. A., "Functional Capabilities of a Test and Evaluation Subenvironment in
an Advanced Software Engineering Environment," TECHNICAL REPORT GIT-SERC-
86/07, Software Engineering Research Center, Georgia Institute of Technology,
Atlanta, GA, 1986.

Feld79.
Feldman, S. I., "Make-A Program for Maintaining Computer Programs," SOF1WARE

PRACTICE AND EXPERIENCE, vol. 9, pp. 255-265, 1979.

Good79.
Goodenough, J. B., and S. L. Gerhart, "Towards A Theory of Test Data Selection,"
TRANSACTIONS ON SOFTWARE ENGINEERING, vol. SE-1, no. 2, pp. 156-173, IEEE, June
1979.

Howd82.
Howden, W. E., "Weak Mutation Testing," TRANSACTIONS ON SOFTWARF ENGINEERING,

vol. SE-8, no. 4, pp. 371-379, IEEE, July 1982.

E. Spafford
Georgia Tech
12 of 32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pike84.
Pike, R., "The Blit: A Multiplexed Graphics Terminal," BEll LABORATORIES TECHNICAL
JOURNAL, vol. 63, no. 8, pp. 1607-1630, AT&T, October 1984.

Sche86.
Scheifler, R. W., and J. Gettys, "The X Window System," TRANSACTIONS ON GRAPHICS,

no. 63, ACM, 1986.

Wein84.
Weinberger, P. J., "Cheap Dynamic Instruction Counting," BEll LABORATORIES TECHNI·
CAL JOURNAL, vol. 63, no. 8, pp. 1815-1826, AT&T, October 1984.

Whit78.
White, L. J., E. I. Cohen, and B. Chandrasekaran, "A Domain Strategy for Computer
Program Testing," TEClllNCAL REPORT OSU-CISRC-TR-78-4, Ohio State University,
1978.

E. Spafford
Georgia Tech
13 of 32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

THE VIEWGRAPH MATERIALS

FOR THE

E. SPAFFORD PRESENTATION FOLLOW

~I

I I I I I I I I I I I I I I I I I I

IZ

w

2 Z

o ct:
>

Z

W

(
9

Z

I
(f)

W

I
-W

ct:
« ~
lLL
o (f)

<

~

~

~

o ;g
W

I I
-

L Q
)

+
J

C

~

Q
)

(J
)

U

0

£
0

N

u
C

n

L
£

n

o
u

0
Q

)
Q

)
N

""\
if)

I
-

1
-
)

Q
)

c
t:,+

-o

o
.(J

)
(J

)
Q

)
L

.c

+
J

0

L
:J

Q

)
Q

)
+

J
0

Q
)
~

C

if)
...

.
-

C

0
(J

)
_

+
J

C

C

w
o

o

.
-

+
J

Q
)
~
 «

L

0
o

Q
)

5
0

+

J

'+
-

o
(f)

E.
S

pafford
G

eorgia
T

ech
14

o
f 32

-C"]tTl
Vl (D •

oS;C/l
-, IJQ "0 _.Po:>
WPo:>-,

t~ -l 0'
(D ...,

n 0-
::r-

TESTING IS A RISK -REDUCING ACTIVITY

* INCREASE CONFIDENCE THAT SYSTEM
BEHAVES AS INTENDED

* DEMONSTRATE MODES OF FAILURE

* FIND AND REMOVE INTRINSIC CAUSES
OF FAILURE

I •••••••••••••••••••

------._-----------

-om 0\ (1) •

OQCIl
-, (JQ '0

STRICTLY SPEAKING,
TESTING IS NOT PART OF THE DEVELOPMENT PROCESS

COSMIC RAYS

PEOPLE SYSTEMS

WORLD $

DEVELOPMENT

TESTING

..... ~
~ : 2 TESTING IS A CONTROL ON THE DEVELOPMENT PROCESS

(1) '"1
(") 0-
::r

I
I
I

COSTS I
I
I

COSTS DUE TO TESTING •
I
I

COST OF ERRORS
I
I
I
'I
I
I
I
I

E. Spafford I
Georgia Tech
17 of 32

I

• • • I I • I I • • • • II I • • I I

I-L

o

z o I
« 0:::

w

0....
o W

1

-

~
o W

I
Z

(f)
l.JJ
(f)

