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Abstract Three large training sets were investigated

to determine optimal sample sizes for diatom-based

inference models. The sample sets represented (1)

assemblages from Great Lakes coastlines, (2) phyto-

plankton from the pelagic Great Lakes and (3) surface

sediment assemblages from Minnesota lakes. Diatom-

based weighted average models to infer nutrient

concentrations were developed for each training set.

Training set sample sizes ranging from 10 to the

maximum number of samples were created through

random sample selection, and performance of each

model was evaluated. For each model iteration,

diatom-inferred (DI) nutrient data were related to

stressor data (e.g., adjacent agricultural or urban

development) to characterize the ability of each model

to track human activities. The relationships between

model performance parameters (DI-stressor correla-

tions and model r2, error and bias) and sample size

were used to determine the minimum sample size

needed to optimize models for each region. Depending

on the training set, at least 40–70 samples were needed

to capture the variation in diatom assemblages and

environmental conditions to such a degree that non-

analog situations should be rare and so should provide

an unambiguous result if the model was applied to any

sample assemblage from the region. It is recom-

mended that one exercises caution when dealing with

smaller training sets unless there is certainty that the

selected samples reflect the regional variability in

diatom assemblages and environmental conditions.

Keywords Diatoms � Stressors � Training sets �
Inference models � Sample size � Models

Introduction

Application of diatom-based calibration models has

become commonplace in monitoring and paleoeco-

logical studies. Such models are typically built using a

training set of sample locations (e.g., lakes, wetlands),

and for each location, the environmental variables of

interest (e.g., phosphorus, pH, salinity, agricultural

stress), and the corresponding local diatom assem-

blage (e.g., in surface sediments, rock scrapes, epiph-

yton), are sampled. The environmental and species

matrices of data derived from the training set are then

integrated to determine the environmental character-

istics of the diatom taxa. When weighted averaging

(WA) approaches are applied, the resulting model
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essentially comprises the diatom species and their

optima and tolerances for environmental parameters,

supplemented by any rules and recommendations for

model application such as data transformations,

downweighting by species tolerance and removal of

outliers. The diatom-based model can then be used to

quantitatively infer environmental conditions from the

species composition in a new sample. This approach

was originally used in paleolimnology to ‘‘recon-

struct’’ past environmental conditions from downcore

species assemblages (e.g., Birks et al. 1990; Battarbee

et al. 2001), but some have extended these efforts to

contemporary monitoring (e.g., Dixit and Smol 1994;

Reavie et al. 2006).

Diatom-based training sets are an essential pre-

requisite to model development and training set

design, and size has been investigated by several

authors. Using the correlation between observed and

diatom-inferred (DI) environmental values as a guide

to model performance (Birks et al. 1990), sample sets

as small as 46 (Hall and Smol 1992) and 33 (Bennion

1994; Tibby 2004) have been demonstrated to provide

‘‘good’’ predictive ability. It is generally expected that

training sets with more samples will have higher

numbers of taxa and better definition of environmental

conditions in the region of interest, and as a result, a

model based on a larger dataset should provide more

reliable inferences. However, the substantial effort

involved in developing a training set necessitates that

an optimal sample size be estimated using model

performance criteria. Three considerations are used to

determine the adequacy of a training set as the number

of samples therein increases.

1. How many samples are needed to characterize the

species present? The number of samples neces-

sary to adequately characterize the organism

assemblages from particular regions has been

explored by several researchers. Species repre-

sentation is critical to diatom-based models

because one is less likely to encounter non-analog

conditions during model application, especially

when inferring condition from species assem-

blages in sediment cores. Not surprisingly, as the

sample region increases in size and complexity,

more samples are needed. For instance, Weilhoe-

fer and Pan (2006) found that composition of only

five surface sediment diatom samples was suffi-

cient to characterize the diatom species richness

in a wetland in the Columbia River floodplain.

