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Optimization for Training Neural Nets

Etienne Barnard

Abstract—Various techniques of optimizing criterion functions
to train neural-net classifiers are investigated. These techniques
include three standard deterministic techniques (variable metric,
conjugate gradient, and steepest descent), and a new stochastic
technique. It is found that the stochastic technique is preferable
on problems with large training sets and that the convergence
rates of the variable-metric and conjugate-gradient techniques
are similar.

[. INTRODUCTION

ERHAPS the most useful result of the recent resurgence

in research on neural nets is the creation of a family
of powerful, robust classifiers. Whereas classifiers which cre-
ate higher-order (nonlinear, nonquadratic) decision boundaries
have conventionally been plagued by the combinatorial ex-
plosion (polynomial classifiers [1]) or the requirement that an
excessive number of learning samples be stored (the nearest-
neighbor classifier), neural-net classifiers can calculate such
boundaries under realistic constraints. Thus, it is becoming
increasingly clear that there are situations where neural-net
classifiers are an attractive alternative to conventional tech-
niques [2]-[5].

One important characteristic of neural-net classifiers is
that their training usually requires iterative techniques. The
back-propagation (BP) classifier, for instance, is trained by
optimizing a transcendental criterion function. (This procedure
will be explained in more detail later.) Since such a function
can almost never be minimized analytically, optimization has
to proceed iteratively. The number of optimization variables
equals the number of free parameters in the specification
of the neural net. This is typically equal to the number of
“weights” which connect the neurons to one another—often
as many as a few thousand. Thus, the optimization problem is
rather involved; this has given neural-net training a reputation
for being very slow. (In one of the first papers on neural-
net classifiers [6], a relatively simple two-class experiment is
described which required several thousand iterations to train,
and Waibel et al. [3] describe a three-class problem which
required more than 20000 iterations.)

Thus, much research has been directed at improving the
learning speed of neural-net classifiers. One approach studies
alternative neural-net algorithms which might have the same
classification performance as, for instance, BP, with faster
training capabilities. Examples of such classifiers are the
counterpropagation [7] and adaptive-clustering [4] classifiers.
A different way to improve learning speed is to maintain
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the same basic classifier but to change the criterion function
to facilitate iterative optimization [8], {9]. Fahlman [8], for
instance, proposes adding a constant to the gradient used for
back-propagation; he argues that this improves the learning
rate since it ensures that more is learned on every iteration.
(Incidentally, it is important to note that such modifications
might adversely affect the performance of the trained classifier.
Adding a constant to the derivative of the sigmoid function,
for instance, leads to a function that asymptotically increases
linearly. This is expected to compromise the error rate of the
classifier at the position of the minimum when the various
density functions overlap, since outliers are now weighted
more heavily. An analogous effect has been described [4] for
linear classifiers.) A third option is to use standard neural nets
and criterion functions and to improve the technique whereby
this function is optimized. It is this approach which is studied
in more detail here.

When back-propagation was introduced, [6], it was pro-
posed that the criterion function be optimized using gradient
descent. The training of the Kohonen net [10] can similarly be
viewed as gradient descent with a least-mean-squares criterion
function. However, it was soon realized that more efficient
training techniques can be employed; the “momentum” term
[6] is the most popular example of such improvement. In this
approach, not only the gradient but also the previous weight
change is used to update the weight vector. Various researchers
have shown the usefulness of the momentum approach; its
efficacy can be understood by analogy with the quadratic case,
where it improves the minimization rate by creating a second-
order dynamic system (i.e., a system whose time behavior is
characterized by two poles in the frequency domain). The
second-order dynamic system can be shown to have much
better asymptotic convergence properties than the first-order
system which describes gradient descent without momentum.

The momentum algorithm is characterized by two parame-
ters (the “learning rate” and the “momentum constant™), whose
values are critical to the success of the optimization process.
Although it is not hard to derive optimal values for these
constants in the quadratic case, no equivalent result for the
more general case—which almost always obtains for neural-
net classifiers—exists. A large number of heuristic algorithms
which adapt these parameters according to the training set and
the status of the neural net have therefore been proposed (see,
for instance, [11]—[13]). These heuristics are usually derived
in ad hoc fashion, so that neither optimality nor robustness is
ensured.

One way of overcoming these limitations is to utilize
the body of knowledge available from conventional numer-
ical analysis and control theory. Unconstrained optimization,
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which is required for the training we have discussed, is one of
the most mature disciplines within numerical mathematics [14]
and supplies a wealth of applicable knowledge. In Section 11
we describe some important possible approaches in more
detail. It should be noted that in using these techniques, we are
probably giving up any semblance of biological plausibility.
Since we are mostly concerned with the engineering aspects of
neural nets and since there is any case much reason to doubt
the direct biological relevance of algorithms such as BP [15],
this is a small price to pay. Use of conventional optimiza-
tion techniques for neural-net training has been proposed by
various authors; see e.g., [16]-[18].