«
0

:1
:

zo....
O

W

0
---1

o
~

z o (f)
w

o

I
U
1

o o
0

w

w

>

~
I
-

~

S
a

w

w

0:::

o::::w~~--~---:--~--~--~--~~~ o

E.
S

pafford
G

eorgia
T

ech
18

o
f 32

o W

lL
.

-.-J

-om \0 (1) •

oS;1f)
-, (JQ '0 -. ~
w~-,

10....,0'
(1) '"1
(") 0-
;:;-

THE MOTHRA SOFTWARE TESTING ENVIRONMENT

A /'A
UNIT SYST£H

lee Loe t> 111 Loe
COHHON INT£RFflC£5, TOOLS, H£THODS# TH£J1£5

HIGH EP~WIDTH INTERFACES
GRAPHICS, HINDOHING, PJlIHRTION, DRTR Cot1PR£SSION, OBJ£Cr-GRIENTED

NO A PRIORI SIZE CONSTRAINTS
RTOHIC OPERRTIONS PRE LOCPL TRPJiSFORHflTIONS OF EXECUTRBLE OBJECTS

.~~.-.- ••• - ••• -- •• -

• • __ • II - •••• - -, ., ••• -- •••

N CltTl
0(1) •

ogcn
-, (JQ "0 -. ~
w~-,

N-JO'
(1) '"1
() Co
::r'

THREE ASPECTS OF MOTHRA

* VI~NS -- A NAY Of MRNRGING
LRf~G~ T~5T5

* THEMRTIC TOOLS -- R M~THODOLOGY FOR
US£f~ INT£RRCTION5

* SHIFTING GEARS -- CAPITRLIZING
THF TFST AT AN RPPROPRIRTF L£VEL

NCH'!"j
..- (j) •

oS;C/l
...., (JQ '0 ~
w~....,

N-JO'
(j) '"I
(") 0-
::;-

VIEWS OF LARGE TESTS

BOUNDARIES OF BITMAP DIPLAY DEFINE A WINDOW INTO
A MORE GLOBAL TEST CONTEXT

iI

o 0 o

II ill ill

Vlt!N A VIEW B

SHARED OBJECTS

'-''-

-~ PUBLIC OBJECTS

'''-""
~

".

\
o PRIVATE

OBJECTS

\ D a
~ ",,-------

VIEW C

TRANSIENT
OBJECTS

WEW DEFINE CONSIST£N1; ME~NINGFUL STATES FOR MOTH;?A

.... - ' ' __ ' • - • II

I • • • I
(f)
w

•
~

w

:c
•

I
--
I

•
0

•
~

<:
a

z
j::::

•
0

~

~

~
•

~

~

0
~
,

•
u

2: C
f)

•
<:
-

•
*

I I • • •

~ ~ ~~

::lC
t)

ffio
Q8:
~lJJ
--1

0

o
~

~
~

~
~

kJ~
~
6

-reJ
ctN

iE·

'*

c...~
<:
h -.
a LJj

~lJJ
~
(
3

es~
~
o

f-,....

~
~

~
~

'*
'* E

.
S

pafford
G

eorgia
T

ech
22

o
f 32

Welm
W(1) •

o~'JJ
-,OQ '1:l

-. I:» wl:»-,
10....,0'

(1)
no..
;::l"

SHIFTING GEARS IS EASY
ONCE THE ENVIRONMENT IS CAPITALIZED

CYBER 205
SEQUENT

AT&T BlIT
VAX 11/78B ~

~
OBJECTS RND DISTRIBUTED HOST £NVIRONHENT

1 HIP
____________________________ ~c~200 MIPS

INCREASED COST
INCREASED FIDELITY

INCREASED SIZE

~ •• - ••• - •• -111 ••••• · ••

.. _-_ .. _---_ ... -_ ..

