
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

DSMCompare: Domain-Specific Model Differencing for Graphical
Domain-Specific Languages

Manouchehr Zadahmad1, Eugene Syriani1, Omar Alam2, Esther Guerra3, Juan de Lara3

1 Université de Montréal (Canada)
2 Trent University (Canada)
3 Universidad Autónoma de Madrid (Spain)

Received: date / Revised version: date

Abstract During the development of a software project,
different developers collaborate on creating and changing
models. These models evolve and need to be versioned.
Over the past several years, progress has been made in
offering dedicated support for model versioning that im-
proves on what is being supported by text-based version
control systems. However, there is still need to under-
stand model differences in terms of the semantics of the
modeling language, and to visualize the changes using
its concrete syntax. To address these issues, we propose
a comprehensive approach—called DSMCompare—that
considers both the abstract and the concrete syntax of a
domain-specific language (DSL) when expressing model
differences, and which supports defining domain-specific
semantics for specific difference patterns. The approach
is based on the automatic extension of the DSL to en-
able the representation of changes and on the automatic
adaptation of its graphical concrete syntax to visual-
ize the differences. In addition, we allow for the defini-
tion of semantic differencing rules to capture recurrent
domain-specific difference patterns. Since these rules can
be conflicting with each other, we introduce algorithms
for conflict resolution and rule scheduling. To demon-
strate the applicability and effectiveness of our approach,
we report on evaluations based on synthetic models and
on version histories of models developed by third parties.

Key words Model-driven Engineering, Model differ-
encing, Domain-specific languages, Graphical concrete
syntax.

1 Introduction

Model-driven Engineering (MDE) relies on models to
conduct all phases of software development. Models can
be built using general-purpose modeling languages, e.g.
UML, but the use of domain-specific languages (DSLs)
is also common [28,51].

Like other software artifacts involved in a development
process, models evolve [48] and, therefore, need to be
versioned to have a record of their changes [8]. Sometimes,
models are persisted as text files (e.g., using the XML
metadata interchange format, XMI [47]), which allows
using code version control systems on them. However,
text-differencing is not adequate for models as it may
report irrelevant model differences (e.g., same objects
that appear in different file positions). For this reason,
the modeling community has proposed specific model
versioning systems [3,13,25,29] and approaches for model
differencing [17], conflict resolution, and merging [10,52].

An important aspect of a versioning system is the
ability to visualize matches and differences of the his-
tory of a model in a comprehensible manner. However,
many approaches, like EMFCompare [17], represent the
differences between two versions of a model using low-
level generic traces that may be difficult to understand.
Moreover, these traces typically are at the abstract syn-
tax level, which may further hinder their understanding,
since users deal with models using their concrete syntax.

Therefore, we propose to represent traces in a domain-
specific way, assign domain-specific semantics to recur-
ring model differences (by defining semantic differencing
rules), and visualize those differences at the concrete
syntax level. Our approach lifts low level differences be-
tween two models to high level differences based on the
semantics of the DSL and represents them by reusing the
concrete syntax of the DSL. In this paper, we focus on
graphical concrete syntaxes realized through the Sirius
framework [54]. Since different semantic rules may con-
flict with each other, we propose an algorithm to assign
priorities to rules, by their automated static analysis. To
ensure the practicality of our proposal, we provide au-
tomated tool support to minimize the effort of applying
the approach to arbitrary graphical DSLs.

The contributions of this paper are the following.
First, we propose a method to represent model differences
within a single domain-specific model. This is achieved
by automatically extending the DSL meta-model with

domain-specific change operations. Second, we propose
means to create higher-level representations of lower-level
differences using semantic rules, provide mechanisms for
analysing their possible conflicts, and propose schedul-
ing policies for minimising those. Third, we provide an
automated way to represent model differences using the
graphical concrete syntax of the DSL. Finally, we provide
a prototype tool support, able to adapt automatically
Sirius-based editors for model change visualization, and
use it to validate our approach on graphical DSLs and
model histories created by third-parties.

This article extends our preliminary work [68] in sev-
eral ways. First, we have made several improvements to
the semantic differencing rules that encapsulate domain-
specific differences. In Section 4.1, we explain how these
rules can now express multiple negative application condi-
tions. Also, the new Section 4.3 explains how the semantic
differencing rules can be mapped to graph transformation
rules. We illustrate our implementation using Henshin.
This generalizes our approach, which now can be ported
to other modeling frameworks. Second, in [68], we as-
sumed that the rules are independent from each other
and each rule is applied in isolation. However, in most
scenarios, multiple semantic differencing rules may be
applied on the same elements of a difference model. There-
fore, we have devised an algorithm dedicated to resolving
conflicting rules when they are applied in combination,
which is presented in Section 5. The algorithm is directed
to optimize the verbosity of the domain-specific differ-
ence model by suggesting a prioritized list of the rules
to the user. Third, we extended the evaluation of our ap-
proach in several ways in Section 6. We have refined and
extended the research questions to assess the effective-
ness of our approach. To answer these, we now include a
synthetic experiment, and validate our approach on two
modeling projects developed by third-parties: Arduino1

designer models and evolution of Ecore metamodels.
The rest of this paper is organized as follows. In

Section 2, we overview the approach and introduce a
running example. In Section 3, we describe how to rep-
resent model differences of a DSL. This is achieved by
a semi-automated extension of the DSL metamodel and
its concrete syntax. For the latter, we use Sirius as an
illustration. In Section 4, we detail how to define high-
level, domain-specific change descriptions in terms of
semantic differencing rules. In Section 5, we explain how
to resolve the conflicts when different rules are applied in
combination. In Section 6, we evaluate the approach with
one controlled experiment and two case studies. Finally,
we discuss related works in Section 7 and conclude the
paper in Section 8.

1 https://www.arduino.cc/

Figure 1: Metamodel of the Pacman game DSL

2 Overview and running example

In the following, we motivate our approach with a running
example and present its overall rationale.

2.1 Motivating example

A typical model differencing tool compares two versions of
a model based on the performed editing steps (e.g., added
class or deleted reference). The result of this comparison
is identified by low-level differences between the two
versions, which includes at least two sets: match and diff.
The match set establishes a pair-wise correspondence
between similar elements in both models. The diff set
computes the differences between each pair in the match
set. The most popular generic model comparison tools,
EMFCompare [17] for instance, produce three kinds of
diffs: ADD, DELETE, and MODIFY.

However, a DSL user works with an end-user tool and
does not interact with the abstract syntax. Instead, she
uses end-user features such as domain-specific views and
diagrams to manipulate models. Any change in this level
of abstraction (i.e., the domain-specific concrete syntax)
can turn into several fine-grained changes in the model.
Consequently, the comparison tool shows the user all low-
level changes, such as a deleted reference between two
objects, which may not make sense to a DSL user who is
not familiar with the metamodel of the DSL. This creates
a mismatch between what the comparison tool produces
and what a DSL user would expect to understand: the
differences in terms of domain-specific syntax rather than
concepts of the abstract syntax.

There have been approaches that tried to mitigate
this issue, e.g., through the semantic lifting of the low-
level changes [26] or by using a metamodel to represent
model differences [14]. However, these approaches do not
provide a comprehensive framework for handling domain-
specific model differences. In particular, the existing ap-
proaches mostly focus on expressing model differences
at the abstract syntax level and do not show differences
at the concrete syntax level (i.e., the graphical notation

2

https://www.arduino.cc/

Score= 1 2~

+

X
X

Fine-grained
Diff

Score= 1M1

Score= 2M2

Score= 1 2~

X

+

Semantic
Diff

Pacman Eats
Food

Pacman Moves
Right

}
Figure 2: Running example using DSMCompare

Figure 3: Representation of difference model in EMF-
Compare for the Pacman game DSL

of a DSL). Furthermore, the existing approaches do not
take domain-specific model semantics2 into consideration
during the comparison process.

To address these issues, we introduce an approach,
called DSMCompare, which provides the DSL user with
a set of semantic domain-specific model differences that
highlight the differences between two versions of a model
at both the abstract and concrete syntax levels. We ex-
plain how a DSL user uses DSMCompare using a running
example of a simplified Pacman game, a well-known game
where Pacman navigates through grid nodes searching
for food to eat, while ghosts try to kill him.

We provide a modeling environment to define game
configurations, based on [59]. Figure 1 shows the meta-
model of this game. Figure 2 sketches what DSMCompare
outputs given two versions (M1 followed by M2) of a Pac-
man game configuration. The black arrows pointing up
over Pacman, food, and the ghost are the associations

2 In this paper, we use “domain-specific model semantics”
to refer to the meaning that a human assigns to a model when
looking at it, not to the execution semantics of the model.

representing their position on a grid node. Comparing M1
and M2, we can easily conclude that Pacman has moved
right to the middle grid node and ate the food on it. The
score value is incremented accordingly. DSMCompare
produces a domain-specific difference model Diff12 in two
steps. First, in the middle of Figure 2, Diff12 contains all
the fine-grained diffs. The green arrow with a ‘+’ denotes
that an association is added to a grid node, the red arrow
with an ‘x’ denotes a deleted association, and the blue
arrow with a ∼ (on the scoreboard) denotes an attribute
value change. Then, DSMCompare applies the provided
semantic differencing rules on Diff12. In this case, two
rules can be applied: Pacman Eats Food and Pacman
Moves Right. For example, the former rule checks that
Pacman is on a grid node that also has food on it which
gets deleted, and the scoreboard value is incremented.
The final difference model Diff12 is depicted at the right
of Figure 2 (labelled as semantic diff).

In contrast, using EMFCompare for comparison re-
sults in a list of low-level changes as presented in Figure 3.
The DSL user needs additional analytical effort to under-
stand these changes to infer the difference in a meaningful
way. For example, the user needs to understand that (on
the top panel of Figure 3) “on changed” means that
Pacman has moved to a different grid node (because
the reference “on” has changed), and needs to inspect
the lower juxtaposed panels to understand that food has
disappeared. However, as the “on” reference is not shown
on the tree editor, it becomes difficult to realize that this
is because Pacman ate the food.

2.2 Overview of DSMCompare

Figure 4 gives an overview of DSMCompare. The ap-
proach is useful for two types of users: DSL engineers
(who build the DSL) and DSL users (who create models
using the DSL).

To define the DSL, the engineer creates a metamodel
MM for the abstract syntax, and a model CS of the con-
crete syntax. In DSMCompare, we reuse both components
to define the domain-specific model differences for that
DSL and show any domain-specific diff Diff12 between
two versions of a model M1 and M2. Concretely, the

3

Figure 4: Overview of the approach

approach produces a domain-specific diff metamodel DS-
DiffMM and concrete syntax model DSDiffCS, as shown
in Figure 4. DSDiffMM extends the language metamodel
to define domain-specific diffs, such as adding/removing
a model element. DSDiffCS shows the corresponding
concrete syntax elements: graphical elements that could
be added, removed, or updated.

DSMCompare also produces an environment to de-
scribe high-level semantic differences in the form of rules
tailored to the DSL. Namely, it produces a semantic
differencing rule metamodel SDRuleMM and concrete
syntax model SDRuleCS, to allow the DSL engineer to
define the set of rules to apply on Diff12. As discussed pre-
viously, having semantic differencing rules is important
to facilitate reasoning about model differences. Without
these rules, low-level differences may not convey the in-
tention or the reason behind a change, and it may be
difficult to understand for the user how changes relate to
each other. For example, the DSL engineer could define
a rule for operation overriding in class diagrams, which
matches an operation in one version of a model with a
variant of that operation in a different version. Instead of
showing that an operation is simply being added in the
second version, DSMCompare uses the rule to represent
this change as the second operation overriding the first
one.

The DSL user can use DSMCompare for different
purposes. For example, in a version control system, the
DSL user may want to understand high-level semantic
differences between two versions of a class diagram. By
using rules that represent refactorings, it would be possi-
ble to identify the places in the model that underwent
refactoring. In a collaborative development environment,
a DSL user may identify the domain-specific changes that
a collaborator introduced, by applying DSMCompare on
the collaborator version of the model and the model at
hand.

DSMCompare produces a traditional diff of the two
model versions by reusing a difference tool such as EMF-

Figure 5: Excerpt of the generated difference metamodel

Compare. This result is processed to generate Diff12, that
conforms to DSDiffMM, and is represented according to
DSDiffCS. At this point, Diff12 contains the fine-grained
differences in the concrete syntax of the DSL. With a
library of rules predefined by the DSL engineer, the ap-
proach executes the applicable rules on Diff12 to produce
a semantically lifted difference model.

3 Fine-grained differencing

To overcome the restrictions of generic approaches for
model comparison, we propose to represent all model
differences in a format tailored to the domain of the
original metamodel. We also visualize the differences
using domain-specific concrete syntax.

Section 3.1 explains how to extend the domain meta-
model (MM) to represent two model versions within one
model. Then, Section 3.2 describes how the concrete syn-
tax model (CS) is extended to represent model changes
(DSDiffCS). Finally, Section 3.3 introduces how a single
diff model Diff12 (instance of DSDiffMM) is generated
out of two model versions (M1 and M2), and how this is
represented using the diff concrete syntax DSDiffCS.

3.1 Domain-specific difference metamodel

To represent model differences in a domain-specific way,
the metamodel of model differences should remain faith-
ful to the original metamodel MM. Therefore, we create
a new metamodel DSDiffMM for domain-specific differ-
encing (see Figure 5) based on MM (see Figure 1).