Conversely, Bowen and Freeman (1998) in a

study of medium-sized rivers in Alabama, deter-

mined that 70 electrofisher samples were needed

to adequately describe the fish species richness in

the system. Rarefaction analysis has been used to

determine the number of samples needed to obtain

most of the diatom species from a region (Birks

and Line 1992). Similarly, sufficient samples are

needed to characterize the environmental condi-

tions for a region, although measured environ-

mental conditions across regional training sets

have generally been shown to be significantly less

variable than the algal assemblages. For example,

species gradients were much larger than environ-

mental gradients in the coastal Great Lakes

(Reavie et al. 2006).

2. How many samples are needed to provide accu-

rate estimates of species coefficients for environ-

mental variables? Each location in a training set

has a distinct diatom assemblage comprising

several species of varying abundance. In addition

to describing the species present, it is important

that representative abundance data are collected

so that species responses across environmental

gradients are well defined. These abundance

data are used to calculate the point of maxi-

mum abundance (optimum) and expected range

(tolerance) along the environmental gradient

of interest. Well-defined species coefficients are

particularly important when weighted averaging

approaches are applied because the optimum and

tolerance for each taxon in an assemblage are

selectively weighted based on the taxon’s abun-

dance in a sample. One way to determine whether

assemblage structures have been captured is to

examine model performance criteria. For exam-

ple, Wilson et al. (1996) determined that approx-

imately 100 samples resulted in a nearly

asymptotic minimum model error from a training

set of 219 British Columbia Lakes used to develop

a salinity model.

3. How many samples are needed to adequately

track human impacts? Maximizing distribution

measures such as species richness, diversity or

evenness, and optimizing model performance

criteria such as r2 and RMSE do not fully define

a model’s power. Despite apparent model perfor-

mance, such as a high observed-versus-inferred r2
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or a low prediction error, models intended as

tracers of human impacts need to be sensitive to

stressors. A small sample set may adequately

describe the species that occur in that region, and

it may even reveal an apparently robust diatom-

based model, but an indicator model with little

correlation to the stressors of interest has little

value for aquatic management. Strong relation-

ships between diatom-inferred condition and

corresponding anthropogenic stressors have been

described (e.g., Reavie et al. 2006), and diatom-

inferred Great Lakes coastal water quality is better

able to reflect stressors than snapshot water

quality measurements, but to date, no study has

investigated the effect of sample size on the

strength of the DI-stressor relationship.

Sampling strategies to capture the number of

species in a region have been given good treatment

in other volumes (e.g., Hayek and Buzas 1997), so the

current study investigates issues 2 and 3 above in the

context of three large diatom-based training sets

collected from North American lakes. To provide

accurate estimates, training sets need to capture both

the species and their typical abundances that occur

across an environmental gradient. Small training sets

are likely to suffer from poor model precision (and

analog issues during model application) due to an

inability to adequately characterize variability in the

ambient assemblages. The current work investigates

the effect of training set sample size on diatom-based

model performance and the ability to track human

stressors in adjacent watersheds.

Methods

Sample collection and preparation

Three diatom training sets (Fig. 1) were evaluated to

determine how sample size influenced diatom-based

model performance (Table 1). Each training set com-

prised two matrices: a diatom dataset of samples and

species percent abundance of the total diatom count

for a given sample and an environmental dataset

containing one or more measured water quality

nutrient variables. One of the three datasets also had

a corresponding matrix of stressor variables, i.e.,

quantified data reflecting anthropogenic activities

(e.g., agricultural and urban development) in water-

sheds adjacent to diatom sample locations. A surrogate

stressor dataset was created for Great Lakes pelagic

training set as described below. Diatoms were col-

lected from substrates as summarized in Table 1, and

additional details are provided in the respective

articles and standard operating procedures. For all

samples, diatoms were prepared by digestion with a

strong acid and/or base, washing with deionized water

and strewing for observation on microscope slides.

Preparation details are provided in the respective

publications (Ramstack et al. 2003; Reavie et al. 2006;

USEPA 2010). Counts were performed using oil

immersion at 10009 or greater magnification. In cases

where multiple taxonomists were involved in counts

for a particular training set, collaboration was main-

tained by phone, email and taxonomic workshops.

