Eugene Belilovsky

Eugene Belilovsky
Université de Montréal | UdeM · Departement of Computer Science

Doctor of Engineering

About

44
Publications
4,507
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
397
Citations
Citations since 2017
36 Research Items
381 Citations
2017201820192020202120222023020406080100
2017201820192020202120222023020406080100
2017201820192020202120222023020406080100
2017201820192020202120222023020406080100

Publications

Publications (44)
Article
Full-text available
In this work we consider structure discovery of undirected graphical models from observational data. Inferring likely structures from few examples is a complex task often requiring formulating priors and sophisticated inference procedures. In the setting of Gaussian Graphical Models (GGMs) a popular approach to formulating an estimator is with a pe...
Preprint
Full-text available
Traditional deep network training methods optimize a monolithic objective function jointly for all the components. This can lead to various inefficiencies in terms of potential parallelization. Local learning is an approach to model-parallelism that removes the standard end-to-end learning setup and utilizes local objective functions to permit para...
Preprint
Full-text available
Comparing learned neural representations in neural networks is a challenging but important problem, which has been approached in different ways. The Centered Kernel Alignment (CKA) similarity metric, particularly its linear variant, has recently become a popular approach and has been widely used to compare representations of a network's different l...
Preprint
Full-text available
Continual Learning research typically focuses on tackling the phenomenon of catastrophic forgetting in neural networks. Catastrophic forgetting is associated with an abrupt loss of knowledge previously learned by a model when the task, or more broadly the data distribution, being trained on changes. In supervised learning problems this forgetting,...
Preprint
Recent work studies the supervised online continual learning setting where a learner receives a stream of data whose class distribution changes over time. Distinct from other continual learning settings the learner is presented new samples only once and must distinguish between all seen classes. A number of successful methods in this setting focus...
Preprint
In the online continual learning paradigm, agents must learn from a changing distribution while respecting memory and compute constraints. Experience Replay (ER), where a small subset of past data is stored and replayed alongside new data, has emerged as a simple and effective learning strategy. In this work, we focus on the change in representatio...
Preprint
Full-text available
The development of biologically-plausible learning algorithms is important for understanding learning in the brain, but most of them fail to scale-up to real-world tasks, limiting their potential as explanations for learning by real brains. As such, it is important to explore learning algorithms that come with strong theoretical guarantees and can...
Preprint
Federated learning is an emerging paradigm that permits a large number of clients with heterogeneous data to coordinate learning of a unified global model without the need to share data amongst each other. Standard federated learning algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server....
Preprint
The wavelet scattering transform creates geometric invariants and deformation stability from an initial structured signal. In multiple signal domains it has been shown to yield more discriminative representations compared to other non-learned representations, and to outperform learned representations in certain tasks, particularly on limited labele...
Preprint
A commonly cited inefficiency of neural network training using back-propagation is the update locking problem: each layer must wait for the signal to propagate through the full network before updating. Several alternatives that can alleviate this issue have been proposed. In this context, we consider a simple alternative based on minimal feedback,...
Preprint
The impressive performance of deep convolutional neural networks in single-view 3D reconstruction suggests that these models perform non-trivial reasoning about the 3D structure of the output space. Recent work has challenged this belief, showing that, on standard benchmarks, complex encoder-decoder architectures perform similarly to nearest-neighb...
Preprint
Full-text available
Inferring objects and their relationships from an image in the form of a scene graph is useful in many applications at the intersection of vision and language. In this work, we consider a challenging problem of compositional generalization that emerges in this task due to a long tail data distribution. Current scene graph generation models are trai...
Preprint
We study the online continual learning paradigm, where agents must learn from a changing distribution with constrained memory and compute. Previous work often tackle catastrophic forgetting by overcoming changes in the space of model parameters. In this work we instead focus on the change in representations of previously observed data due to the in...
Preprint
A recent line of work showed that various forms of convolutional kernel methods can be competitive with standard supervised deep convolutional networks on datasets like CIFAR-10, obtaining accuracies in the range of 87-90% while being more amenable to theoretical analysis. In this work, we highlight the importance of a data-dependent feature extrac...
Chapter
The impressive performance of deep convolutional neural networks in single-view 3D reconstruction suggests that these models perform non-trivial reasoning about the 3D structure of the output space. Recent work has challenged this belief, showing that complex encoder-decoder architectures perform similarly to nearest-neighbor baselines or simple li...
Preprint
Full-text available
Inferring objects and their relationships from an image is useful in many applications at the intersection of vision and language. Due to a long tail data distribution, the task is challenging, with the inevitable appearance of zero-shot compositions of objects and relationships at test time. Current models often fail to properly understand a scene...
Preprint
Full-text available
Scene graph generation (SGG) aims to predict graph-structured descriptions of input images, in the form of objects and relationships between them. This task is becoming increasingly useful for progress at the interface of vision and language. Here, it is important - yet challenging - to perform well on novel (zero-shot) or rare (few-shot) compositi...