Algorithm 1 outlines the transformation from MM
to DSDiffMM. It starts by cloning MM to ensure that
DSDiffMM comprises all the structural features of the
DSL. In Figure 5, DSDiffMM includes all classes and
associations that the MM metamodel possesses. The
remaining steps extend the metamodel as follows. We
create two enumerations that will be used to annotate
each class and association with the kind of difference.
To represent a difference in an object of a class, like
Score, we create a subclass with an additional attribute

4

Algorithm 1 Transformation from MM to DSDiffMM

1: procedure GenerateDSDiffMM(MM)
2: DSDiffMM ← MM.clone(“DSDiffMM”)
3: DSDiffMM.createEnum(“ClsDiffKind”, {ADD,DEL,MOD})
4: DSDiffMM.createEnum(“AscDiffKind”, {ADD,DEL})
5: for all class C in DSDiffMM do
6: if not C.isAbstract() then
7: DiffC ← DSDiffMM.createClass(“Diff”+C)
8: DiffC.setSuperClass(C)
9: DiffC.addAttribute(“diff kind”, ClsDiffKind)
10: end if
11: for all attribute a in C.getAllUniqueAttributes() do
12: DiffC.addAttribute(“new ”+a, a.getType())
13: end for
14: end for
15: for all association S in DSDiffMM do
16: C1 ← S.getSource(), C2 ← S.getTarget()
17: if C1 ̸= DSDiffMM.getRootClass() then
18: DiffC1 S← DSDiffMM.createClass(“Diff”+C1+“ ”+S)
19: DiffC1 S.addAttribute(“diff kind”, AscDiffKind)
20: n← S.getTargetCardinalities().target().upperBound()
21: if S.isComposition() then
22: diffS ← C1.addComposition(“diff”+S, DiffC1 S)
23: else
24: diffS ← C1.addAssociation(“diff”+S, DiffC1 S)
25: end if
26: diffS.setCardinalities(1..1, 0..2×n)
27: target ← DiffC1 S.addAssociation(“target”, C2)
28: target.setCardinalities(0..1, 1..1)
29: end if
30: end for
31: SDiff ← DSDiffMM.createClass(“SemanticDiff”)
32: SDiff.addAttribute(“name”, String)
33: for all class C in DSDiffMM do
34: diff C ← SDiff.addAssociation(“diff ”+C, C)
35: diff C.setCardinalities(1..1, 0..*)
36: end for
37: R ← DSDiffMM.getRootClass()
38: diffs ← R.addComposition(“diff”+S, SDiff)
39: diffs.setCardinalities(1..1, 0..*)
40: return DSDiffMM

41: end procedure

diff kind that states whether the object has been added,
deleted, or that at least one of its attributes has been
modified. In the subclass we also add, for each attribute
in the class, a new attribute of the same type that will
hold the new value. For example, the subclass of Score

has an attribute new value. This is particularly useful
when auditing changes in different versions of a same
model.

Note that this procedure does not transform the class
inheritance hierarchies. If MM has a class A and a class
B that inherits from A, then, in DSDiffMM, DiffA in-
herits from A and DiffB inherits from B, but there is
no inheritance between DiffA and DiffB. We argue that
this decision is to allow implementing our solution in
frameworks where multiple inheritance is not supported.
Therefore, on line 11 of Algorithm 1, C.getAllUniqueAtt-
ributes() retrieves all attributes of C and those inherited

from its super classes transitively. Furthermore, abstract
classes have no corresponding Diff class since they cannot
be instantiated in the compared models.

As outlined in lines 15–30 of Algorithm 1, for each
association in MM, we create a class to reflect the kind
of change (addition or deletion). We then connect this
new class with the source and target classes of the as-
sociation. In the Pacman example, the on association
is transformed into the DiffPositionableEntity on class.
Since on is a composition, diffon is also a composition, to
preserve the semantics of the association. Suppose that a
difference model Diff12 needs to reflect that the Pacman
object has moved from one grid node to another. Then,
there will be two DiffPositionableEntity on instances:
one representing the deletion of the on relation to the old
grid node and one for the addition of the on relation to
the new grid node. This is why the upper bound of the
cardinality of diffon in DSDiffMM must be doubled on
line 26.

The elements created up to now can only capture
individual fine-grained differences in Diff12. To enable
the representation of semantic differences, the procedure
creates a SemanticDiff class (cf. line 31) that holds the
name of the semantic difference that a combination of
original and semantic diff classes represent. This will be
used by DSMCompare in the second step when applying
semantic differencing rules (cf. Section 4).

One benefit of this procedure is that a difference class,
like DiffScore, still contains all attributes and relations
with the same name, type, cardinalities, and constraints
as in Score. The rationale is to allow an instance of
MM to be a valid instance of DiffMM. This is useful in
case M1 and M2 are identical, as their difference can be
represented by M1. Consequently, a difference model can
contain both instances of Score and DiffScore if one is
unchanged and the other is, say, deleted.

3.2 Visualization of domain-specific differences

Since the user of the DSL manipulates models in their
concrete syntax representation, it makes no sense for
her/him to analyze the difference model in its abstract
syntax form. Therefore, the DSL to represent the differ-
ence model should also be assigned a concrete syntax,
which we call DSDiffCS. Since the DSL engineer has de-
fined a concrete syntax CS for the DSL, she should also
provide one for DSDiffMM. However, instead of starting
from scratch, we propose to generate a default DSDiffCS
that reuses the style from CS to remain in the spirit of
the DSL. Then, the DSL engineer can customize it if
so desired. In this subsection, we describe how to gener-
ate DSDiffCS from CS, assuming a graphical concrete
syntax.

Sirius [54] is one of the most popular frameworks to
generate graphical modeling environments and to ma-
nipulate models graphically in the Eclipse ecosystem.

5

Although our approach is applicable to other graphical
language workbenches, such as GMF [22], MetaEdit+
[27] and AToMPM [60], our description is based on Sirius
because its wide use nowadays, and because it offers a
model-based approach for concrete syntax definition.

In Sirius, the main component of the concrete syntax
definition is a viewpoint specification model (odesign).
It defines a mapping of graphical representations to ele-
ments of MM. For example, to render the visualization of
the Pacman class, we define a NodeMapping that refers to
an icon in an image file. The NodeMapping can be a com-
bination of text, icons, shapes and style customizations,
such as color and size. Similarly, associations are ren-
dered by an EdgeMapping. As for compositions, the target
class is rendered by a BorderedNodeMapping within the
NodeMapping of the source class. Constraints expressed
in the Acceleo Query Language (AQL), a variant of the
Object Constraint Language (OCL) [46], can filter visu-
alizations depending on a condition. Finally, it is possible
to define a palette of buttons to instantiate MM classes
and associations by customizing the ToolSection.

We generate DSDiffCS by means of an outplace
transformation3 that takes as input CS and outputs
DSDiffCS. The overall logic of the transformation is to
copy each component of CS onto DSDiffCS and cre-
ate the representation of each Diff class by extending
the representation of its corresponding MM class. This
maximizes the reuse of CS to represent the difference
model intuitively for the DSL user. For each NodeMapping,
e.g., PacmanNode, we create three new ones for each dif-
ference kind: DiffPacmanNodeADD, DiffPacmanNodeDELETE,
DiffPacmanNodeMODIFY. By default, the add node is the
same as the original node annotated with a green ‘+’ sign,
the delete with a red ‘x’, and modify with a blue ‘∼’. The
latter indicates that at least one of the attribute values
has changed. For example, the ScoreNode is a rectangle
with the value of its value attribute displayed inside.
We change the text displayed in DiffScoreNodeMODIFY

by showing the value concatenated with an arrow ‘–>’,
followed by the new value. One particularity of the map-
ping in Sirius is that if DiffPacman inherits from Pacman

in DSDiffMM, Sirius displays the representation of the
former for the latter. Therefore we need to add an AQL
condition in DiffPacmanNodeADD to force it to represent
DiffPacman instances only and not its super classes.

EdgeNodes are treated slightly differently. Recall that
an association S from class A to class B in MM is trans-
formed into a class DiffA S with an incoming composition
diffS from A and an outgoing association target to B.
Therefore, in DSDiffCS, DiffA S is represented with a
BorderedNodeMapping as a subnode of the NodeMapping of
A. We create two BorderedNodeMappings for each Edge, one

3 This is a transformation that takes as input a model
and produces a different output model. This contrasts with
inplace transformations, which are applied directly on the
input model.

Figure 6: Fine-grained difference model Diff12 of M1 and
M2

for adding and one for deleting, annotated similarly to
Nodes. The target association is rendered by an EdgeNode.

The only element in DSDiffMM that does not have
a visualization in CS is the SemanticDiff class (cf. line
31 of Algorithm 1). By default, we represent it with a
rectangle with its name attribute value displayed inside.

We implemented this transformation in ATL to help
automate the process. If the concrete syntax makes use
of icon files to render the elements of the metamodel, the
DSL engineer must also provide a set of icon files for each
Diff class and association. The transformation assumes
that the name of the icon is preserved, but suffixed with
the DiffKind, e.g., pacman.png → pacman add.png. Never-
theless, it is also possible to fully automate that part if
the concrete syntax does not include external icons, but
is built entirely with Sirius nodes. In this case, our trans-
formation will automatically add a symbol on the top-left
of the node indicating the DiffKind. This opens the door
to a variety of visualizations to represent domain-specific
semantic differences.

Defining DSDiffMM along with DSDiffCS as a
domain-specific difference language using frameworks
such as Sirius, allows the DSL engineer to generate a
domain-specific model environment to represent differ-
ence models Diff12. These can be inspected and manipu-
lated like any other model (M1 and M2) in an environ-
ment familiar to the DSL user. Figure 6 illustrates the
Diff12 model for the running example (cf. Figure 2), pre-
sented in its concrete syntax as output by DSMCompare.

3.3 Fine-grained domain-specific model comparison

Given two models M1 and M2 of a DSL, we want to out-
put a single model Diff12 depicting the changes from M1
to M2, as an instance of DSDiffMM. Note that the two
models are provided with their abstract and concrete syn-
tax representations. Most current model comparison ap-
proaches detect changes at the abstract syntax level only.
For instance, [36] dynamically computes an identifier for
each model element based on their properties (e.g., type
and attribute values). Alternatively, metamodel-agnostic
approaches, like [12,14], compute the structural and at-
tribute value similarities between M1 and M2. These
tools produce a generic difference model that lists the
changes between the two models. We chose to reuse these

6

difference algorithms and then process the result to pro-
duce Diff12. In our implementation, we rely on the change
list output by EMFCompare.

To produce the Diff12 model, we first clone M1 since
the differences will be expressed in terms of M1. We as-
sume that the result from a difference algorithm outputs
a list ∆C of differences for classes, and another one ∆A

for associations, such as the case in EMFCompare. We
denote an element E′ ∈ ∆C using primed uppercase let-
ters. This way, if E′ is a deletion or a modification, we
identify E to be the corresponding element in M1. For
example, in Figure 6, E′ can be the score object with
its value modified from 1 to 2. We replace E′, the score
object, in M1 by an instance of the DiffScore class as
per Algorithm 1. This new object will hold all original
attribute values, so score=1, and all new attribute values,
so new score=2. If E′ is an addition, we create an instance
of the Diff class corresponding to E′ and set all its new
attribute values. Finally, we mark the new Diff element
with its ClassDiffKind.

An association A′ ∈ ∆A is treated a bit differently.
If A′ is a deletion, we remove the link A in M1 corre-
sponding to A′ and create an instance of the Diff class
corresponding to it. For example, in Figure 6, the on link
from the Pacman to the first grid node is removed and
an instance of DiffPositionableElement on is created. In
case A′ is an addition, only the creation of the Diff class
is needed. We then connect the Diff instance to the source
and target elements of A. Finally, we mark it with its
AscDiffKind.

Our approach does not require additional manual
effort to produce the concrete syntax of Diff12. Since
Diff12 is an instance of DSDiffMM, then DSDiffCS is
applied automatically on Diff12 to represent it visually,
as shown in Figure 6.

4 Domain-specific semantic differencing

In this section we introduce the approach to create se-
mantic diff rules. This involves synthesizing a metamodel
SDRuleMM out of DSDiffMM, as we explain in Sec-
tion 4.1. Then, in Section 4.2 we outline how to generate
a graphical environment for the DSL engineer that sup-
ports the creation of semantic differencing rules, based
on SDRuleMM. Finally, Section 4.3 provides a semantics
for domain-specific diff rules in terms of graph transfor-
mation rules [16].

4.1 Rules for domain-specific differences

As explained in Section 2, we automatically derive an en-
vironment for specifying semantic differencing rules. This
enables the DSL engineer to define higher-level changes
specifically tailored for the domain. A rule needs to detect
a pattern of fine-grained differences and replace it with
a SemanticDiff class that was created in Algorithm 1.

Figure 7: Excerpt of the semantic differencing rule meta-
model PacmanRuleMM

.

Our semantic differencing rules act similarly to inplace
model transformation rules [16] with a precondition and
a postcondition component. Algorithm 2 outlines the
procedure to produce SDRuleMM from DSDiffMM and
Figure 7 shows the result. It is inspired by [31] where the
authors produce domain-specific model transformation
rule patterns from a DSL.

Like Algorithm 1, this procedure starts by reusing
all the elements of DSDiffMM, adapting them to the
new needs. Every class and association is prefixed with
Pattern , except the SemanticDiff class. All attributes
from DSDiffMM except diff kind are removed, since they
do not contribute to the rule. However, the connectivity of
the associations remains as in DSDiffMM. This simplifies
the detection of patterns in the difference model Diff12.

We add two attributes to all pattern classes. First,
a unique identifier distinguishes instances of the same
classes to facilitate writing constraints. Then, a filter
attribute is used to signify that the element in Diff12

should be removed when applying the rule. It is helpful
to remove fine-grained differences when a domain-specific
difference is more meaningful. Furthermore, the rule may
contain negative application conditions (NACs) to for-
bid the presence of elements [16]. We add a NAC group

attribute to all classes prefixed with Pattern . Similar
to some transformation languages [5], one or more rule
elements set with the same NAC group value constitute a
NAC. Multiple values of this attribute are used to rep-
resent several NACs in the rule, none of which can be
matched for the rule to be applicable.

7

Algorithm 2 Transformation from DSDiffMM to
SDRuleMM

1: procedure GenerateSDRuleMM(DSDiffMM)
2: SDRuleMM ← DSDiffMM.clone(“SDRuleMM”)
3: for all class C̸=SemanticDiff in SDRuleMM do
4: C.keepDiffKindAttribute()
5: Pattern C ← C.setName(“Pattern ” + C.getName())
6: Pattern C.addAttribute(“ID Pattern”, int)
7: Pattern C.addAttribute(“filter”, bool)
8: Pattern C.addAttribute(“NAC group”, int)
9: end for
10: for all association S in SDRuleMM do
11: S.setName(“Pattern ” + S.getName())
12: end for
13: Rule ← SDRuleMM.createClass(“Rule”)
14: Rule.addAttribute(“name”, String)
15: Rule.addAttribute(“constraints”, String[])
16: Rule.addAttribute(“priority”, int)
17: R ← SDRuleMM.getRootClass()
18: pattern ← Rule.addComposition(“pattern”, R)
19: pattern.setCardinalities(1..1, 1..1)
20: return SDRuleMM

21: end procedure

Finally, lines 13–16 of the algorithm add a new Rule

class as the new root of the metamodel. This enables
the transformation engine to navigate easily through the
elements of the rule. In addition, the Rule class allows
specifying a list of constraints over attribute values. In
practice, constraints are written in Java and executed dy-
namically using BeanShell4, an embedded interpreter to
run Java scripts. Within constraints, pattern objects (el-
ements of the rule) can be accessed through the Item key-
word, using their identifier and the desired attribute name
in the form of Item(ID,[ATTR NAME]). Figure 8 shows an
example semantic rule called Eat (in concrete syntax)
with a constraint. This constraint states that the new
value of the score should be greater than the original
value for the rule to be applicable.