Nom
~ (D 0

oSlCl'.l
-,(JCl '0

_01'»
wl'»-,
N-JO'

(D
(") 0..
::T

INCREMENTAL COST OF TEST

C(R3P3L6S)
COST OF TESTING P AT LEVEL l AND SffiENGni S ON R

COST OF RUNNING P ON R

FIRST SET OF EXPERIMENTAL RESUL TS
(NOT TO 8E GENERALIZED)

e({ VAX 7BO, CY8ER 205}, P, (sal, pdl, cc/), 1.00) = 1.02
e({VAX 7BO} , P, (sal, pdl, ce/), 1.00) > 500

INCREMENTAL
COST OF TEST

COST OF RESOURCE

NO tTl
VI (1) 0

oSl(l:l
....., (JQ '"d

_01>:>
wI>:>.....,
N....,O'

(1)
(") 0-
::r *

*

MOTHRA. IS DESIGNED TO BE
A SUBENVIRONMENT

MOTHRA USER INiiERFACE 1

402 BSD ON VAX 11/780: (Layers on, Blit)
ULTRIX ON' Vft.xStafion II (X-Whrzdows)

:~ •• -- •••• -.-- ••••••

• • • •
• • • • • • • • •
•
•
I'

• • •

TECHNIQUE

Given: program P
test data T

Construct: a set of MUTANT
programs M(P)

M{P, T) - % of programs in M{P)

(1) not equivalent to P
(2) give different results on T'

E. Spafford
Georgia Tech
26 of 32

NCJm
-..J (D •

o Q en
....., (JQ '0 -. ~
w~.....,

N..,O'
(D ...,

(") 0..
:::-

AUTOMATIC MUTATION SYSTEM

[PROGRAM ~ P';RSER I ~' <J I M~~;;RJ
7,S

TEST DATA INTERPRETER

•••• -.~ •••• -- ••••• -

• • • •
• • • • • •
• • •
• • •
• • •

IEnte,. El<pe,.lment Names I
;', .;. ';", ~.: .. :.::.:.:.::.:.:.;.,:.: .. :, .. ::.: , ... ,:.;: .. :,"',:..;;::~.:.:'::': :';"';";';";'. ':"':.:.:.:.: .. :~~':,:.:,:.: •. ::.,::. .. "':':\:'~:':':' •• :.:,~\::::..".\.:\\".\ • .\.::,:.:.":.~::~,,:.:;,:.:: •. ~. ,~·,:,::·:;.~·s·:·:.,,; ":"::'''';''';'''';';':':''!-'\'':''': :.: •. ,:.::.:';::.\< .. ':\'.:~.,;:.::~. ':':'~\" .. ,,\\:: .. \"~'\"'\';.!.:"':';~:'::-:"'~~.,:.,'!;.,:"'~':~:'~:""!!.':::~:~:~::::~f:>~':~~:.:;~~~::':'~:~':*~:;.:,:~:l'

Level:

Class!

sal I I pClI I f- eci

II II ~n II
,

ary con dmn II opm II prd II scl II stm I' a11 I

MOTHRA

fortron-77 Mutation Syste~

Sof'hmre En£)ineerin9 Research Center

Geor9ia Institute of Technolo9Y

Atlonta. en 3033Z

E. Spafford
Georgia Tech
28 of 32

J:J!~

rL C"Jc1,

i [ia:;:;,

; I hpe!:;.

j ,
J ,
'lOt)

\zon
I
i

..... , ..•... ' '. ;
" .. ' .:.;.'