Preprint
Deep learning applied to the reconstruction of 3D shapes has seen growing interest. A popular approach to 3D reconstruction and generation in recent years has been the CNN encoder-decoder model usually applied in voxel space. However, this often scales very poorly with the resolution limiting the effectiveness of these models. Several sophisticated...
Preprint
The impressive performance of deep convolutional neural networks in single-view 3D reconstruction suggests that these models perform non-trivial reasoning about the 3D structure of the output space. However, recent work has challenged this belief, showing that complex encoder-decoder architectures perform similarly to nearest-neighbor baselines or...
Article
Full-text available
The wavelet scattering transform is an invariant and stable signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks...
Preprint
Full-text available
We introduce and study the problem of Online Continual Compression, where one attempts to learn to compress and store a representative dataset from a non i.i.d data stream, while only observing each sample once. This problem is highly relevant for downstream online continual learning tasks, as well as standard learning methods under resource constr...
Preprint
Full-text available
Embodied Question Answering (EQA) is a recently proposed task, where an agent is placed in a rich 3D environment and must act based solely on its egocentric input to answer a given question. The desired outcome is that the agent learns to combine capabilities such as scene understanding, navigation and language understanding in order to perform com...
Preprint
Full-text available
Continual learning, the setting where a learning agent is faced with a never ending stream of data, continues to be a great challenge for modern machine learning systems. In particular the online or "single-pass through the data" setting has gained attention recently as a natural setting that is difficult to tackle. Methods based on replay, either...
Preprint
A commonly cited inefficiency of neural network training by back-propagation is the update locking problem: each layer must wait for the signal to propagate through the network before updating. We consider and analyze a training procedure, Decoupled Greedy Learning (DGL), that addresses this problem more effectively and at scales beyond those of pr...
Preprint
Full-text available
Shallow supervised 1-hidden layer neural networks have a number of favorable properties that make them easier to interpret, analyze, and optimize than their deep counterparts, but lack their representational power. Here we use 1-hidden layer learning problems to sequentially build deep networks layer by layer, which can inherit properties from shal...
Preprint
Full-text available
The wavelet scattering transform is an invariant signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks. All trans...
Preprint
We explore blindfold (question-only) baselines for Embodied Question Answering. The EmbodiedQA task requires an agent to answer a question by intelligently navigating in a simulated environment, gathering necessary visual information only through first-person vision before finally answering. Consequently, a blindfold baseline which ignores the envi...
Preprint
We study the first-order scattering transform as a candidate for reducing the signal processed by a convolutional neural network (CNN). We show theoretical and empirical evidence that in the case of natural images and sufficiently small translation invariance, this transform preserves most of the signal information needed for classification while s...
Article
Full-text available
Scattering networks are a class of designed Convolutional Neural Networks (CNNs) with fixed weights. We argue they can serve as generic representations for modelling images. In particular, by working in scattering space, we achieve competitive results both for supervised and unsupervised learning tasks, while making progress towards constructing mo...
Thesis
This dissertation presents novel structured sparse learning methods on graphs that address commonly found problems in the analysis of neuroimaging data as well as other high dimensional and few sample data. The first part of the thesis focuses on developing and utilizing convex relaxations of discrete and combinatorial penalties. These are develope...
Article
We use the scattering network as a generic and fixed initialization of the first layers of a supervised hybrid deep network. We show that early layers do not necessarily need to be learned, providing the best results to-date with pre-defined representations while being competitive with Deep CNNs. Using a shallow cascade of 1x1 convolutions, which e...
Article
We introduce two novel non-parametric statistical hypothesis tests. The first test, called the relative test of dependency, enables us to determine whether one source variable is significantly more dependent on a first target variable or a second. Dependence is measured via the Hilbert-Schmidt Independence Criterion (HSIC). The second test, called...
Article
Full-text available
Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g. using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two population calls for comparing these estimated GGMs. We study the problem of identifying differences in Gaussian Graphical Models (GGMs) kno...
Article
A statistical test of relative similarity is introduced: given independent samples from a target distribution and two candidate distributions, the test determines whether one of the candidate distributions is significantly more similar to the target than the other. The maximum mean discrepancy (MMD) is used as the metric for ranking relative simila...
Article
Full-text available
We study the problem of statistical estimation with a signal known to be sparse, spatially contiguous, and containing many highly correlated variables. We take inspiration from the recently introduced k-support norm, which has been successfully applied to sparse prediction problems with correlated features, but lacks any explicit structural constra...
Conference Paper
A feature extraction method is presented that is robust against vocal tract length changes. It uses the generalized cyclic transformations primarily used within the field of pattern recognition. In matching training and testing conditions the resulting accuracies are comparable to the ones of MFCCs. However, in mismatching training and testing cond...

Network

Cited By

Projects

Project (1)