Great Lakes Environmental Indicators (GLEI) The US

Environmental Protection Agency (US EPA) estab-

lished the Estuarine and Great Lakes (EaGLe)

research program to develop new approaches to assess

environmental condition. One of the EaGLe projects,

the Great Lakes Environmental Indicators (GLEI)

project, was specifically designed to develop indica-

tors for the Laurentian Great Lakes. Over 200 diatom

samples were collected from embayments, high-

energy shorelines and coastal wetlands from 2001

through 2004. Several robust diatom-based models

were developed from these data (Reavie et al. 2006,

2008; Kireta et al. 2007; Reavie 2007; Sgro et al. 2007)

as confirmed by relating diatom-inferred conditions to

anthropogenic stressors in adjacent watersheds. For

this investigation, the environmental variable of

choice for diatom calibration is total phosphorus

(TP), which was shown to be related to patterns in the

coastal diatom communities (Reavie et al. 2006).

Fig. 1 North American map with sample locations for the three

training sets
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Corresponding stressor data adjacent to each sample

location were created from landscape characteristics

summarized by Danz et al. (2007). An integrated

variable quantifying agricultural activities (agricul-

tural principal component 1 that captured 73% of the

variation in 21 agriculture variables) was determined

to be the one best related to patterns in the coastal

diatom assemblages (Reavie et al. 2006), so that

variable was selected as the stressor.

Great Lakes National Program Office: phytoplankton

(GLNPO) Twice yearly the US EPA conducts sur-

veillance monitoring of the offshore waters of the

Great Lakes to fulfill provisions of the Great Lakes

Water Quality Agreement. To track environmental

conditions and trends, these surveys include phyto-

plankton collections (Barbiero and Tuchman 2002),

and detailed diatom assessments are performed on

these samples. The diatom samples in this investiga-

tion comprise pelagic collections from spring and

summer cruises in 2007 and 2008. Due to ancillary

analyses showing strong relationships between pelagic

diatom assemblages and nutrient concentrations

(unpublished data), TP was selected as the model

variable. To date, stressor data corresponding to each

sample location have not been developed, so a highly

simplified, rank-based surrogate dataset that classified

each lake based on its known developmental stress-to-

volume ratio was used. Lakes were ordered from 1

(least impacted) to 5 (most impacted): Superior,

Huron, Michigan, Ontario and Erie, respectively

(Environment Canada and USEPA 2009). The rele-

vance of this simplified classification is debatable, but

for this study, it provides a semi-independent stressor

dataset to use for comparisons of measured and DI TP

data.

Minnesota lake set (MN) The MN training set of

lakes has been augmented and developed for more

than a decade (Heiskary and Swain 2002; Ramstack

et al. 2003; Edlund and Kingston 2004; Reavie et al.

2005), and it has been applied several times in state-

based paleolimnology initiatives to determine histor-

ical nutrient shifts and eutrophication trends (e.g.,

Kingston et al. 2004; Reavie and Baratono 2007). In

keeping with previous intentions for this model

(Heiskary and Swain 2002), the environmental vari-

able of interest is TP. Detailed stressor data have not

been collected for all of the 145 lakes in the MN

training set, so no stressor variable was tested.

Model development

Weighted averaging (WA) calibration and regression

were applied in the development and testing of all

models in this investigation. WA is a standard

application that employs modern diatom–environmen-

tal relationships to infer environmental conditions

Table 1 General information for the three diatom datasets

Dataset name Diatom

sample type

Sample

number

Number

of non-

rare taxa

Species/

nutrient

transformation

Nutrient

variable and

range

Stressor

variable

Estimated sample

number needed for

best model

performance

Great Lakes

Environmental

Indicators (GLEI)

Surface

sediments,

substrate

scrapes

206 380 Log/log Total

phosphorus

(1–521 lg

L-1)