4.2 Automatic generation of a graphical environment for
semantic diff rules

Our approach not only helps the DSL user to better
understand the difference between two models, but it
also assists the DSL engineer to design conveniently the
semantic differencing rules in the same language work-
bench.

For this purpose, we automatically generate a concrete
syntax for rules (called SDRuleCS) out of the DSDiffCS
model by a transformation. The transformation is very
similar to the one described in Section 3.2. First, we
copy the viewpoint specification model and adapt it to
SDRuleMM. Each NodeMapping displays ≪filter≫ if the
filter attribute is set to true, as well as the ID Pattern

of the object. All other attribute values from their DSD-
iffMM counterparts are removed as they are no longer

4 https://github.com/beanshell/beanshell

Figure 8: The semantic differencing rule Eat, abstracting
fine-grained differences to depict that Pacman has eaten
food

present in pattern classes, like in the Score. To create and
edit a rule, the DSL designer is provided with a palette
showing all rule-specific elements, including those from
DSDiffCS.

Figure 8 illustrates a rule in the generated domain-
specific environment. The rule describes that a Pacman
eat food change occurs when Pacman is on a grid node,
a food is deleted from the same node, and the score
is incremented. To reduce the amount of fine-grained
differences reported to the DSL user, the rule also filters
the on association from the food to the grid node.

4.3 Executing the semantic diff rules

As outlined in Figure 4, we apply the semantic diff rules
to enhance the fine-grained difference model Diff12 with
semantic differences, and possibly remove fine-grained
differences. Given the difference model Diff12 produced
as described in Section 3.3, we apply the rules on Diff12

as an inplace model transformation. For this purpose,
we express the semantics of our semantic diff rules as
graph transformation rules. In particular, we use Hen-
shin [5] as the target transformation engine. Henshin is
an inplace model transformation language implementing
graph transformations for the Eclipse Modeling Frame-
work. Therefore, we opted to transform each SDRule into
a semantically equivalent Henshin rule, which can then
be applied on Diff12. In practice, we implemented this
higher-order transformation using an Xtend-based code
generator. This takes a set of semantic differencing rules
and produces a set of Henshin rules. We chose a code
generator approach since Henshin rules can be specified
in a textual notation [58].

In a semantic differencing rule SDRule, the precon-
dition consists of the constraints of the rule and the

8

https://github.com/beanshell/beanshell

Figure 9: Rule Eat transformed into Henshin

structure formed by the pattern objects (typed by a class
prefixed with Pattern) contained inside the rule except
for the SemanticDiff object. The postcondition of the rule
is specified by the SemanticDiff instance and its diff

associations (see lines 31–36 of Algorithm 1), along with
all filter attributes that are set to true in the pattern
classes.

For example, the Eat rule in Figure 8 looks
for a Pacman object and a deleted DiffFood on the
same grid node. It also requires that the new value
of DiffScore has increased. Then, it creates the
SemanticDiff object named PacmanEatsFood and hides
the deleted DiffPositionableElement on link associated
with DiffFood. Figure 9 shows how this rule is encoded
in Henshin. A Henshin rule HRule consists of nodes,
edges, and conditions. Nodes and edges can be assigned
actions (preserve, create, delete, forbid) and are typed
by a metamodel class or association respectively. Nodes
can have attribute values.

Algorithm 3 presents the transformation from SDRule
to HRule. We briefly outline the transformation steps to
create an HRule from a SDRule in what follows:

1. Create an HRule with the same name as the SDRule
(line 2 of Algorithm 3).

2. Create a condition in HRule for every condition in
SDRule. If a condition uses an attribute, add a pa-
rameter to the rule, then assign the parameter to

the corresponding attribute and use the parameter
instead of the attribute in the condition (lines 4–8).

3. Create a node with action ≪preserve≫ in HRule for
every pattern object with no filter and no NAC group

set in SDRule (lines 11–13).
4. Create a node with action ≪delete≫ in HRule for

every pattern object with filter set to true in SDRule
(lines 14–15).

5. Create a node with action ≪forbid≫ in HRule for
every pattern object with a NAC group set in SDRule.
Set the forbid identifier to the value of the NAC group
(lines 16–18).

6. Create a node with action ≪create≫ in HRule for
every SemanticDiff object in SDRule (lines 19–20).

7. If a pattern object has a value for its attributes like
diff kind set in SDRule, create the same attribute
with the same value in the corresponding Henshin
node (lines 22–26).

8. Create an edge in HRule for each association in
SDRule. The type of the edge should correspond to
the one of the association (lines 28–41) as follows. All
edges adjacent to a node of type SemanticDiff have
the action ≪create≫ (lines 34–35). All edges adjacent
to a node with action ≪delete≫ or ≪forbid≫ have also
the action ≪delete≫ or ≪forbid≫ respectively (lines
36–39). Otherwise, the edge action is set to ≪pre-
serve≫ (lines 40–41).

Thanks to the transformation to Henshin, our rules
support matching a subclass of a pattern class [7]:
in DSDiffMM, the DiffScore class inherits from the
Score class. Furthermore, abstract classes from MM, like
PositionableElement, can be used when specifying pat-
terns, which can be useful to define fewer rules [15].

To apply all the semantic differencing rules with Hen-
shin, we must set the control flow of the transformation.
For this purpose, we group all HRules inside an inde-
pendent unit so that all rules are applied in an arbitrary
order nondeterministically. Furthermore, each HRule is
executed in a loop unit so that each rule is applied itera-
tively as long as matches are found before any other rule
is applied. When the transformation execution concludes,
all objects marked as filtered in the pattern are removed
and objects semantically meaningful to the domain are
added to the difference model. Altogether, the resulting
Diff12 model is semantically lifted to show higher-level
differences that are deemed important and meaningful
to the DSL user. Moreover, lower-level (fine-grained)
differences may be deleted by the rule, hence reducing
verbosity. Applying the rules on the abstract syntax of
Diff12 automatically updates its concrete syntax. There-
fore, the final difference model is provided to the DSL
user in a representation tailored for the domain.

Figure 10 illustrates the final difference model pro-
vided by our approach. It shows the application of two
rules, identifying that Pacman has moved right and eaten
food. Altogether, compared to Figure 3, the DSL user
can inspect the domain-specific changes in an editor that

9

Algorithm 3 Transformation from SDRule to HRule

1: procedure GenerateHRule(SDRule)
2: HRule ← createHenshinRule(SDRule)
3: for all Condition c in SDRule.getConditions() do
4: for all Attribute a in c.getAttributes() do
5: p ← createHenshinParameter(a)
6: HRule.Parameters ← p

7: c.replaceAttributeByParameter(p)
8: end for
9: end for
10: for all Pattern P in SDRule.getPatterns() do
11: n ← createHenshinNode(P)
12: if not P.hasFilter() AND not

P.isMemberOfNACGroup() then
13: n.Action ← “preserve”
14: else if P.hasFilter() then
15: n.Action ← “delete”
16: else if P.memberOfNACGroup() then
17: n.Action ← “forbid”
18: n.forbidId ← P.getNACGroupName()
19: else if P.className() == “SemanticDiff” then
20: n.Action ← “create”
21: end if
22: for all Attribute a in P.getAttributes() do
23: hAttr ← createHenshinAttribute(a)
24: hAttr.Value ← a.getValue()
25: n.Attributes ← hAttr

26: end for
27: end for
28: for all Node n in HRule.getNodes() do
29: P ← SDRule.getObject(n.getName())
30: for all Association asc in P.getAssociations() do
31: edge ← createHenshinEdge(asc.getName())
32: edge.Source ← n

33: edge.Target ← HRule.getNode(asc.getTarget()
34: .getName())
35: if edge.Source.getName() == “SemanticDiff” OR

edge.Target.getName() == “SemanticDiff” then
36: edge.Action ← “create”
37: else if edge.Source.getAction() == “delete” OR

edge.Target.getAction() == “delete” then
38: edge.Action ← “delete”
39: else if edge.Source.getAction() == “forbid” OR

edge.Target.getAction() == “forbid” then
40: edge.Action ← “forbid”
41: else
42: edge.Action ← “preserve”
43: end if
44: end for
45: end for
46: return HRule

47: end procedure

resembles the one she used to manipulate the original
models M1 and M2.

5 Conflicting rule application

A rule may have more than one match in Diff12. However,
care should be taken since applying a rule may remove
filtered elements. In general, there is normally more than

Figure 10: The domain-specific difference of two models
in the generated editor after applying two rules

one semantic differencing rule specified for a DSL and
different rules may have overlapping matches. In Sec-
tion 4.3, the control flow of the transformation assumed
the rules are sequentially independent [16]. However, if
a rule filters an element that is required in the precon-
dition of another rule, the latter will not find a match.
One solution to avoid conflicts between rules is to use
NACs. For example, we can prevent the application of a
rule if another rule has been applied before. This can be
achieved by adding a SemanticDiff object in the former
rule as a NAC (see Section 4.1). However, this solution
is limited because it alters the semantics of the rule, may
prevent non-conflicting rules from applying, and requires
modifying the semantic rule manually. Therefore, we pro-
pose a general solution that reduces conflicts between
rules as much as possible.

The problem is that multiple semantic difference rules
may be applicable at the same time, and they might con-
flict with each other. Therefore, we extend DSMCompare
with an elaborate graph-based analysis of the rules based
on heuristics to obtain a reasonable schedule of the rule
application order. In this case, the ordering must be such
that it reduces the verbosity of the presented difference,
to favor semantic differences over syntactic differences.
In the following, Section 5.1 introduces an example to
illustrate the conflicts that can arise, Section 5.2 formal-
izes the problem, and Section 5.3 proposes an algorithm
to assign rules a priority.

5.1 Conflicting rules example

Assume the engineer of the Pacman game DSL has de-
fined the semantic differencing rules for the four cardinal
movements of Pacman as shown in Figure 11 (a)–(d).
Note that we have slightly altered the rules for illustra-
tive purposes. After a while, some DSL users report that
DSMCompare fails to detect other kinds of movements,
such as diagonally or further than one grid node away.
Thus, the DSL engineer creates a new rule called Move

as depicted in Figure 11 (e). This semantic differencing

10

(c) The Left rule

(a) The Up rule (b) The Down rule

(e) The Move rule

(d) The Right rule

Figure 11: Semantic differencing rules for Pacman move-
ment

rule correctly detects any change in Pacman movements.
However, later, a DSL user discovers that, for some dif-
ference models, DSMCompare reports Move instead of
the more precise Right. This new problem arises because
the two rules conflict with each other (when Move is ap-
plied before Right): the former rule filters the old diff on

relation of Pacman which is required to apply the lat-
ter rule. Another situation occurs when Move and Up are
both applicable, but the former is applied. In this case,
the resulting Diff12 model will contain more fine-grained
differences than if the latter was applied (because Move

filters one association, while Up filters two), thus en-
cumbering the DSL user with unnecessary differences
reported. This problem is further aggravated when rules
have many occurrences in Diff12. This example illustrates
that, when a number of rules are in conflict, the DSL
engineer should prioritize those that are more precise,
remove more fine-grained differences, and create more
domain-specific differences.

The DSL engineer can assign a priority to each rule
thanks to their priority attribute (see line 16 in Al-
gorithm 2). Priorities define a partial ordering of rule
application: the lower the priority value, the higher pri-
ority the rule has. In Henshin, this is represented with a
priority unit ; thus we define the control flow of the rules
with this unit instead of the independent unit presented
in Section 4.3. To assist the DSL engineer in assigning
the optimal priority ordering of the rules, we have devel-

oped a DSL-agnostic algorithm that proposes the best
rule ordering without knowledge of the difference model
Diff12 on which they will be applied.

5.2 Formalization of the problem

We consider assigning priorities to the rules as an op-
timization problem where the objective is to maximize
the number of semantic differences and minimize the
number of fine-grained differences in Diff12 after apply-
ing the rules. Intuitively, we can achieve this objective
by applying as many rules as possible. However, some
rules may filter more fine-grained differences than others
and some rules may create more semantic difference ob-
jects than others. The latter may seem unusual because,
typically, one rule creates a single semantic difference
object that represents the intention of the rule. However,
our framework allows the DSL engineer to define higher-
order semantic differencing rules that refactor semantic
difference objects created by other rules.

Therefore, the solution should consider conflicts be-
tween the rules, the number of filtered elements they
remove, the number of semantic difference objects they
create, and the number of overlaps between them to fa-
vor more precise rules (like Right) over less precise ones
(like Move). We represent this information in a conflict
graph where vertices are rules and edges represent con-
flicts between them. The priority assignment solution
comes down to sorting every vertex of the graph while
optimizing our objective.

5.2.1 Conflict graph We define the conflict graph asG =
⟨V,E, sem, filter, elem, conf⟩ with sem, filter, elem :
V → N properties of vertices, E ⊆ V × V irreflexive
directed edges, and conf : E → N the weights of edges.

In this representation, each vertex v ∈ V corresponds
to a rule. Vertices have the following properties:

– sem is the number of semantic difference objects each
match of the rule will create on Diff12.

– filter is the number of fine-grained differences each
match of the rule will filter.

– elem is the number of class and association instances
to be matched by the pattern of the rule.

The vertices of the conflict graph in Figure 12 show the
properties of each rule of the Pacman game presented in
Figure 11. An edge (v1, v2) ∈ E represents a conflict that
occurs if we apply the rule corresponding to v1 before
the rule corresponding to v2. Since we assume that a rule
is applied on all matches exhaustively before applying
another one, edges cannot be reflexive.