I
!

pdt ! I ecl

'41:;;141! con I M,Ugl JII,n II Of'''' II prJ II
r;t::ii~;1II M,ftMM ~ m~ "ttl! 1M

scl I @ll!1\t1l~)' !

~
IN[EGEP. ()(10) .Il~

DO 20C J-LN-i
DO 10C\ J.l.N-J

IF «\(1 L LE. nUl J
TEMI' .. (\(I)
(\(I) "II(J J
f\(J).TE~1f'

CONTINUE
CONTINUE

COT[) 10(',

RETURN
[NI) 1 Directory ~

~trfIW!i'Jn"-'l
IUisplay Symbol Table;

UispInr CodeFiIe i

5UOROUTl NE SELECT(L. N)

INTEGER UN).1t
INTEGER I,J.t1(\X.T~

JoN
IF (J.lT.2J corD ~~
~ilX·J
l:.J-~
If II.lT.l) COfO 29

IF (L(1) • LI'. Li MilX J J COlO 1 ~
I1"XD;

~::! - ~
SOlO :;

;lM,'=L l Mnx i
:_ (MnX) ~LC J:!
:_(J)aTCtlF
J;zJ-1.
:.-~OTO ~.

:~ETURN
';:.Nl~

5UOROU1INE INSERT (L.N)
INTEGER UN) .I~

INTEGER KEY. L~\

II
II
" ,\
'i

II
II

Mi:!gJ·'~tMllM

Et:,IJ·4fWM]

I

'I ""'0"' P'ofil., I II! I ' Spec i fy Mutants i
'I :rim:rth!;Glt,,~;R!Ai

II:=.: ===============i!' 11 for L : 2 i I,
i I [nt er L vOlues for' the !
11"rraY L: 0 -i ji

! Enter value for N: Z I
Ii rest CQ"C ,,~ !
i Runo, n!) Or i:')1 nal Pray 0'" I
! Input Vo!ues for test ca"e S. ! I L 0 -J I

N Z I

I Execution stopped because" -!
, Normal Termination. !

I
I There were ZZ statements

executed.
I Directory '("'