GIS-based

agricultural

development

70, but slight

improvements

might be achieved

up to 115

Great Lakes

National Program

Office

phytoplankton

(GLNPO)

Whole-water

collection

302 192 None/log Total

phosphorus

(1–99 lg

L-1)

Coarse, lake-

based stress

estimate

45, but slight

improvements

might be achieved

up to 70

Minnesota lakes

(MN)

Surface

sediments

145 170 Log/log Total

phosphorus

(5–664 lg

L-1)

Not used 40, but slight

improvements

might be achieved

up to 50

Specific model parameters refer to transformations applied to data as recommended by their developers. The sample numbers needed

to determine ‘‘best’’ sample size were determined using statistical comparisons between performance at various sample sizes versus

that at maximum sample size
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from a given diatom assemblage, such as that from a

particular period in a sediment core (ter Braak and van

Dam 1989; Birks et al. 1990). The WA method

assumes symmetric responses of diatom species along

environmental gradients and has been repeatedly

demonstrated to provide robust inferences of condition

(Battarbee et al. 2001). Although other popular

modeling approaches exist and could be applied to

these data, for the sake of comparison among datasets,

this investigation maintains a consistent approach, as

described below. Diatom-based models were devel-

oped using the R programming language (version

2.10.0, R Development Core Team 2010) with the

package ‘‘rioja’’ (version 0.5-6, Juggins 2009).

Rare taxa were removed from each dataset by

eliminating those that never achieved at least 1%

relative abundance and occurred in fewer than five

samples. Transformation of species data was applied

as necessary based on dataset-specific recommenda-

tions (Table 1). Diatom-based WA models were

iteratively created and tested using repeated calls to

rioja modeling functions, as follows using the GLEI

dataset as an example. Starting with the complete

dataset of 206 samples, 33% of samples (68) were

selected to serve as an independent test set using a

stratified pseudorandom sampling procedure. Strati-

fied sampling was applied because it mimics the

approach that would be taken by the developer of a

training set; i.e., samples were selected to ensure that

they reflected the environmental gradient of interest.

In this case, the full set of samples was divided into 10

bins ranked by lowest to highest TP concentrations,

and samples were randomly selected from each bin (6

or 7 samples per bin). Samples not selected (138)

became the model (calibration) set. Progressive iter-

ations created model datasets from 10 to 138 samples

in steps of 5 samples, also using stratified subsampling

to mimic the sampling distribution of the full calibra-

tion dataset. This procedure was repeated 20 times for

each model size to provide an estimate of variation in

performance. For the GLEI dataset, a total of 520

models were generated and tested on independent

sample sets. The R script for these analyses is

available from the primary author on request.

Weighted averaging models were developed using

both simple WA, which uses the species environmen-

tal optima for predictions, and tolerance downweigh-

ting which down-weights the contribution of each

taxon according to its tolerance. After preliminary

evaluations of downweighting approaches, the most

suitable application of tolerance downweighting was

based on the effective number of occurrences of taxa

(Hill’s N2) and no replacement of very small

tolerances. However, WA with tolerance downweigh-

ting yielded consistently poorer model performance,

and this method is not further discussed. Inverse

deshrinking was applied for all models. TP predictions

for each sample in the independent dataset were then

inferred using the calibrated model. After each model

iteration, diatom-inferred TP data were regressed

against the stressor data for the independent sample

set to quantify the strength of the relationship between

stressors and DI data.

Five parameters, described below, were used to

evaluate model performance relative to the number of

samples in the calibration dataset. These parameters

were generated based on analysis of relationships

between observed and inferred data for the indepen-

dent test sets (e.g., the 68 samples in the GLEI

example above). Relationships between sample size

and performance statistic were modeled using general-

ized additive models (GAM) with spline smoothing,

with the degree of smoothing chosen by generalized

cross validation (Wood 2006). We also compared the

performance statistic at each model size to the

maximum size using a series of pairwise t tests with

P values adjusted for multiple comparisons using

Bonferroni correction (Quinn and Keough 2002).