Edges are weighted by function conf , which gives
the number of conflicts that arise when applying the
rule of the source vertex before the rule of the target
vertex. Following the theory of graph transformation with
NACs [33], we consider two kinds of conflicts for rules:

11

Eat

Up

Right

2

Left

2

Down

2

Move

2

2

2

2

2

2

2

2

2 2

2
2

2

6

6

6

6

filter=1
elem=10
sem=1

filter=1
elem=9
sem=1

filter=2
elem=10
sem=1

filter=1
elem=10
sem=1

filter=1
elem=12
sem=1 filter=1

elem=7
sem=1

Figure 12: The conflict graph for the rules in Figure 11

– Delete-use occurring when a rule deletes an element
(e.g., a fine-grained diff) that another rule requires.
An example of this conflict is when Move filters an
association required by Up.

– Produce-forbid occurring when a rule creates an ele-
ment that another rule forbids in a NAC. An example
of this conflict would be when a rule creates a seman-
tic diff that another rule forbids.

Finding an optimal solution to the problem is equiv-
alent to finding an optimal vertex partial ordering
according to our objective. The solution is a func-
tion priority : V → N such that if priority(v1) <
priority(v2), then DSMCompare should try to apply the
rule corresponding to v1 before the rule corresponding to
v2. If priority(v1) = priority(v2) then the rules are not
in conflict and can be applied in any order.

5.2.2 Conflict detection To compute the edges of the
conflict graph and their weight, we perform a conflict anal-
ysis of the rules. Henshin offers a multi-granular conflict
and dependency analysis tool (MultiCDA), a generaliza-
tion of critical pair analysis (CPA) [34]. Conflicts need to
be detected only once by the DSL engineer, thus the com-
putation time of conflicts is not an issue for our problem.
Nevertheless, MultiCDA is significantly faster than CPA
[34]. Given a set of Henshin rules, MultiCDA outputs
three levels of conflict granularity. To assign the conf
weight to each edge of the conflict graph, we rely on the
fine-granularity level that MultiCDA reports. It outputs
a positive integer for each pair of rules representing the
number of all model fragments whose presence leads to a
conflict. MultiCDA presents the conflict results as a ma-
trix. This serves as the adjacency matrix of our conflict
graph (note that we assign 0 to the main diagonal since
edges are irreflexive).

Applying conflict detection with MultiCDA on the
Pacman game semantic differencing rules in Figure 11
results in the edges of the graph in Figure 12. The
Eat rule has no conflicting model fragment with any
other rules, thus it is disconnected. The edges out-

4

10

1

1B
filter=1
elem=7
sem=1

D
filter=2
elem=9
sem=1

C
filter=1
elem=8
sem=1

A
filter=2
elem=8
sem=1

Figure 13: A sample conflict graph

going from Move indicate that if we apply this rule
before any of the other movement rules, there are
six model fragments that lead to conflicts. In con-
trast, applying any of the cardinal movement rules
before any other movement rule causes conflicts only
for two model fragments. For example, one of them
is: [Pacman]--(diffon)--[DiffPositionableEntity on]--

(eType)--[GridNode]. Applying the Move rule on this
model fragment will remove the three central elements,
whereas all the other movement rules require this frag-
ment to be applicable.

5.3 Rule priority ordering

To illustrate how to solve the rule priority ordering, con-
sider the conflict graph in Figure 13. It represents the
conflicts between four semantic differencing rules A,B,C,
and D encoded by vertices with the same name. Intu-
itively, a solution to the problem is to sort the vertices of
the conflict graph topologically. However, recall that the
edge (B,D) means that when B is applied on a model
fragment, D is no longer applicable on this fragment.
Therefore, we must consider reversing the edges before
the topological sort. However, topological sorting algo-
rithms are only applicable to directed acyclic graphs.
Since conflict graphs are likely to contain cycles and ver-
tices are weighted, only approximate algorithms exist
in the literature [2]. Nonetheless, our goal is to assign
a partial order to all vertices such that applying a rule
with lower order will less likely prevent the application
of other rules while maximizing filter, elem, and sem.
Therefore, we propose an algorithm (Algorithm 4) that
sorts weighted vertices and edges of a directed cyclic
graph based on heuristics.

Algorithm 4 starts by partitioning the conflict graph
G into two disjoint subgraphs. The left graph L contains
the maximum subgraph of G that is acyclic. The right
graph R is the graph induced by the remaining vertices.

ToDag() transforms a graph into a directed acyclic
graph by iteratively removing vertices from the strongly
connected components. We implement Tarjan’s algorithm
[63] to find the strongly connected components of the
graph in O(|V |+ |E|) time complexity. If G is the conflict
graph in Figure 13, then the strongly connected com-
ponents are the subgraphs ⟨A,D⟩, ⟨B⟩, and ⟨C⟩. Thus,
to make L acyclic, we should remove either vertex A or
D. We define the following heuristics (in this order), to
choose which vertex to remove from a strongly connected

12

Algorithm 4 Priority ordering of the vertices of a conflict
graph

1: procedure PriorityOrder(G)
2: L← G.clone()
3: R← G.clone()
4: L← ToDag(L)
5: sortedL← RevTopologicalSort(L)
6: R← R− L
7: if not IsDAG(R) then
8: sortedR← PriorityOrder(R)
9: else
10: sortedR← RevTopologicalSort(R)
11: end if
12: sort← sortedL+ sortedR
13: priority(v)← 1, ∀v ∈ sort
14: for all v in sort do
15: before← {u | (u, v) ∈ E ∨ (v, u) ∈ E
16: and u is before v in sort}
17: if |before| > 0 then
18: priority(v)← max{priority(u), ∀u ∈ before}+ 1
19: end if
20: end for
21: return priority
22: end procedure

component (we denote its set of vertices by S) until L
has no more cycles:

H1 = max
∑

v∈S

∑
(v,u)∈E conf(v, u) maximizes the to-

tal weight of the outgoing edges of a vertex v, to
choose the rule with the highest number of fine-
grained conflicts.

H2 = max
∑

v∈S |{(u,w) ∈ E | v = u ∨ v = w}| maxi-
mizes the degree of a vertex v, to choose the rule
with the highest number of conflicting rules.

H3 = min
∑

v∈S sem(v) serves to choose the rule that
creates the least number of semantic difference ob-
jects.

H4 = min
∑

v∈S filter(v) serves to choose the rule that
filters the least number of granular difference objects.

H5 = min
∑

v∈S elem(v) serves to choose the rule that
matches the lowest number of elements in the differ-
ence model, thus the least precise rule.

Hence, L contains the vertices representing rules that
are less likely to prevent the application of other rules and
optimize our objective. In the conflict graph of Figure 13,
heuristic H1 suffices to remove A from L. All vertices of
L will be given a lower priority value than vertices of
R. Thus, it is important that we minimize the size of R.
In our example, R consists only of vertex A. Since L is
now acyclic, we apply RevTopologicalSort() to sort
the vertices of L in reverse order of the edges using a
O(|V |+ |E|) time complexity algorithm based on depth-
first search. During the traversal, we use the opposite of
the five heuristics whenever we have a choice between
more than one vertex (i.e., we minimize H1, H2, H5 and
maximize H3, H4).

On line 12, sort contains the sequence of vertices
sorted topologically. In our example, sort = (D,B,C,A)

the first three from sortedL and the last one from
sortedR. The algorithm constructs the priority function
by following the order of the vertices in sort. However,
this total order is overly conservative, e.g., C has no con-
flict with the other rules. On lines 15–18, we ensure that
if u is topologically before v and there is an edge between
v and u, then priority(v) > priority(u). Otherwise, they
can have the same order. The priority function output
for the conflict graph in Figure 13 is presented in Table 1.
The table also shows the initial value of the heuristics of
each vertex.

Table 1: Priority order of the sample conflict graph in
Figure 13 output by the algorithm

Rule Priority H1 H2 H3 H4 H5

C 1 10 3 1 2 8
D 1 2 2 1 1 7
B 2 0 0 1 1 8
A 3 4 3 1 2 9

When removing vertices from L to make it acyclic,
we may end up with an induced graph R with the re-
moved vertices that still contains cycles. For example,
this happens if G is a complete graph, then L can only
consist of one vertex that optimizes the heuristics. This
is the case with the conflict graph of the Pacman game
example in Figure 12. Since its vertex is disconnected,
Eat can be applied first and be part of L. All the rest
of the vertices are in a clique, thus applying one would
conflict with all others. However, we want to give as much
chance as possible to apply as many rules as possible
to optimize H3. Nevertheless, only one of the movement
rules can remain in L. According to H1, Move has the
highest number of conflict reasons, so it should be applied
last and be part of R. All the other four vertices have the
same conf value. According to H4, Up should have the
lowest priority value among them and be part of L. Thus,
all remaining rules are part of R, still forming a clique.
Therefore, on line 8, we recursively order R until it is
acyclic. Rules Left, Right, and Down are structurally very
similar, except the latter which has one more element
(the scoreboard). Semantically, this means that Down is
more precise than the other two rules because it requires
matching more elements. Applying another rule may risk
removing this additional element, and thus not allowing
Down to be applicable anymore. Therefore, according to
H5, Down should have a lower priority value than the
other two rules. Left and Right rule cannot be further
distinguished. Hence, any order between them will lead
to the same chance of making the other inapplicable.
Table 2 summarizes the order generated by Algorithm 4.
The table also shows the initial value of the heuristics of
each vertex.

13

Table 2: Priority order of the Pacman game rules output
by the algorithm

Rule Priority H1 H2 H3 H4 H5

Eat 1 0 0 1 1 7
Up 1 8 8 1 2 10
Down 2 8 8 1 1 12
Right 3 8 8 1 1 10
Left 4 8 8 1 1 10
Move 5 24 8 1 1 9

Since our objective depends on the Diff12 model, but
the conflict graph is agnostic from any model (i.e., it
only depends on the rules), the priority order output
may not be optimal for all Diff12 models. Nevertheless,
it should be optimal for most models. If the conflict
graph contains no cycle, applying the rules in the order
output by Algorithm 4 essentially allows all rules to
apply on any input models without conflict. However,
if there are cycles, the order output does not prevent
conflicts but minimizes their impact. Thus, this increases
the probability of replacing a maximum number of fine-
grained differences with semantic differences.

5.4 Extensions

Some extensions to the heuristics we present could be
considered. In particular, the goal of H5 is to favor more
precise rules as a last resort. Currently, elem only counts
the elements to be matched in a rule. One could ar-
gue that a rule with NACs is more precise than one
without, since it has fewer chances of matching. Thus
it could be possible to count NAC elements in elem.
One could also argue that a rule with abstract elements
is less precise than a similar rule using one of its sub-
classes. For example, consider the Move rule in Figure 11
(e). Suppose we had another rule MoveAny that relied
on the PositionableEntity class instead of the Pacman

class. Then Move can be considered more precise than
MoveAny, since it has fewer chances of matching. There-
fore elem could take into consideration abstract classes
and inheritance relations.

6 Evaluation

Next, we evaluate DSMCompare using both synthetic
models (Section 6.3) and model histories created by third
parties (Section 6.4). We first briefly outline the imple-
mentation of DSMCompare. Then we state the objectives
of our evaluation in Section 6.2. We present the two sets
of experiments (Sections 6.3 and 6.4), discuss the results
in Section 6.5 and present limitations and threats to
validity in Section 6.6.

6.1 Implementation

We implemented DSMCompare as an Eclipse plug-in run-
ning on the Eclipse Modeling Framework (Eclipse version
2020-09). It is available on the companion website5.

Given a DSL, DSMCompare automatically generates
out of the box all required artefacts to support the vi-
sualization of model differences for the DSL (i.e., diff
metamodel, fine-grained diffs, and extended concrete syn-
tax). Then, if so desired, the DSL designer can provide
domain-specific semantic diff rules, as these rules cannot
be inferred automatically. If the DSL evolves, the DSL
designer would have to evolve the semantic diff rules as
well, but the rest of artefacts can be regenerated again
with no effort.

To perform the model comparison, DSMCompare con-
sists of three main modules. The Comparison module
takes as input two model versions and produces the corre-
sponding fine-grained Diff12 model. This module relies on
the EMF-Compare model comparison tool (version 3.3.9).
The Ordering module computes the priority order of the
SDRules to be applied. It first transforms the SDRules
into Henshin rules. Then, it invokes the Henshin’s Multi-
CDA tool (version 1.7) to retrieve the potential conflicts
among the rules. The ordering module takes the conflicts
and the SDRules to produce the scheduling units of the
Henshin transformation. Finally, the Lifting module ap-
plies this transformation on the Diff12 model to obtain
the semantically lifted Diff12 model. The difference model
is then fed to generated Sirius editor (version 6.3.0) to
present the semantic Diff12 model in concrete syntax.

To use DSMCompare for a given DSL, the DSL Engi-
neer needs to perform two manual tasks. The first one is
to assign an appropriate concrete syntax representation
to the classes and relationships generated in the DSDiff
metamodel. The engineer only needs to consider the ele-
ments prefixed with “Diff”. For each Diff class, she needs
to create three versions (ADD, DELETE, MODIFY) of
the concrete syntax for the diff class corresponding to the
original metamodel of the DSL. For example, as depicted
in Figure 10, we created three additional icons represent-
ing Pacman by adding a +/× / ∼ symbol respectively.
Similarly, the engineer needs to create two versions (ADD,
DELETE) of the concrete syntax for the diff association
corresponding in the original metamodel of the DSL. The
second task is to create the SDRules for the DSL. The
number of SDRules to create depends on the DSL; for
example, Pacman required 12 rules, Arduino (cf. Sec-
tion 6.4.1) 24 rules, and Class Diagram Refactoring (cf.
Section 6.4.2) 20 rules. In general, writing a SDRule is
advantageous over writing the equivalent Henshin rule.
The generated domain-specific editor (e.g., in Figure 8)
and the abstraction level that deals directly with con-
cepts of the DSL reduce the effort compared to creating
Henshin rules using generic nodes and edges, and adding

5 https://github.com/geodes-sms/DSMCompare/

14

https://github.com/geodes-sms/DSMCompare/

explicitly graph transformation inscriptions (e.g., NAC
groups as shown in Algorithm 3).