!,Output Val~Selcct Test Casp. ~J

J=c. ill -1 (\
IF CJ.CT.NJ com ~~, i N Z
KEY.L(Jl i Is tillS the correct output.

~~~_I~·J~-~~~~~~~~,~,~,,=-~~~~~~~~ .. ~ .. ~_t.l~I~,.~~~~~~ .. ~_~"'~,,~_~,~,,~ .. ~,~.~~ 

E. Spafford 
Georgia Tech 
29 of 32 

• 
I 

• • 
I 

• • • • 
I 
I 
I 
I 

• 
I 
I 
I 
I 
I 



• • • • 
• • • 
I 

• • • • • 
I 

• 
• 
I 

• • 

Levels 

Cl Il!OS 8 

ICCil 
Z()() 

1· 

zo 

.... ',", "., .. , " ........ , ..... J. ",,$, ........ ,.e, , ........ _ .... "'_ .......... ,<~ ..... 1 .... 1. · ...... ,,,.· .. ,,·, .... ·\\ .. ·.·4 

sol I I pdl II eel 
~~::: 

'. .", In' ti&rens''''' 'UN ".,' ',. ..: .... ~ 
or" Ii can II ell II dmn II uP" II prJ II scl II s l. 1""_...;;0.:1.:1",,1 

NIC:~ flllOJ.N 

00 ZOB J-1,N-i 
00 109 J-1,H-J •. il$! SG~ 

I' CACI).LE.ACJ» cora iOa 

InltllllIZ'~"o 
ol'!)v(Ol. •• 
()Inll elr Indoue<runctlon7> 
(, lcd-(functlon7) 

~cts I't 
~Clhtl'() 
pu\bufO· • 
pUtchatoO • 
pu\lon!)() • 
pUtnclW.O 
:::~~~'a\). 

p,olntfO •• 
py teO' '. • ... n""e-o~r""-a"""""""' .. ~"', 
py \ child 1" [-Ill! r!0 ::-PF:'l.l· 
puts(). • •• Calif',';:.! ~-;----;!l1u 
spo-lnt.rO.. DrOkllorCroph '!lIb 
sPC'lntnO. Dro~.J"L ••. !llb 
liY.,C (). • •• Dr!!!: t. • . • .!ll b 

, .. 
to tlelp !lIb 

In'lt'lJarc..oph '~Iu 
InHl'1utT)'Pci:I·~lb;-..I-,~~~"""':_--:~ 

. '. 

.!nHMU\I' • 'vlr 
nHRon' •• 'vl ~o .. u:"Cr·iIM ·glb 
nH.Sy.l'aon. '01 DrIlolJHt.·· 'olb 
nlt.lollze •. !)l Drllct •••• 'olb 

• Jd.IJ:pla¥P. .!ll Help •••• -alb 
JrJl~p .• .ol Inl t.lJorCraph .slb 

'-~~I:.01~_...,:l.~. In.llMu Hypu .slb 
• In.1 t,r\Jt •••• slb 

InltRon s b 
In'ltSy:;I'Io;,' 'olb 
In1l'1C1lIZIl' 'olb 

• ~dlsplaJ'P· .• 'SIb 
"reet· ••• -alb 

• HounPQ.. • lb 

· '. 

. .... . 
. .. .. ~. "'~ '" .. ,,,,~" 
· .. 
t .... 

· z . 

I • !I 

091'_ •• 

· . . . 

I 

·IRTEI:~ ......... '"'..;..::...:....:.-:....:...:...:-:~..:..-;~..;..::...:...;.,.:...:....:....:...:~.:...;:...:..;..;l as\ can _s. 
o • :J~Z: : 0 0 0 0 • • • i. : .. i i . .. . . . . 

1: • I 'IP" ·tJ',CT :N) caro 99' • • H 2, 0 ••• , •••••••• 

'):£y.LlJ)' • • • • • • • • • • • 1. \hl&the correc\.outpu\. 
I 'I-J':'l' ••• 

• I •• 
• • 0 • • • • • 0 •• 0 • 

• 1 · . 

E. Spafford 
Georgia Tech 
30 of 32 



W Q tTl 
-(1) • 

o ~ en 
-,O"tl '"0 -. ~ 
w~ -, N...., 0' 

(1) .... 
(") 0-
::r" 

TECHNICAL APPROACH 

* BUILD PROTOTYPE BASED ON PROGRAM 
MU7A TION APPROACH TO T£STING 

o SYSTEMA TIC AND QUANTI fA TIVE 
o WELL-DEVELOPED THEORETICAL BASIS 
o EXTENSIVE EXPERIMENTAL VALIDA TIONS 
o SCALES UP 
o IDEAL FOR SUPERCOMPUTER IMPLEMENTA TION 

* RDRPT PROTOTYP[ TO RDR 

* CONDUCT FFASIBILITY DEMONSTRATIONS 

.... __ ..... -._. __ .-



....... _ .. __ ...... . 

PROJECT STATUS 

* TWO IMPLFMFNTA TIONS OF VERSION J 
INSTALLFD AND BFING TESTED 

o PROCESSES COMPLETE FORTRAN 77 LANGUAGE 
o LAYERS (VAX 11/780) AND X-WINDOWS (VAXStations) 

* ADA CAPABILITY DFSIGNED 

o ERROR OPERATORS DEANED 
o ARCHITECTURE SPECIFIED 

* PERFORMANCF STUOIFS INITIATFI) 

w 0 tTl 0 VERSION 1 OPTIMIZATION 
10(1) • 

s,@ . .g 0 SUPER COMPUTER IMPLEMENTATIONS 
wJ:l;)....., 
10 0' >---l.., 

~o.. 
~ 