Squared correlation coefficient (r2) of the observed-

inferred relationship This parameter is generated

through the comparison of observed environmental

measurements (e.g., measured phosphorus) and dia-

tom-inferred values (e.g., DI phosphorus) for that

variable. It was expected that as sample sizes

increased, r2 would also increase because a larger

sample size should increase the likelihood of capturing

the representative diatom assemblages from a region.

Assuming samples are being collected from locations

that are evenly distributed along the environmental

(e.g., nutrient) gradient, and a threshold for r2 should

be reached where additional samples provide little or

no additional information (environmental measure-

ments and diatom assemblages) to improve model

performance.

Root mean squared error of prediction (RMSEP) for

the observed-inferred relationship This partner to r2

reflects the error associated with model predictions. In
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other words, RMSEP provides a measure of the

spread of predicted values around the idealized 1:1

line of the observed-inferred regression. As sample

sizes increased, it was expected that RMSEP would

get smaller as more regional measures of diatom

populations and environmental conditions would

refine the resulting model coefficients.

Mean bias in the residuals from the observed-inferred

relationship Diatom-inferred residuals around the

1:1 line are usually shown to have some bias. For

instance, Reavie and Smol (2001) recognized that

diatom-inferred values from an Ontario TP model

tended to underestimate measured nutrient concentra-

tions at the upper, eutrophic end of the nutrient

gradient. Often such an underestimation of condition

is balanced by overprediction at the lower (e.g.,

oligotrophic) end of the gradient (e.g., Bradshaw and

Anderson 2001), resulting in an overall mean bias near

zero. It was expected that mean bias would tend to be

near zero under most model conditions, but that the

direction of any bias would be less predictable with

smaller sample sizes.

Maximum bias in the residuals from the observed-

inferred relationship Maximum bias measures the

tendency of a model to over- or under-predict at

particular parts of the environmental gradient. It is

computed by dividing the gradient into 10 equal

sections and calculating the mean of the residuals

within each of these sections. The maximum bias is

taken as the maximum of the mean biases of the 10

sections. This parameter provides a useful heuristic

estimate of the near-worst case precision of any given

diatom-inferred value. As for RMSEP, maximum bias

was expected to decrease as sample sizes increased.

Maximum bias values can be positive or negative, so

these values were standardized as absolute values.

Pearson product–moment correlation (r) between dia-

tom-inferred values and stressor measures Stressor

correlations with diatom-inferred water quality pro-

vide quantitative evidence whether a diatom-based

model has the ability to track anthropogenic activities.

It was expected that as sample size increased the

correlation would also increase due to larger models

providing more refined species coefficients, which in

turn generates more accurate diatom-inferred water

quality data which are related to anthropogenic

influences.

Results

A cursory examination of model performance results

(Fig. 2) reveals that, as sample size increases, perfor-

mance data stabilize in two ways. First, model

responses to higher sample sizes were mostly asymp-

totic to a minimum or maximum performance value,

as marked by the GAM fits that leveled off with higher

sample numbers. Second, although not always present,

performance data became more predictable with larger

training sets as indicated by tapering, wedge-shaped

trends as the spread of performance values narrowed

with higher sample sizes. The stabilities of these two

conditions were used to estimate optimal sample sizes

for each regional dataset. Principally, the apparent

asymptotes of the fitted GAM curves provided a

means to estimate appropriate sample sizes (Fig. 2;

Table 1). Judgments on critical sample sizes for a

given training set were mainly based on the point

where larger sample sizes no longer exhibited a

significant change in performance parameters relative

to the largest sample size. Because Bonferroni

corrections were used for this significance testing,

additional changes in performance data with higher

sample sizes, i.e., based on GAM fits that continued to

increase or decrease, were recognized where apparent.