6.2 Objectives

Our first goal is to evaluate if DSMCompare improves the
readability and understandability of differences between
model versions. To this end, we characterize the verbosity
of the differences formulated by two research questions:

RQ1 Are fine-grained differences more verbose than
semantic differences?

RQ2 Does assigning priorities to semantic differencing
rules yield less verbose difference models?

We claim that the more differences are presented to a
domain user, the harder it is for her to comprehend the
changes that differentiate two models from a semantic
point of view. Therefore, RQ1 investigates whether pre-
senting more semantic differences rather than fine-grained
differences, reduces the verbosity of the difference model.
RQ2 focuses on the impact of the priority ordering of the
semantic differencing rules in decreasing the verbosity.
The metrics we use to answer both research questions
are the number of remaining fine-grained differences and
the number of discovered semantic differences in the dif-
ference model. To answer RQ2, we use synthetic models
from two scenarios (the Pacman game and metamodel
refactorings) as we will detail in Section 6.3.

The second goal is to evaluate the applicability of our
approach in finding semantic differences between model
versions. We concentrate on the following two research
questions:

RQ3 Can we extract semantic differences from fine-
grained diffs?

RQ4 Are semantic differences recurring?

RQ3 assesses whether semantic differencing rules are
applicable in practice. However, these rules must be ap-
plicable to any difference model of a particular DSL. If a
rule is rarely applicable on a set of models, then the rule
is too specific to certain classes of models of the DSL and
general enough to the DSL. Therefore, we must ensure
that semantic differencing rules are recurring. The metric
we use to answer these latter two research questions is
the number of occurrences of semantic differences over
model histories created by third parties, as we will detail
in Section 6.4.

6.3 Reducing the verbosity with semantic differencing

We present the first experiment to evaluate if DSMCom-
pare yields less verbose difference models.

6.3.1 Experimental setting

Cases. In this experiment, we consider two cases: the
Pacman game configuration DSL (Pac-Man) presented
in previous sections, and the refactoring of Ecore meta-
models (MM-Refactoring). We choose these two cases
to vary the size of the difference models, the number of
semantic differencing rules, and the topology of the con-
flict graph. Moreover, the reasons for the selection of the
second case are twofold. On the one hand, it illustrates
that our approach works for both models and metamod-
els, by just looking at Ecore metamodels as instances of
(i.e., models of) the Ecore meta-metamodel. On the other
hand, GitHub contains many Ecore metamodels, which
increases the chances of finding interesting metamodel
version histories for our experiment.

For the Pac-Man case, we have specified 12 seman-
tic diff rules: five for Pac-Man movements (up, down,
left, right, and the general move), five similar rules for
ghost movements, one for Pac-Man eating food, and one
for a ghost killing Pac-Man. Every rule has one filter
and creates one semantic difference object. The conflict
graph of the rules forms three disconnected cliques: one
for ghost movements, one for Pac-Man movements with
the Pacman-Die rule, and the disconnected Pacman-Eat
rule. All rules are composed of eight elements, except
the Pacman-Die rule which is composed of seven. The
Pac-Man case represents situations where the semantic
difference rules are uniform.

For the MM-Refactoring case, we have specified 20 se-
mantic difference rules adapted from the metamodel and
object-oriented refactoring catalogs6, such as Extract-
Superclass, Split-References, and Rename-Attribute. The
conflict graph of the rules forms two disconnected graphs.
The first graph contains four rules, three of them (for
method movement) forming a strongly connected com-
ponent. The second graph comprises strongly connected
components of 13 rules: eight for references and five for
attributes. All rules filter one or two elements, except
the three renaming rules, which have no filter. They are
all composed of five to nine elements. As opposed to
the Pac-Man case, the MM-Refactoring case represents
situations where there is more variability between the
semantic differencing rules.

For both cases, we used DSMCompare to generate the
corresponding DSDiffMM and SDRuleMM metamodels.
We specified the semantic differencing rules with the
generated editor and automatically transformed them
into Henshin to apply them on a set of difference models.
All the material such as models, data, rules and conflict
graphs are available on the companion website.

Model generation. To address RQ2, we want to verify
that applying DSMCompare to a difference model max-
imizes the number of semantic difference objects and
minimizes the number of fine-grained differences. Since

6 https://www.metamodelrefactoring.org and https://

refactoring.com respectively

15

https://www.metamodelrefactoring.org
https://refactoring.com
https://refactoring.com

Table 3: Results of applying the semantic differencing rules in different orders on the difference models. The numbers
in the form x | y represent x semantic difference objects and y fine-grained differences remaining in the difference
model after applying all semantic differencing rules in the corresponding order.

DSL
Diff
model

#fine-
diffs

Without
conflicts

Ordered
Reverse
order

Random
order 1

Random
order 2

Random
order 3

Random
order 4

Random
order 5

Random
order 6

Random
order 7

Pac-
Man

M1 90 77 | 0 60 | 30 28 | 45 34 | 40 45 | 29 55 | 42 60 | 23

– – –
M2 52 42 | 0 28 | 24 22 | 15 23 | 15 24 | 15 28 | 20 28 | 16
M3 49 41 | 0 32 | 17 16 | 24 16 | 24 27 | 14 27 | 15 32 | 17
M4 68 67 | 0 44 | 24 23 | 29 28 | 24 38 | 16 39 | 17 44 | 19
M5 62 46 | 0 32 | 30 16 | 31 16 | 31 24 | 24 29 | 27 32 | 30

MM-
Refac-
toring

M1 337 219 | 90 117 | 228 92 | 230 111 | 229 100 | 226 99 | 235 95 | 227 117 | 234 117 | 228 117 | 234
M2 262 88 | 183 57 | 223 53 | 217 54 | 223 55 | 222 55 | 223 53 | 219 57 | 223 57 | 222 57 | 223
M3 266 88 | 188 71 | 188 66 | 210 69 | 212 66 | 210 69 | 213 66 | 211 71 | 213 71 | 213 71 | 212
M4 248 65 | 175 53 | 195 48 | 192 51 | 194 48 | 192 48 | 193 48 | 192 48 | 193 53 | 195 53 | 194
M5 277 139 | 123 79 | 197 71 | 195 73 | 195 73 | 191 72 | 200 71 | 197 79 | 200 79 | 194 79 | 200

it is not tractable to test exhaustively all possible differ-
ence models of each DSL, we derive a representative set
of difference models covering most cases. Therefore, we
construct five difference models (M1 to M5) by varying
the number of occurrences of each rule when applied in
isolation, i.e., assuming there are no conflicts between
rules.

We constructed M1 by hand, ensuring that all seman-
tic differencing rules have an almost equal number of
matches when applied in isolation (an average of 6 ± 1
matches for Pac-Man and 10± 3 for MM-Refactoring).
Therefore, M1 represents models where the number of
matches of each rule is uniformly distributed, regardless
of any priority order. For the remaining models, we ran-
domly varied the skewness and kurtosis of the number of
matches of each rule depending on their priority order
output by Algorithm 4.

In M2 of the MM-Refactoring, we favor the number
of matches of the 10 highest and lowest priority rules
to cover 90% of all the matches. Similarly for Pac-Man,
we favor the number of matches of the 6 highest and
lowest priority rules covering 84% of all the matches. For
example, the Pacman-Eat (top priority) and Pacman-
Move (lowest priority) rules have six and eight matches,
whereas Ghost-Left has only one match. Since lower
priority rules have many conflicts with higher ones, M2
represents difference models where the priority ordering
is least optimal: the lower priority rules will likely not be
applicable.

In M3, we favor the 6 and 10 highest priority rules for
Pac-Man and MM-Refactoring respectively. All remaining
rules have at most one match. Therefore, M3 represents
difference models where the priority ordering is optimal.

In M4, we favor the same number of lowest priority
rules as in M3, while all higher priority rules have at
most one match. For example, in the MM-Refactoring,
the Merge-Reference rule (top priority) has no match,
whereas Remove-Middle-Man (lowest priority) has five
matches.

Finally, in M5, the highest and lowest priority rules
have at most one match while favoring the matches of
all other rules.

The first four columns of Table 3 summarize the setup
of each case. The #fine-diffs column shows the total num-
ber of fine-grained differences in each difference model
before applying the semantic differencing rules. For in-
stance, there are 90 fine-grained differences for M1 of the
Pac-Man DSL, among which 76 are association differ-
ences and 14 are class differences. To better characterize
each model, the next column (labelled Without conflicts)
shows the total number of matches7 of all semantic dif-
ferencing rules when run in isolation, assuming there are
no conflicts between the rules. This gives an idea of how
many times the rules are applicable; though this number
is not reachable when there are conflicts between rules.
For example, for M1 of the Pac-Man DSL, if all rules
were to be applied on all their matches, the resulting
difference model would contain 77 semantic differences,
and all of the 90 fine-grained differences would be filtered.
Note that the difference models for MM-Refactoring are
on average 4.5 times larger than those for Pac-Man.

Priority orderings. The first independent variable of
this experiment is the difference model (M1–M5) to avoid
a bias in the priority order output by our approach. Fur-
thermore, to answer RQ2, we must compare the order
output by DSMCompare with other orders. One interest-
ing order we can compare with is the reverse order. This
allows the rules with most conflicts to be applied first.
Other orders to compare to are obtained through random
sampling from all possible permutations. However, it is
intractable to test against all possible permutation of
rule ordering. One property of Algorithm 4 is that rules
with the same priority have no conflict between them. We
denote rules sharing the same priority as a cluster. Thus,
the order within each cluster does not have an impact on
the other rules. Therefore, we can ignore the permuta-
tions within clusters. For the Pac-Man case, we obtain
6 clusters for the 12 rules and for the MM-Refactoring
case, we obtain 9 clusters for the 20 rules. Still, manually
testing all these possible permutations is not feasible (720
and 362 880 for the Pac-Man and MM-Refactoring cases

7 Since each rule creates a single semantic difference object,
this number is the same as the number of matches.

16

respectively). In the random sampling, we generated or-
ders such that no cluster has the same priority twice.
Therefore, there are as many orders as there are clusters.
After excluding the order output by Algorithm 4 and
the reverser order, we end up with 4 additional random
orders for Pac-Man and 7 for MM-Refactoring cases.

6.3.2 Results Table 3 shows the results of this experi-
ment. In bold, we highlighted the cases where the met-
rics are optimized: maximizing the number of semantic
differences and minimizing the number of fine-grained
differences. For example, for the M1 model of Pac-Man,
applying the rules in a priority ordering output by DSM-
Compare results in 60 semantic differences with 30 fine-
grained differences remaining. In all the tested cases, the
results show that the priority order output by Algorithm 4
maximizes the number of semantic differences. Neverthe-
less, for Pac-Man, one of the random orderings filters
more fine-grained differences than our order in three dif-
ference models. After manual inspection, we identified
that this is because, in this ordering, the Pacman-Move
rule has a higher priority than Pacman-Right. However,
this means that a more general semantic difference takes
precedence over a more specific semantic difference. This
contradicts our heuristic H5, which favors the latter over
the former. This is a desirable property of our ordering
since, in practice, if the Pac-Man moved to the right,
then we would like that the difference model depicts the
direction in which it moved.

For MM-Refactoring, our priority order produces the
best results in terms of the metrics collected. We notice
that two random orders obtain slightly fewer fine-grained
differences. Like for Pac-Man, they also give lower priority
order to more general rules, such as Move-Reference.
However, since they filter more fine-grained differences
than more specialized rules, the same number of fine-
grained differences are filtered overall.

Regarding RQ1, we can conclude that the fine-grained
differences are more verbose since semantic differences ag-
gregate multiple fine-grained differences. Regarding RQ2,
we find that assigning priorities has a significant influence
on the verbosity of the difference model. Furthermore, we
notice that most of the time, our ordering results in less
verbose difference models. Although it does not always
optimize the number of fine-grained differences, it reports
more precise semantic differences. We believe maximizing
this aspect improves the readability of the model on top
of reducing the number of fine-grained differences.

6.4 Case studies

We now validate our approach on two real-life case stud-
ies developed by third-parties. The first case we choose is
a DSL with a graphical concrete syntax and a few model
versions on which we apply DSMCompare. In the sec-
ond case, we focus on larger models with many versions
available.

6.4.1 Arduino Designer

Description. Arduino Designer is an environment spe-
cially tailored to young children, to create simple pro-
grams for Arduino8, an open-source electronics platform
based on easy-to-use hardware and software. The Arduino
Designer language is a DSL built to model Arduino con-
figurations and programs graphically, based on Sirius.
The DSL has two parts: one for the configuration of
devices and another for sketching programs. The con-
figuration part contains primitives for placing hardware
devices on the appropriate pins of the Arduino board. In
Arduino, the code is placed and executed within a main
loop. The sketch part models the code within the loop.
It is a graphical programming language with arithmetic
expressions, loops, and conditional instructions.

Just like code, these models evolve in new versions.
For example, in a GitHub repository9, we can find a
history of different models that underwent bug fixes,
improvements, and migrations to a new framework. Un-
derstanding complex changes that have occurred from
one version to another may be hard for Arduino devel-
opers, especially if they are children. Our approach can
help these developers visualize the changes in the same
graphical language and environment they used for devel-
opment. Furthermore, we report the changes as semantic
differences. For the sketch part, we reuse known code
refactoring patterns and model them as semantic dif-
ferencing rules. The changes in the configuration part
typically consist of adding or replacing devices in appro-
priate pins of the board.

Domain-specific comparison of Arduino models. We
have applied DSMCompare on different versions of Ar-
duino models available in the repository. The original
metamodel ArduinoMM consists of 36 classes, 33 associa-
tions, and 17 attributes. The concrete syntax ArduinoCS
assigns an icon for every class and association. With
DSMCompare, we generate the difference metamodel Ar-
duinoDiffMM with 96 classes, 137 associations, and 110
attributes. The rule metamodel ArduinoRuleMM con-
tains one more class and association, with 219 attributes.
The generated concrete syntax definitions are of a similar
scale.

