Étienne Serbe-Kamp
Étienne Serbe-Kamp
PhD
www.office.backyardbrains.com
Check it out!
About
23
Publications
3,878
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
891
Citations
Introduction
Visual Neuroscientist and Senior Scientist at Backyard Brains. Co-Founder of the science collective hirnkastl that focusses on Citizen Science and Communication (hirnkastl.science).
Additional affiliations
September 2016 - December 2016
Publications
Publications (23)
Newly acquired information is stabilized into long-term memory through the process of consolidation. Memories are not static; rather, they are constantly updated via reactivation, and this reactivation occurs preferentially during Slow-Wave Sleep (SWS, also referred to as N3 in humans). Here we present a scalable neuroscience research investigation...
Electroencephalography (EEG) has given rise to a myriad of new discoveries over the last 90 years. EEG is a non-invasive technique that has revealed insights into the spatial and temporal processing of brain activity over many neuroscience disciplines, including sensory, motor, sleep, and memory formation. However, most undergraduate students lack...
Electrophysiology in plants is understudied, and, moreover, an ideal model for student inclusion at all levels of education. Here, we report on an investigation in open science, whereby scientists worked with high school students, faculty, and undergraduates from Chile, Germany, Serbia, South Korea, and the USA. The students recorded the electrophy...
Electrophysiology in plants is understudied, and, moreover, an ideal model for student inclusion at all levels of education. Here we report on an investigation in "open science", whereby scientists worked with students and faculty from Chile, Germany, Serbia, South Korea, and the USA. The students recorded the electrophysiological signals of >15 pl...
Inhibitory interactions between opponent neuronal pathways constitute a common circuit motif across brain areas and species. However, in most cases, synaptic wiring and biophysical, cellular and network mechanisms generating opponency are unknown. Here, we combine optogenetics, voltage and calcium imaging, connectomics, electrophysiology and modeli...
An important step in neural information processing is the transformation of membrane voltage into calcium signals leading to transmitter release. However, the effect of voltage to calcium transformation on neural responses to different sensory stimuli is not well understood. Here, we use in vivo two-photon imaging of genetically encoded voltage and...
Citizen Science or community science has been around for a long time. The scope of community involvement in Citizen Science initiatives ranges from short-term data collection to intensive engagement to delve into a research topic together with scientists and/or other volunteers. Although many volunteer researchers have academic training, it is not...
It is common to observe play in dogs, cats, and birds, but have we been ignoring play in one of the most common house pets of all… fish? Aquarium fish are often used as meditative decoration in family households, but it could be that fish have similarly diverse behavioral repertoires as mammals and birds. To examine this theory, we conducted field...
Can plants learn? This question stirs up controversy and speculation in the classroom, as it is currently doing in the scientific community at large. We leverage the controversy to ask students to contribute to the greater body of knowledge by using scientific principles in creative research projects. Ninth-grade honors biology students became fami...
Direction-selective T4/T5 neurons exist in four subtypes, each tuned to visual motion along one of the four cardinal directions. Along with their directional tuning, neurons of each T4/T5 subtype orient their dendrites and project their axons in a subtype-specific manner. Directional tuning, thus, appears strictly linked to morphology in T4/T5 neur...
Sensory systems need to reliably extract information from highly variable natural signals. Flies, for instance, use optic flow to guide their course and are remarkably adept at estimating image velocity regardless of image statistics. Current circuit models, however, cannot account for this robustness. Here, we demonstrate that the Drosophila visua...
Mantis shrimp are aggressive, burrowing crustaceans that hunt using one the fastest movements in the natural world. These stomatopods can crack the calcified shells of prey or spear down unsuspecting fish with lighting speed. Their strike makes use of power-amplification mechanisms to move their limbs much faster than is possible by muscles alone....
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs a...
Recordings from tangential cells in flies where synaptic output from all T4 and T5 cells was blocked by expression of tetanus toxin (a,c) and in control flies (b,d).
(a,b) Responses of tangential cells of the Vertical System (VS) to square-wave gratings moving in the preferred (blue) and null (red) direction of T4T5 block (A, w-; R59E08-AD / UAS-TN...
ELife digest
The brain extracts information from signals delivered from the eyes and other sensory organs in order to direct behavior. Understanding how the interactions and wiring of a multitude of individual nerve cells process and transmit this critical information to the brain is a fundamental goal in the field of neuroscience.
One question man...
The reliable estimation of motion across varied surroundings represents a survival-critical task for sighted animals. How neural circuits have adapted to the particular demands of natural environments, however, is not well understood. We explored this question in the visual system of Drosophila melanogaster. Here, as in many mammalian retinas, moti...
Estimating motion is a fundamental task for the visual system of sighted animals. In Drosophila, direction-selective T4 and T5 cells respond to moving brightness increments (ON) and decrements (OFF), respectively. Current algorithmic models of the circuit are based on the interaction of two differentially filtered signals. However, electron microsc...
Spatial contrast, the difference in adjacent luminance values, provides information about objects, textures, and motion and supports diverse visual behaviors. Contrast computation is therefore an essential element of visual processing. The underlying mechanisms, however, are poorly understood. In human psychophysics, contrast illusions are means to...
Visual systems extract directional motion information from spatiotemporal luminance changes on the retina. An algorithmic model, the Reichardt detector, accounts for this by multiplying adjacent inputs after asymmetric temporal filtering. The outputs of two mirror-symmetrical units tuned to opposite directions are thought to be subtracted on the de...
Detecting the direction of visual motion is an essential task of the early visual system. The Reichardt detector has been proven to be a faithful description of the underlying computation in insects. A series of recent studies addressed the neural implementation of the Reichardt detector in Drosophila revealing the overall layout in parallel ON and...
The extraction of directional motion information from changing retinal images is one of the earliest and most important processing steps in any visual system. In the fly optic lobe, two parallel processing streams have been anatomically described, leading from two first-order interneurons, L1 and L2, via T4 and T5 cells onto large, wide-field motio...