GLEI For the GLEI training set, model performance

was optimized at approximately 60 samples, above

which RMSEP ranged from 0.28 to 0.38 and r2 that

ranged from 0.5 to 0.7 (Fig. 2a, b). Based on trends

Fig. 2 Relationships between sample size (x-axis) and diatom-

based indicator performance for the three datasets used in this

study: Great Lakes Environmental Indicators (GLEI) shoreline

sample set, Great Lakes National Program Office (GLNPO)

phytoplankton sample set and Minnesota (MN) lake surface

sediment sample set. Performance parameters are a, f, k squared

correlation coefficient for the observed diatom-inferred (DI)

relationship for total phosphorus, b, g, l root mean square error

of prediction, c, h, m mean model bias, d, i, n absolute value of

the maximum model bias and e, j correlation coefficient of the

DI-stressor relationship. Individual data points are jittered on the

x-axis to avoid overlap. Curves show GAM fits and 95%

confidence intervals. Asterisks in top right indicate a significant

GAM fit as tested against a null model of no change in

performance statistic with sample size. Solid lines at the bottom
of each figure indicate the range of sample sizes with significant

differences in performance statistic compared to the respective

value for maximum sample size (pairwise t tests; thin line,

P B 0.05; thick line, P B 0.05 with Bonferroni correction for

multiple comparisons)

c
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that were validated using non-Bonferroni-corrected

comparisons, model r2 continued to increase slightly

until 85 samples were reached. Average bias showed a

very slight decline over the range of sample sizes, but

no significant affect was noted based on Bonferroni-

corrected testing (Fig. 2c). Maximum bias declined
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significantly until 70 samples were reached (Fig. 2d).

The DI-stressor GAM fit increased most rapidly as

sample sizes increased from 10 to 15 (Bonferroni-

corrected P = 0.05), and a plateau was reached at

approximately 25 samples (Fig. 2e).

GLNPO Model r2 and RMSEP appear to reach a

plateau (r2 = 0.64) above approximately 45 samples

(Fig. 2f, g). Average bias had no significant change

above 25 samples (Fig. 2h). Maximum bias was

optimized at *15 samples (Fig. 2i). The DI-stressor

GAM fit reached a plateau of r = 0.71 at approxi-

mately 20 samples (Fig. 2j). An interesting pattern

was observed in the GLNPO performance results. For

maximum bias, certain training sets yielded high

values while the majority clustered within the range of

0.15–0.25. It is likely that this artifact was caused by

the distinct diatom assemblages that occur in each

great lake. We surmise that the independent test

sample sets sometimes favored a particular lake. If, for

instance, that lake was well represented in the model

dataset, TP would be inferred accurately. In contrast,

with a more common test set containing a broader mix

of lake samples, apparent model performance would

be reduced through an average of good and poor DI

data.

MN The MN lake set was able to provide optimal r2

and RMSEP results at approximately 40 samples

(Fig. 2k, l), although values improved slightly until

*50 samples was reached. Average bias was minimal

and showed no significant response to increasing

sample size, although the spread of values was

minimized at approximately 30 samples (Fig. 2m).

Maximum bias declined slightly but significantly to a

minimum at approximately 30 samples (Fig. 2n).

Discussion

Sample sizes needed to maximize model performance

and indicator-stressor relationships were similar to or

smaller than most published training sets. In all cases,

at least 40 samples were needed to provide the best

model performance, presumably because that sample

size captured most of the physical, chemical and

biological variability in the training set regions.

However, based on more relaxed (non-Bonferroni)

statistical testing, more samples are recommended to

maximize (or minimize) performance indicators.

Model r2, RMSEP and maximum bias appear to be

the most conservative determinants of optimal sample

size as these parameters generally stabilized at higher

sizes. Average bias tended to change little with sample

size, and sample numbers needed to maximize corre-

lation with stressors were smaller than that needed to

optimize other performance indicators.