The Arduino GitHub repository includes 13 working
example projects. We filtered 6 of them, since they had an
initial empty model, and just another version adding all
model elements. We applied DSMCompare on all remain-
ing 7 projects, and Table 4 summarizes the results. Each
model has between 2 and 4 versions in the repository.
The commit message associated with a version helped us
to identify the purpose of the model changes (shown in
the Version n and Version n+1 columns). The fourth col-
umn (Fine Diffs) shows the total number of fine-grained

8 https://www.arduino.cc/
9 https://github.com/mbats/arduino/

17

https://www.arduino.cc/
https://github.com/mbats/arduino/

Table 4: Comparison of model versions in the Arduino Designer examples repository

Project Version n Version n+1 Fine Diffs Semantic Diff Rules Occurrences Remaining Fine Diffs

alarmlight

Repeat Fix generation for alarm light example 32

Change Digital Pin 1

25

Change Next instruction 7
Delete a Status 2
Delete a loop 1
Replace a loop 2

Refactor a Repeat loop 1
Add a Status 2

Fix generation for alarm light example Fix alarm light example 6
Change Next instruction 4

5Delete a Status 1

Fix alram light example Migrate alarmlight example to sirius 31

Change Digital Pin 1

24

Change an Output Module 2
Change Status 2

Change Repeat Iteration 1
Delete a Status 1
Add a Status 2
Replace a loop 1

Change Next instruction 2
Change Delay Value 3

fadelight

While Sub instructions 21
Change Next instruction 1

11Refactor a While loop 2
Add a Level 2

Sub instructions Create variable, constant, math operator 29

Replace a loop 2

24
Change Next instruction 2
Change While Condition 2
Refactor a While loop 1

Create variable, constant, math operator Generate while 10
Change Next instruction 1

6
Delete a loop 1

infraredsensor
Support infrared and servo Migrate infrared sensor example 2 Change Digital Pin 2 1

Migrate infrared sensor example Migrate examples to sirius 2.0.3 1 Change Next instruction 1 1

servo Support infrared and servo Migrate servo example to sirius 5
Replace a connector 1

3
Change Next instruction 1

tigger.all Add Tigger example Update the tigger example 25

Change Next instruction 1

18

Refactor an If condition 1
Add a Status 4

Set Repeat condition 1
Add a Level 2
Add a Sensor 1

tigger.bubble add tigger bubble example Fix issue on bubble example 2 Change Status 2 2

tigger.tail

Add Tigger tail example Update tail example 4
Delete an Output Module 1

2
Change Connector 1

Update tail example Update cat tail example to add miaou sound 20

Add an Output Module 1

13
Add Connerctor 1

Replace an If condition 1
Add a Status 2
Move Delay 2

differences found by DSMCompare. For example, in the
fadelight project, when comparing the version While
and the version Sub instructions (versions 1 and 2 of this
project), DSMCompare reported 21 fine-grained differ-
ences. The column Semantic Diff Rules shows the name
of the semantic differencing rules recognized among the
fine-grained differences, and column Occurrences repre-
sents the number of occurrences of each rule. Finally, the
last column shows the number of remaining fine-grained
differences after some differences were removed (filtered)
by applying the semantic diff rules.

Results. Table 4 clearly shows that DSMCompare is
able to extract semantic differences from fine-grained
differences, being able to report one or more semantic
differences across all versions of the considered projects.
Moreover, most semantic diff rules (13 out of 24, 54%)
where applied several times, and 29% of them were ap-
plied across different projects.

As an illustration, for the fadelight project, DSM-
Compare reported two semantic differences of type
“Refactor a while loop”, representing a while-loop refac-
toring (cf. Figure 14). The first while-loop sets the device
for a specific time in the on state, and the second loop
models the off state of a “FadeLight”. In addition to
one class difference, each of the two semantic diffs has
also two diffs of associations. One of them represents the

“condition” of the while-loop, and the other a link to the
“next” instruction after the loop.

As expected, the fine-grained Diff12 models contain
fewer changes (cf. last column of Table 4) after applying
the semantic diff rules. For example, the tigger.tail

model adds an infrared sensor to a digital pin, and a
servo motor to another digital pin in the Arduino board.
The board also adds instructions to the end of the main
loop. In this case, the fine-grained Diff12 model shows
the removal of six fine-grained differences and the addi-
tion of 14 fine-grained differences (a total of 20 changes).
These changes can be encapsulated in five semantic dif-
ferencing rules, i.e., “Add an Output Module”, “Add Con-
nector”,“Replace an If condition”, “Add a Status”, and
“Move Delay”. These rules correspond to the intention of
the change i.e., “add miaou sound to the cat”. Meanwhile,
seven fine-grained differences have been removed.

Most of the identified semantic differences in Table 4
are additions to an already designed Arduino model
related to fix bugs, make improvements, or migrate to a
new framework. Due to the nature of the Arduino DSL,
any insertion of a device in the configuration part also
requires changes in the sketch part. In fadelight, only
the sketch part of the model is affected as we are inserting
a while-loop to turn the LED light on and off gradually.

6.4.2 Class Diagram Refactoring

18

Figure 14: Domain-specific differences in Arduino designer for the fadelight project

Description. The second case study is about refactor-
ing class diagram models. We focused particularly on
refactoring metamodels defined in Ecore from two reposi-
tories. The first repository contains three versions of the
UML metamodel10. The second repository comes from
the Graphical Modeling Framework (GMF)11, an open
source project for developing graphical modeling editors.
GMF consists of two main metamodels, namely gmfgraph

that defines the graphical notations and gmfmapping that
maps domain models, graphical notations, and tool def-
initions. A description of GMF and its history can be
found at [23]. We extracted the metamodel versions from
the version control system of GMF as previously per-
formed in [23]. The repository contains 11 versions of the
gmfgraph metamodel and 16 versions of the gmfmapping

metamodel. The metamodels for UML and GMF are
of similar sizes with 44 classes, 61 associations, and 29
attributes on average.

Domain-specific comparison of Class Diagram Refactor-
ing. We applied DSMCompare on the Ecore metamodel

10 https://git.eclipse.org/c/uml2/org.eclipse.uml2.

git/tree/plugins/org.eclipse.uml2.uml/model
11 https://www.eclipse.org/modeling/gmp/

to compare different versions of the Ecore models for
UML and GMF. The original metamodel EcoreMM con-
sists of 20 classes, 48 associations, and 33 attributes. With
DSMCompare, we generated the difference metamodel
EcoreDiffMM with 85 classes, 165 associations, and 174
attributes. The rule metamodel EcoreRuleMM contains
one more class and association, with 346 attributes.

Table 5 describes the consecutive model versions we
considered for each project. We chose the versions that
had at least two differences between each consecutive
version. The semantic differencing rules we applied are
the same rules as for the MM-Refactoring experiment in
Section 6.3. However, the four rules related to refactoring
methods (rename, pull-up, push-down, and move) are not
applicable to the Ecore models. Therefore, we considered
16 semantic differencing rules.

Results. Table 5 reports the results of applying DSM-
Compare in a similar fashion as for the Arduino case
study. For example, the fine-grained Diff12 model be-
tween the Ecore models of gmfgraph versions 1.29 and
1.30 reports 59 fine-grained differences. We found nine
applicable semantic differencing rules. Among them, the
“extractSuperClass” rule, which removes attributes from
a class and creates a new parent class containing these

19

https://git.eclipse.org/c/uml2/org.eclipse.uml2.git/tree/plugins/org.eclipse.uml2.uml/model
https://git.eclipse.org/c/uml2/org.eclipse.uml2.git/tree/plugins/org.eclipse.uml2.uml/model
https://www.eclipse.org/modeling/gmp/

Table 5: Comparison of model versions for class diagram refactoring from different repositories

Project Version n Version n+1 Fine Diffs Semantic Diff Occurrences Remaining Fine Diffs

UML UML 1.4.2 UML 2.0 250

renameAttribute 1

215

renameReference 3
mergeReference 2
moveAttribute 10
moveReference 9

removeMiddleMan 7

GMFgraph gmfgraph V-1.29 gmfgraph V-1.30 59

extractSuperClass 3

46

specializeSuperType 6
pushFeature 4

imitateSuperType 1
generalizeAttribute 1

specializeReferenceType 4
deleteFeature 4

generalizeReference 1
makeContainment 1

GMFmappings

gmfmappings V-1.45 gmfmappings V-1.46 12
extractSuperClass 1

11
makeFeatureVolatile 1

gmfmappings V-1.48 gmfmappings V-1.49 10
extractSuperClass 1

7
pushFeature 2

gmfmappings V-1.51 gmfmappings V-1.52 2 replaceEnum 2 2
gmfmappings V-1.55 gmfmappings V-1.56 2 replaceInheritanceByDelegation 1 1

attributes, occurs in three consecutive model versions,
on a total of five matches.

Like for the Arduino case, we see that the fine-grained
Diff12 model contains fewer changes (cf. last column in
Table 5) after applying the semantic differencing rules.
For example, in the UML project, Diff12 shows that one
association is added, while another one is removed, and
the type of the association is modified. These fine-grained
changes can be encapsulated in the SDRule “mergeRef-
erence” which corresponds to the intention of the change.
As a result of this rule application, fine-grained differences
are filtered.

Table 5 shows that DSMCompare is able to extract se-
mantic differences from fine-grained differences. In some
cases, it reports more than one match of the same se-
mantic difference, e.g., “moveAttribute” (10 times in UML)
or “specializeSuperType” (6 times in GMFgraph). In the
latter case the rule filters a fine-grained difference at ev-
ery match, thus presenting less irrelevant information to
the user. However, not all rules have filters. For example,
“replaceEnum” does not filter elements. Nevertheless, by
adding semantic difference objects, DSMCompare lifts
the user’s understanding of changes closer to her inten-
tions: attributes are replaced by enumerations. DSMCom-
pare is also able to find the expected semantic differences
(according to the commit messages). For example, it de-
tected the “extractSuperClass” rule in both the GMFgraph

and the GMFmappings projects.

As the results of these two case studies show, reporting
domain-specific semantic differences reduces verbosity. To
better understand this effect, we calculate the verbosity
reduction VR as the percentage of diffs eliminated:

VR = 1− RemainingDiffs

FineDiffs

where FineDiffs is the number of fine-grained diffs, and
RemainingDiffs is the number of remaining diffs after
applying DSMCompare.

Figure 15: Verbosity reduction for each case study

The box-plot in Figure 15 reports standard descriptive
statistics that can be read as follows: the lower bound
of the rectangle is the first quartile, the upper bound is
the third quartile, the middle bar within the rectangle
is the median, the cross is the average, and the top and
bottom vertical lines denote the amplitude of the data.
Figure 15 reports averages (28% and 16%), medians (28%
and 18%), and standard deviations (17%) for both case
studies respectively. ArduinoDesigner models contain
fewer elements and the differences reported fewer fine-
grained differences, which may explain higher verbosity
reductions overall. We note that VR ∈ [0, 0.5] in these
projects; thus, using SDRules reduces the fine-grained
differences reported by up to a factor of two.

Figure 16 reports the ratio of SDRules per occur-
rence. For example, 17% of the Arduino and Refactoring
SDRules recur four times. We counted a rule as recurring
if it matches multiple times on the same model or if it
is present in multiple versions. We notice that SDRules
occur multiple times and across different projects in each
case study. On average, each rule occurs around three
times. Also, the majority of the SDRules occur at least

20

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9 10

Arduino Refactoring

rule occurrence

rule ratio

Figure 16: Ratio of the number of rules per number of
occurrences for the two case studies

twice for each case study (52% for Arduino and 61%
for Refactoring). This justifies that the chosen rules are
appropriate for these DSLs.

6.5 Discussion

Next, we discuss the results by answering the four re-
search questions.

Verbosity (RQ1). In general, when a SDRule, is applied,
at least one semantic difference object is created (and
its relations), thus increasing the number of elements in
the difference model. If the rule specifies filters, then the
number of fine-grained differences decreases. Therefore,
the size of the resulting Diff12 model varies significantly
depending on which rules are applicable. Quantitatively,
verbosity is related to the number of fine-grained differ-
ences remaining. However, semantic difference objects
reduce the verbosity of the difference model qualitatively.
They add a higher level of abstraction by providing a
precise meaning, which expresses the exact semantic
difference for a collection of low-level generic modifica-
tions. The domain expert can then better understand the
changes that occurred from one version to another, espe-
cially when the differences are reported using the same
concrete syntax as the DSL. For example, this is particu-
larly peculiar for the Arduino models where the users are
young developers with no notion of object-orientation
embedded in the abstract syntax. Showing differences
using the hardware notations and code sketches can cer-
tainly improve their comprehension of the changes and,
ultimately, their productivity.

Semantic differencing rule priorities (RQ2). Overall,
the priorities assigned to DSRules by DSMCompare yields
relatively good results. The order of application of the
rules has a significant impact on the verbosity, since the
more rules are applied, the more semantic difference ob-
jects are added and fewer fine-grained differences remain.
Furthermore, our results have shown that when two rules
are applicable, DSMCompare favors more precise rules.
Ultimately, the difference models presented are more
meaningful to domain experts.

We have seen that the priority order is not always
optimal for all model instances of a DSL. DSMCompare
assigns priorities based on static analysis of the meta-
model of the DSL. Finding the optimal ordering would
require to analyze the given fine-grained Diff12 model.
We would pre-compute all the matches of each SDRule
and add this information as a heuristic to maximize. This
must be performed for every difference model of the DSL.
In DSMCompare, we opted to provide a solution that is
independent from the Diff12 model, thus it needs to be
computed only once per DSL. One possible use case is to
treat the priorities output by DSMCompare as a default
suggestion. The pre-computation could then be offered
as a suggestion to the user who could decide to manually
modify the priorities.

Ability to extract semantic differences (RQ3). The
premise of this work relies on the ability to report se-
mantic differences in the difference models. The case
studies, based on models developed by third-parties, val-
idate that it is possible to find such semantic differences.
In DSMCompare, semantic differences are specified by
semantic differencing rules. If every rule only occurred
once in the case studies, then they would be too specific
for each difference model which means they would have
to be specified by the end-users almost every time they
use DSMCompare. However, our results have shown that
the rules we have extracted from the case studies occur
multiple times (cf. Figure 16). This strengthens the view
that it is possible to extract semantic differences in prac-
tice and that the rules can be specified only once per
DSL. Nevertheless, with more Diff12 models, the set of
SDRules may grow. Domain experts can modify or add
more rules incrementally thanks to the generated SDRule
editor that uses the same environment and notations as
the modeling editor used for the DSL.

Applicability of semantic differencing rules (RQ4). We
found that SDRules occur in different Diff12 models (cf.
Figure 16). This means that they are not specific to a
given Diff12 model, but generally applicable to any Diff12

model of the DSL. The semantic difference rules must
come from a piece of knowledge within the DSL. There-
fore, they cannot be invented and need to be semantically
meaningful. This knowledge can originate from the oper-
ational semantics if it is an executable model, or refactor-
ing patterns, or some DSL-related knowledge-base. From
our experience with DSMCompare, SDRules come from
the operational semantics of the DSL (as in Pacman) or
known refactoring patterns in the DSL: e.g., code-level
(like the sketch in Arduino), class-level (like in Ecore
models), or model-level (like in feature models [62]). Ad-
ditionally, in practice, when the DSL designer observes
that specific differences are often recurring, this is a good
indicator that this may be elevated to a semantic differ-
ence rule, to simplify the comprehension of the diffs by
the DSL users. Hence, overall, DSMCompare supports

21

both top-down (i.e., based on known refactorings of the
DSL, or its semantics) and bottom-up (i.e., mined from
actual changes) approaches to specify SDRules. Finally,
our approach is agnostic of the meta-level of the input ar-
tifact. As demonstrated in the evaluations, the input can
be the metamodel of a DSL (like Pacman and Arduino)
or it can be a meta-metamodel (like Ecore).

6.6 Threats to validity

For the controlled experiment, the main limitation is that
there were 12 rules in the Pac-Man case and 20 rules in
the MM-Refactoring case. Therefore, it was not possible
to generate all the 12! and 20! possible permutations. This
limitation prevents us to test all possible combinations
of rules for the cases. However, to mitigate this threat,
we have selected different orderings. One of the selected
orders was generated by the Algorithm 4, another one
was the reverse of that order, and a collection of five
random orders created so that none have the rules placed
in the same position and positioned in a way to maximize
the diversity. However, testing manually all the possible
permutations was not possible.

Another limitation is related to the models used. We
created five models, but maybe there are other models
in which the application of the rules in the generated
order produce a worse result. We did not test all possible
models; instead, we created five models in a way that
the matches of rules were diversified. In this way, we em-
phasize the higher-order, middle-order, and lower-order
rules by increasing their number of matches, which covers
most of the possible opportunities that can happen in
any Diff12 model. We expect that most Diff12 models
will fall in one category of the five Diff12 models which
we have created, i.e., either have a uniform number of
matches, maximize some rules, or minimize other rules.

The third limitation was that the way we built the
models and we have created the orderings was based on
the order generated by Algorithm 4. What we varied in
the algorithm was the position of the rules in the priority
order. Other algorithms or heuristics may perform better,
for instance taking into account NACs, type hierarchies
or the number of matches of each rule on the given
difference model. Nevertheless, the algorithm constantly
shows good performance for the five models with respect
to different orderings.

With respect to the case studies, another threat is the
way we have computed the verbosity reduction V R of the
difference models. The current formula does not take into
account the size of models. For example, while the servo

project has small models, V R = 40%. In contrast, the
models in trigger.all are larger, yet V R = 4%. There
are also other examples of the opposite effect between
model size and V R. In general, V R highly depends on
the number of matches of SDRules. Therefore, a better
value of V R should take into account the occurrences of

the rules. However, since this number is very small and
similar (0-3) in our dataset, this would not influence our
results.

Finally, we created the semantic diff rules for Arduino,
since (naturally) these were not available from its devel-
opers. We compared each two consecutive commits to
abstract the multiple atomic changes to a meaningful se-
mantic difference. However, the SDRules we derived may
not have been the intention of the original modification.
We mitigated this threat by relying on the commit mes-
sages, which may indicate that it was the intention of the
modeler. Finally, we were able to use DSMCompare on
two languages and model histories built by third parties.
However, the use of other case studies is required for a
stronger validation of our approach.

7 Related work

This section reviews related works on model differencing.
The survey in [55] presents several model comparison
approaches and applications. Model differencing involves
calculation of the matching model elements, representa-
tion of their differences, and visualization of the differ-
ences. Hence, we structure this section paying attention
to these three aspects, and also review control version
systems for modelling artefacts.

Model matching calculation. Kolovos et al. [30] survey
current approaches for model matching. These can be:
static identity-based, which assume a unique identifier for
objects; signature-based, which compare objects based on
a dynamic signature calculated from the objects’ prop-
erties; similarity-based, which match objects based on
the weighted similarity of their properties, but obviates
the model semantics; and language-specific, developed
ad-hoc for a modeling language and its semantics. For
example, using signifiers [35] (i.e., combinations of fea-
tures of a metamodel class) as a comparison criterion
falls in the signature-based category, EMFCompare is
similarity-based but permits defining custom matching
algorithms, and UMLDiff [67] is language-specific. In
general, each solution is a better fit for certain kinds of
problems: a language-specific matching algorithm may
be faster and more accurate than a generic algorithm,
but its implementation requires more effort.

Maoz et al. [38] argue that existing model differenc-
ing approaches are purely syntactic and challenge the
community to develop semantic diff operators. These
calculate a set of diff witnesses that give proof of the
real change between two models and the effect on their
semantics. Two models may be syntactically different
but have no diff witnesses, meaning that they are se-
mantically equivalent. For example, a diff witness of two
class diagrams would be an object diagram that is an
instance of one of the class diagrams but not of the other,
while for activity diagrams, it would be an execution

22

trace admitted by only one of the diagrams. Diff wit-
nesses also allow deciding whether the semantics of two
versions of a model are equivalent, incomparable, or one
refines the other. This approach was later realized in the
Diffuse framework [37]. Extending our approach to deal
with model diffs concerned with the instantiability or
executability of models as a comparison criterion is left
for future work.

Some researchers have dealt with N-way matching [24,
49], especially in the context of extracting a product line
out of a set of structurally similar model variants. In
this case, N-way matching is needed to identify the com-
mon parts of the involved artefacts. We plan to extend
DSMCompare to capture changes between more than two
models, and so in this context, it could be used to better
understand the (semantic) differences between several
model variants.

Representation of model differences. Cicchetti et al. [14]
propose an approach to represent model differences that
is metamodel independent and agnostic of the differ-
ence calculation method. Specifically, given two models
conforming to the same metamodel, their difference is
expressed as another model that conforms to a new meta-
model. This new metamodel is derived from the original
one by a transformation and allows representing model
changes (additions, deletions, and changes). Such differ-
ence models induce transformations to translate from one
model version to the other and can be composed. While
this approach to represent model differences is similar
to our proposal, it only works at the abstract syntax
level, whereas we also deal with the concrete syntax and
support domain-specific patterns to visualize the model
differences.

Our approach extends the metamodel of the DSL to
represent semantic differencing rules for domain-specific
model differences. A related technique is the ramification
of metamodels for domain-specific model transforma-
tions [31]. In this approach, graph transformation rule
patterns are expressed in a domain-specific way. The
metamodel of the patterns is generated by transforming
the metamodel of the input/output DSLs: relaxing car-
dinalities, adding transformation-specific attributes and
other concepts, and modifying attribute types.

Since low-level differences returned by generic com-
parison tools may be difficult to understand, Kehrer et
al. [26] perform a semantic lifting of such differences to
the level of editing operations. For this purpose, low-level
differences are represented as models, so that the identi-
fication of editing operations consists of finding groups
of related low-level changes. This search is performed by
rules that are automatically derived from the rule-based
specification of the editing operations. Hence, the notion
of semantic lifting is similar to our rules for expressing
domain-specific semantic differences. However, semantic
lifting only deals with the abstract syntax of models,
whereas we consider the concrete syntax as well. Similar

to semantic lifting approaches such as [20,65] we identify
complex change patterns from low-level changes involved
in a metamodel evolution. Although these patterns re-
semble the rules in our approach, they are generic and
predefined. In contrast, our approach allows the DSL
engineer to define the semantic differencing rules.

Visualization of model differences. Gleicher [21] pro-
vides general guidelines for visualizing comparisons. For
many different domains, comparing artifacts is a com-
mon task and visualizing the comparison often helps.
Generally, the visual comparison is displayed using juxta-
position (e.g., as EMFCompare does in Figure 3), super-
position, or explicit encoding (like we do in Figure 10).

Brosch et al. [11] visualize the changes and conflicts
in concurrently evolved versions of the same UML model
using UML profiles (stereotypes and tagged values). This
permits modelers to resolve the conflicts within the UML
editor of their choice while using the concrete syntax of
the manipulated language. However, this approach is only
suitable for UML models whereas we pursue a general
approach for arbitrary domain-specific languages.

More similar to our work, the authors in [50] focus on
the visualization of diagram differences in the diagrams
themselves. The rationale is to help users to understand
the modifications immediately. Their proposed visualiza-
tion includes pop-ups reporting the changes performed
in the neighborhood, zooming to changes, collapsing ir-
relevant parts, and using different colors to represent
additions (green), deletions (red), and changes (blue),
either in a single diagram or confronting two diagram
versions. They have developed a tool that uses EMFCom-
pare for model comparison, as we do. However, their tool
only permits visualizing atomic changes, represented by
different colors. Instead, we support both fine-grained
and coarse-grained domain-specific patterns of change.
Furthermore, the visualization associated with each pat-
tern is highly configurable. Other works, such as [39,45],
only permit showing changes using different colors or
shape styles.

A few works deal with the scalable visualization of dif-
ferences in the case of large models. To solve this problem,
van den Brand et al. [64] combine a generic visualiza-
tion framework for metamodel-based languages to show
the fine-grained differences, with polymetric views that
provide support for zooming and filtering. Wenzel [66]
also relies on polymetric views to support scalable vi-
sualization of differences based on model metrics. Both
works are complementary to ours: whereas we provide
domain-specificity to the visualization, these other works
add a general visualization layer on top.

Version control systems for models. Even though mod-
els are frequently persisted as text files, the use of tradi-
tional text-based version control systems is suboptimal,
as we have argued in the introduction. This way, several
model repositories with support for version control have

23

been proposed along the years [4]. The ModelCVS [25]
and the AMOR projects [3] proposed dedicated version
control systems for models with sophisticated functionali-
ties, like a recommender of possible resolutions for model
conflicts [9]. In this setting, DSMCompare could be useful
to help understand better the differences between the
models, before choosing a resolution strategy.

The model repository of Espinazo-Pagán and Garćıa-
Molina [19] uses a MySQL database for storage, and a
special encoding of model versions to improve efficiency.
For a better performance, the authors later proposed
the use of NoSQL databases for persistence [18]. EMFS-
tore [29] and CDO [13] are well-known model repositories
for EMF, which support collaborative editing and version-
ing of models. DSMCompare could be used atop these
repositories to enable the visualization of (semantic) diffs
using the graphical concrete syntax of the DSL.

Commercial modeling tools feature different levels
of versioning and model differencing capabilities. Lab-
View has a built-in revision control system that al-
lows to programmatically compare different models [32].
MetaEdit+ [27] features a version control mechanism
called Smart Model Versioning [40], which allows com-
paring models – graphically, textually or by means of a
tree – and storing them on any major version control
system such as Git. MPS [43] integrates with Git and
Subversion and provides some capabilities for viewing
model differences, in a textual way [42]. Simulink sup-
ports comparing models and highlighting the differences
in the original models. Simulink uses a scoring algorithm
to determine if two model elements are a match [53]. Sim-
ilarly, SystemWeaver [61] provides versioning capabilities
at the model element level. This way, users can compare
an element, view its history, and replace one version of
an element with another. While these tools offer different
ways to diff models, these are typically fixed and not cus-
tomizable. Instead, our approach could be valuable here
to provide domain-specific, customizable visualizations
of the model differences, in a graphical way.

Our approach is based on Eclipse Modeling Frame-
work (EMF). This is a relevant technology, since Eclipse
is widely used in MDE research and many companies use
Eclipse and EMF tools [1]. Large companies such as IBM
are spearheading MDE through EMF [41].

Model differencing and collaborative modeling can
lead to clones and duplicates. Some approaches have ad-
dressed this problem. Störrle has developed a number of
heuristics and algorithms to detect clones in models [56,
57]. Babur et al. [44] leveraged natural language pro-
cessing, feature extraction and clustering techniques to
detect clones in models. We have not focused on detect-
ing model clones in our approach, which is left as future
work.

Altogether, to the best of our knowledge, ours is the
first comprehensive approach that handles both fine-
grained and coarse-grained domain-specific model dif-

ferences both at the abstract and concrete syntax levels.
Moreover, our approach supports the visualization of
changes on an automatically modified editor that reuses
the graphical concrete syntax of the DSL.

8 Conclusion

We have presented a comprehensive approach to repre-
sent domain-specific model differences at the abstract
and concrete syntax levels. The approach is based on
the automated modification of the DSL metamodel to
represent fine-grained differences, on the specification of
semantic differencing rules to model recurring changes
(based on an automatically generated editor), and on
the graphical representation of changes using the DSL
syntax (by automatically modifying the DSL concrete
syntax specification). We have realized our approach in
a tool, DSMCompare, that integrates within the Eclipse
Modeling Framework and is able to deal with graphical
concrete syntaxes specified with Sirius.

Our experience on multiple case studies (Pacman
game configuration, Arduino modeling, and metamodel
refactoring) and experiments have shown the practicality
of our approach to representing meaningful model differ-
ences in a domain-specific fashion. With DSMCompare,
domain experts can visualize changes using the concrete
syntax of the DSL as well as semantically meaningful
changes to the domain. This results in less verbose dif-
ferences that are of tremendous value to the domain
experts. We plan to validate this claim with a controlled
experiment with users.

We are also considering extending the approach to
capture changes between more than two models. To sup-
port three-way differencing, we can rely on the three-way
merge functionality that EMFCompare offers. We would
then extend the DiffMM to support the provenance of
each difference. For the SDRules, we need to consider
the conflicting situations that may arise when a diff ele-
ment has at least three different values. The rest of the
infrastructure of DSMCompare would only require mini-
mal adaptation when matching and applying SDRules.
Although DSMCompare could theoretically support com-
paring more than three model versions, EMFCompare
does not support it. Thus we would need to explore other
solutions to address this challenge.

On the tooling side, we will improve the visualization
of differences organizing them in layers (e.g., to hide
fine-grained differences and visualize only semantic differ-
ences). We also plan to incorporate our approach within
model repositories, like MDEForge [6], or version control
systems for code, like GitHub.