Although the MN lake set covers five ecological

regions in Minnesota, it is the most geographically

constrained set of sample locations compared to the

other regional datasets. A narrower environmental

gradient in this lake set may be why relatively few

samples were needed to provide a robust model. Like

the GLEI dataset, the gradient of MN nutrient values

was relatively high, and this may have contributed to

better model performance with fewer samples,

although the gradient length appears to be a weak

determinant of model power. Furthermore, although

only three training sets are evaluated here, the number

of species represented in a model does not appear to

determine the number of samples needed to optimize

performance.

This study applied nutrient models because it is

well known that diatom assemblages respond to

nutrient conditions in temperate regions. Further,

there is significant management interest in nutrient

loads and indicators that can track nutrient-related

impacts such as cultural eutrophication. Applications

of other variables may change the results presented

here. For example, in further testing of the GLEI

training set (data not presented), fewer samples than

that needed for TP were able to optimize model r2,

RMSEP and bias when pH was chosen as the

environmental variable. This was likely due to smaller

temporal variability in pH, so single measurements of

pH at each site adequately characterized the prevailing

condition and resulted in accurate diatom-pH

coefficients.

Based on the current investigation, a sample dataset

smaller than the recommended size (Table 1) might

provide results with less certainty. Using the GLEI set

as an example (Fig. 2a), a 20-sample subtraining set

could provide a model r2 ranging from 0.3 (weaker) to

0.6 (stronger). Similarly, the average bias (Fig. 2c)

could range from -0.10 to 0.15, whereas a 60-sample

training set provides a narrower range of -0.08 to

0.10. In other words, based on the 20 samples

chosen (even if they were selected evenly along the

environmental gradient), the apparent GLEI model
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performance is questionable in the context of the

sample region. Previously published training sets with

smaller sample sizes (e.g., fewer than 40 sites) may

furnish ‘‘good’’ model performance, but it is recom-

mended in future developments that the physical,

chemical and biological variability in the selected

sample region is verified to be adequately character-

ized. Preliminary investigations of a sample region are

needed to confirm that the selected training set

adequately captures the regional variation that is

relevant to diatom indicators, water quality and

stressor gradients. Depending on the range and

variability of environmental conditions in a regional

training set, minimum sample sizes needed may be

lower or higher than our recommended sizes for

Minnesota and the Great Lakes.

One must consider more than a recommended

minimum number of sites when developing an indi-

cator model. Even with a probabilistic sampling

strategy, environmental gradients in aquatic regional

training sets are difficult to accurately characterize

based on the sample set selected for diatom analyses.

Unfortunately in most cases, little additional environ-

mental data are available to confirm whether the

gradient for the region has been adequately charac-

terized. This arouses concerns for smaller diatom-

based sample sets. For instance, Reavie and Smol

(2001) employed 64 lakes from a region that crosses

several geological and environmental boundaries.

Despite robust model performance in subsequent

applications (e.g., Forrest et al. 2002), it is not

surprising that non-analog cases have occurred when

the diatom-based model was applied to lakes from the

periphery of the training set region (e.g., Ekdahl et al.

2007). Even though Reavie and Smol (2001) recog-

nized that strong relationships existed between phos-

phorus concentrations and diatom assemblages, the

confounding influences of several other variables such

as climate and geology need to be carefully considered

when applying a model to sites that are uncertainly

within the dominion of the calibration set’s environ-

mental range.

As for our iterative subsampling of training sets, it

is critical to employ stratified sampling of the envi-

ronmental gradient in a region. Model training sets

containing a skewed representation of environmental

conditions are unlikely to perform well at sites (e.g.,

modern samples or sediment cores) that are not evenly

represented in the model, for instance, attempting to

infer condition at a eutrophic site using a model

calibrated using mainly oligotrophic sites.

Diatom communities are structured by local and

large-scale factors. Some of these factors are measur-

able, such as nutrients and disturbance, but other factors

such as biotic interactions and historical dispersal are

less easily quantified. As a substitute for better envi-

ronmental characterization, it is recommended to per-

form analyses such as those described herein to

determine how well a given training set simulates the

ideal diatom-based indicator (i.e., the set containing an

infinite number of samples) for the region.
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