References

1. D. Akdur, V. Garousi, and O. Demirörs. A survey on
modeling and model-driven engineering practices in the

24

embedded software industry. Journal of Systems Archi-
tecture, 91:62–82, 2018.

2. A. Al-Herz and A. Pothen. A 2/3-approximation algo-
rithm for vertex-weighted matching. Discrete Applied
Mathematics, 2019.

3. K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger,
M. Seidl, W. Schwinger, and M. Wimmer. AMOR –
towards adaptable model versioning. In Workshop on
Model Co-Evolution and Consistency Management, 2008.

4. K. Altmanninger, M. Seidl, and M. Wimmer. A survey
on model versioning approaches. International Journal
of Web Information Systems, 5(3):271–304, 2009.

5. T. Arendt, E. Biermann, S. Jurack, C. Krause, and
G. Taentzer. Henshin: Advanced Concepts and Tools
for In-Place EMF Model Transformations. In Model
Driven Engineering Languages and Systems, volume 6394
of LNCS, pages 121–135. Springer, 2010.

6. F. Basciani, J. Rocco, D. Di Ruscio, A. Salle, L. Iovino,
and A. Pierantonio. MDEForge: an extensible web-based
modeling platform. In International Workshop on Model-
Driven Engineering on and for the Cloud, volume 1242,
pages 66–75. CEUR-WS.org, 2014.

7. E. Biermann, C. Ermel, and G. Taentzer. Formal founda-
tion of consistent emf model transformations by algebraic
graph transformation. Software & Systems Modeling,
11(2):227–250, 2012.

8. P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland,
and M. Wimmer. An introduction to model versioning.
In SFM, volume 7320 of LNCS, pages 336–398. Springer,
2012.

9. P. Brosch, M. Seidl, and G. Kappel. A recommender for
conflict resolution support in optimistic model versioning.
In SPLASH/OOPSLA Companion, pages 43–50. ACM,
2010.

10. P. Brosch, M. Seidl, K. Wieland, and M. Wimmer. We can
work it out: Collaborative conflict resolution in model ver-
sioning. In European Conference on Computer-Supported
Cooperative Work, pages 207–214. Springer, 2009.

11. P. Brosch, M. Seidl, M. Wimmer, and G. Kappel. Conflict
visualization for evolving UML models. Journal of Object
Technology, 11(3):2:1–30, 2012.

12. C. Brun and A. Pierantonio. Model differences in the
Eclipse Modelling Framework. UPGRADE, The European
Journal for the Informatics Professional, 9(2):29–34, 2008.

13. CDO Model repository. https://www.eclipse.org/

cdo/, last accessed January 2021.
14. A. Cicchetti, D. D. Ruscio, and A. Pierantonio. A meta-

model independent approach to difference representation.
Journal of Object Technology, 6(9):165–185, 2007.

15. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange,
and G. Taentzer. Attributed graph transformation with
node type inheritance. Theoretical Computer Science,
376(3):139–163, 2007.

16. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fun-
damentals of Algebraic Graph Transformation. Mono-
graphs in Theoretical Computer Science. An EATCS
Series. Springer, 2006.

17. EMF Compare. https://www.eclipse.org/emf/

compare/, last accessed January 2021.
18. J. Espinazo-Pagán, J. S. Cuadrado, and J. G. Molina.

Morsa: A scalable approach for persisting and accessing
large models. InModel Driven Engineering Languages and

Systems, volume 6981 of LNCS, pages 77–92. Springer,
2011.

19. J. Espinazo-Pagán and J. Garćıa-Molina. A homoge-
neous repository for collaborative mde. In International
Workshop on Model Comparison in Practice, pages 56–65.
ACM, 2010.

20. J. Garćıa, O. Diaz, and M. Azanza. Model transformation
co-evolution: A semi-automatic approach. In Software
Language Engineering, volume 7745 of LNCS, pages 144–
163. Springer, 2013.

21. M. Gleicher. Considerations for visualizing comparison.
Transactions on Visualization and Computer Graphics,
24(1):413–423, 2018.

22. GMF. https://www.eclipse.org/gmf-tooling/, 2019.
(last accessed in June 2019).

23. M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth. Lan-
guage evolution in practice: The history of GMF. In
Software Language Engineering, volume 5969 of LNCS,
pages 3–22. Springer, 2009.

24. S. Holthusen, D. Wille, C. Legat, S. Beddig, I. Schaefer,
and B. Vogel-Heuser. Family model mining for func-
tion block diagrams in automation software. In Inter-
national Software Product Line Conference: Companion
Volume for Workshops, Demonstrations and Tools, vol-
ume 2, pages 36–43. ACM, 2014.

25. G. Kappel, E. Kapsammer, G. Kramler, T. Reiter,
W. Retschitzegger, and W. Schwinger. Towards a seman-
tic infrastructure supporting model-based tool integration.
In International Workshop on Global Integrated Model
Management, pages 43–46. ACM, 2006.

26. T. Kehrer, U. Kelter, and G. Taentzer. A rule-based
approach to the semantic lifting of model differences in
the context of model versioning. In Automated Software
Engineering, pages 163–172. IEEE Computer Society,
2011.

27. S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ A fully
configurable multi-user and multi-tool CASE and CAME
environment. In Conference on Advanced Information
Systems Engineering, volume 1080 of LNCS, pages 1–21.
Springer, 1996.

28. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling -
Enabling Full Code Generation. Wiley, 2008.

29. M. Koegel and J. Helming. EMFStore: a model repository
for EMF models. In International Conference on Software
Engineering, volume 2, pages 307–308. ACM, 2010.

30. D. Kolovos, D. Di Ruscio, A. Pierantonio, and R. Paige.
Different models for model matching: An analysis of ap-
proaches to support model differencing. In ICSE Work-
shop on Comparison and Versioning of Software Models,
pages 1–6. IEEE, 2009.

31. T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and
M. Wimmer. Explicit transformation modeling. In MOD-
ELS 2009 Workshops, volume 6002 of LNCS, pages 240–
255. Springer, 2009.

32. LabView. https://www.ni.com/en-us/

support/documentation/supplemental/21/

managing-labview-vi-and-application-revision-history.

html, last accessed May 2021.
33. L. Lambers, H. Ehrig, and F. Orejas. Conflict detec-

tion for graph transformation with negative application
conditions. In International Conference on Graph Trans-
formation, volume 4178 of LNCS, pages 61–76. Springer,
2006.

25

https://www.eclipse.org/cdo/
https://www.eclipse.org/cdo/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/gmf-tooling/
https://www.ni.com/en-us/support/documentation/supplemental/21/managing-labview-vi-and-application-revision-history.html
https://www.ni.com/en-us/support/documentation/supplemental/21/managing-labview-vi-and-application-revision-history.html
https://www.ni.com/en-us/support/documentation/supplemental/21/managing-labview-vi-and-application-revision-history.html
https://www.ni.com/en-us/support/documentation/supplemental/21/managing-labview-vi-and-application-revision-history.html

34. L. Lambers, D. Strüber, G. Taentzer, K. Born, and J. Hue-
bert. Multi-granular conflict and dependency analysis in
software engineering based on graph transformation. In
International Conference on Software Engineering, pages
716–727. ACM, 2018.

35. P. Langer, M. Wimmer, J. Gray, G. Kappel, and A. Val-
lecillo. Language-specific model versioning based on sig-
nifiers. Journal of Object Technology, 11(3):4: 1–34, 2012.

36. Y. Lin, J. Gray, and F. Jouault. DSMDiff: a differentiation
tool for domain-specific models. European Journal of
Information Systems, 16(4):349–361, 2007.

37. S. Maoz and J. O. Ringert. A framework for relating
syntactic and semantic model differences. Software &
System Modeling, 17(3):753–777, 2018.

38. S. Maoz, J. O. Ringert, and B. Rumpe. A manifesto for
semantic model differencing. In MODELS 2010 Work-
shops, volume 6627 of LNCS, pages 194–203. Springer,
2011.

39. A. Mehra, J. C. Grundy, and J. G. Hosking. A generic
approach to supporting diagram differencing and merging
for collaborative design. In Automated Software Engi-
neering, pages 204–213. ACM, 2005.

40. MetaEdit+. https://www.metacase.com/news/smart_

model_versioning.html, last accessed May 2021.
41. P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fer-

nandez, B. Nordmoen, and M. Fritzsche. Where does
model-driven engineering help? experiences from three
industrial cases. Software & Systems Modeling, 12(3):619–
639, 2013.

42. MPS. Differences viewer for files. https://www.

jetbrains.com/help/mps/differences-viewer.html,
last accessed May 2021.

43. MPS. Version control. https://www.jetbrains.com/

help/mps/version-control-integration.html, last ac-
cessed May 2021.

44. Önder Babur, L. Cleophas, and M. van den Brand. Meta-
model clone detection with SAMOS. Journal of Computer
Languages, 51:57–74, 2019.

45. D. Ohst, M. Welle, and U. Kelter. Differences between
versions of UML diagrams. In Proceedings of the 9th
European software engineering conference held jointly
with 11th international symposium on Foundations of
software engineering, pages 227–236. ACM, 2003.

46. OMG. The Object Constraint Language (OCL) v. 2.4.
Specification. http://www.omg.org/spec/OCL/, 2014.
(last accessed in January 2021).

47. OMG. XMI metadata interchange v. 2.5.1. https://

www.omg.org/spec/XMI/About-XMI/, last accessed Jan-
uary 2021.

48. R. F. Paige, N. D. Matragkas, and L. M. Rose. Evolv-
ing models in model-driven engineering: State-of-the-art
and future challenges. Journal of Systems and Software,
111:272–280, 2016.

49. D. Reuling, M. Lochau, and U. Kelter. From imprecise
n-way model matching to precise n-way model merging.
Journal of Object Technology, 18(2):8:1–20, 2019.

50. A. Schipper, H. Fuhrmann, and R. von Hanxleden. Visual
comparison of graphical models. In International Con-
ference on Engineering of Complex Computer Systems,
pages 335–340. IEEE, 2009.

51. D. C. Schmidt. Guest editor’s introduction: Model-driven
engineering. Computer, 39(2):25–31, 2006.

52. F. Schwägerl, S. Uhrig, and B. Westfechtel. A graph-based
algorithm for three-way merging of ordered collections in
EMF models. Science of Computer Programming, 113:51–
81, 2015.

53. Simulink. https://www.mathworks.com/help/

simulink/ug/about-simulink-model-comparison.

html, last accessed May 2021.

54. Sirius. https://www.eclipse.org/sirius/, last ac-
cessed January 2021.

55. M. Stephan and J. R. Cordy. A survey of model com-
parison approaches and applications. In Model-Driven
Engineering and Software Development, pages 265–277.
SciTePress, 2013.

56. H. Störrle. Towards clone detection in uml domain mod-
els. In European Conference on Software Architecture:
Companion Volume, pages 285–293. ACM, 2010.

57. H. Störrle. Cost-effective evolution of research prototypes
into end-user tools. Science of Computer Programming,
134:47–60, 2017.

58. D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer,
M. Ohrndorf, and M. Tichy. Henshin: A usability-focused
framework for emf model transformation development.
In International Conference on Graph Transformation,
volume 10373 of LNCS, pages 196–208. Springer, 2017.

59. E. Syriani and H. Vangheluwe. A modular timed graph
transformation language for simulation-based design. Soft-
ware & System Modeling, 12(2):387–414, 2013.

60. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen,
S. Van Mierlo, and H. Ergin. AToMPM: A web-based
modeling environment. In MODELS’13 Invited Talks,
Demonstration Session, Poster Session, and ACM Stu-
dent Research Competition, volume 1115, pages 21–25.
CEUR-WS.org, 2013.

61. SystemWeaver. https://support.

systemweaver.se/support/solutions/articles/

31000156469-versioning-in-systemweaver, last
accessed May 2021.

62. M. Tanhaei, J. Habibi, and S.-H. Mirian-Hosseinabadi.
Automating feature model refactoring: A model transfor-
mation approach. Information and Software Technology,
80:138–157, 2016.

63. R. Tarjan. Depth-first search and linear graph algorithms.
SIAM journal on computing, 1(2):146–160, 1972.

64. M. van den Brand, Z. Protić, and T. Verhoeff. Generic
tool for visualization of model differences. In International
Workshop on Model Comparison in Practice, pages 66–75.
ACM, 2010.

65. S. D. Vermolen, G. Wachsmuth, and E. Visser. Recon-
structing complex metamodel evolution. In Software Lan-
guage Enginerring, volume 6940 of LNCS, pages 201–221.
Springer, 2012.

66. S. Wenzel. Scalable visualization of model differences.
In Workshop on Comparison and versioning of software
models, pages 41–46. ACM, 2008.

67. Z. Xing and E. Stroulia. UMLDiff: an algorithm for
object-oriented design differencing. In Automated software
engineering, pages 54–65, 2005.

68. M. Zadahmad, E. Syriani, O. Alam, E. Guerra, and
J. de Lara. Domain-specific model differencing in vi-
sual concrete syntax. In Software Language Engineering,
pages 100–112. ACM, 2019.

26

https://www.metacase.com/news/smart_model_versioning.html
https://www.metacase.com/news/smart_model_versioning.html
https://www.jetbrains.com/help/mps/differences-viewer.html
https://www.jetbrains.com/help/mps/differences-viewer.html
https://www.jetbrains.com/help/mps/version-control-integration.html
https://www.jetbrains.com/help/mps/version-control-integration.html
http://www.omg.org/spec/OCL/
https://www.omg.org/spec/XMI/About-XMI/
https://www.omg.org/spec/XMI/About-XMI/
https://www.mathworks.com/help/simulink/ug/about-simulink-model-comparison.html
https://www.mathworks.com/help/simulink/ug/about-simulink-model-comparison.html
https://www.mathworks.com/help/simulink/ug/about-simulink-model-comparison.html
https://www.eclipse.org/sirius/
https://support.systemweaver.se/support/solutions/articles/31000156469-versioning-in-systemweaver
https://support.systemweaver.se/support/solutions/articles/31000156469-versioning-in-systemweaver
https://support.systemweaver.se/support/solutions/articles/31000156469-versioning-in-systemweaver

	Introduction
	Overview and running example
	Fine-grained differencing
	Domain-specific semantic differencing
	Conflicting rule application
	Evaluation
	Related work
	Conclusion