To use conventional optimization techniques, it is necessary
that the training problem be described by a deterministic cri-
terion function. This function is usually obtained by selecting
a fixed set of training samples, and defining the total criterion
function to be the sum of the criterion functions of the training
samples. When this function is optimized iteratively, each
iteration requires the computation of the contributions from
all of the training samples (to calculate e.g. the value of
the criterion function or its gradient). Thus, for large training
sets, much computation has to be performed for every update
of the weights. In the pattern-recognition literature, this is
known as the batch mode for training a classifier. It might
be preferable to have a technique which updates the weights
after every presentation of a training sample. If this is done,
each presentation of a training sample immediately leads to an
update of the weight vector, so that updates involving samples
which occur late in the training set have the benefit of training
from earlier samples. Consequently, a single pass through the
training set could possibly lead to much more improvement
of the classifier than one iteration using the total criterion
function. Such ideas lead us to consider techniques which have
conventionally been associated with control and stochastic
systems: evety training sample is viewed as a random sample
from an unknown distribution, and training of the classifier
is viewed as the nondeterministic optimization of a criterion
function which depends on this distribution. In Section III
immediate-update algorithms (or sequential algorithms, as
they are called) are discussed, and a new algorithm which
implements stochastic optimization efficiently is introduced.

In Section IV we present simulation results which compare
four optimization techniques for two different neural-net algo-
rithms on a number of classification problems. This compari-
son allows us to understand the relative merits and problems
of stochastic optimization and deterministic approximation.
We also use the results in Section IV to analyze the rela-
tive efficiencies of three different deterministic optimization
techniques on neural-net problems. Section V summarizes our
conclusions, and outlines possible future work.

It should be noted that the issue of local and global minima
is not addressed in this research. That problem is logically
separate from the local-optimization problem which is studied
here, and might be of less importance than has been supposed
[19], for the following reason. Experience seems to indicate
that the local minima generally correspond to duplication of
function by certain neurons. If this is so, the problem of local
minima can always be overcome by having a slightly larger
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number of neurons than the absolute minimum required if
global optimization had been possible.

II. DETERMINISTIC MINIMIZATION OF CRITERION FUNCTIONS

We will now introduce a general framework within which
optimization of neural-net criterion functions can be discussed,
and then study some specific deterministic optimization algo-
rithms within this context.

The output of the neural net is described by a vector of
neuron activities z; for a given input sample s, the output
2 = z, is determined by the set of weights (which, for future
convenience, are described by a vector w), and the sample
vector T,. (The way that z; is obtained from w and =z, is
determined by the specific neural-net model used.) For sample
s there is a certain “desired” output vector d, which typically
indicates the class to which this sample belongs. The purpose
of training is to adapt the w so that z, approximates ds when
1z, is presented as input, for all s. We therefore introduce a
criterion function, E(zs,ds), which is small if and only if z,
and d, are approximately equal, and train the classifier by
minimizing this criterion function with respect to w.

Since training requires the simultaneous minimization of the
criterion functions of a number of samples, the contributions
from the individual samples should somehow be combined. To
use deterministic minimization, we form a single “total” crite-
rion function by summing the contribution from all samples;
that is, the function minimized is

As was mentioned in Section I, a number of optimization
techniques have been employed for this purpose; for the reason
described there we concentrate on conventional optimization
techniques in this section. Of these techniques, it is generally
felt [14] that the variable-metric (or “quasi-Newton”) tech-
niques [20] are most efficient for the unconstrained optimiza-
tion of an arbitrary function. The variable-metric techniques
estimate the inverse of the Hessian matrix of the criterion
function iteratively, and update the weight vector under the
assumption that the criterion function is locally approximately
quadratic. Specifically, the Hessian matrix of a quadratic
function E = (1/2)w! Aw + bw + ¢ is A, and its minimum is
located at w,, = —A~'b. Since b can be approximated from
the current value of w and the gradient of E (using VE =
Aw + b), knowledge of the inverse Hessian is sufficient
to allow us to calculate the position of the minimum of E
in the quadratic approximation. Because of the nonquadratic
nature of the criterion function, w,, thus calculated will not
correspond to the true minimum, and this procedure has to
be repeated, starting at wp,. (In practice this procedure is
modified somewhat by the use of line searches, to improve
the robustness of the algorithm. That is, if the current optimal
weight vector is w and the quadratically optimal estimate is
w,,, a one-dimensional search for the minimum value along
the line passing through these two points is performed.)
Although the variable-metric algorithms are very powerful,
they do have certain disadvantages. Their main problem is
that they require storage proportional to the square of the
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Fig. 1. (a) Location of the minimum along the direction of wo(b) Subse-

quent minimization along gradient direction. (c) Minimization along direction
conjugate to xo.

number of optimization variables (since the inverse Hessian
must be stored). For neural-net classifiers, which often employ
a large number of weights, this disadvantage can be significant.
In addition, the number of computations required for every
iteration is also proportional to N?(where N is the number of
weights); in practice, this is often the dominant component of
the computation time required.

For unconstrained minimization problems which involve a
large number of variables, conjugate-gradient algorithms [21]
are commonly used. These algorithms also optimize a criterion
function by assuming that it is locally quadratic, but now
approximation of the inverse Hessian matrix is not attempted.
Instead, the guiding idea here is to maintain “conjugacy” of
the successive search directions as we now explain. In Fig. 1,
the contours of constant function value are shown for a two-
dimensional slice through a quadratic function. Say we have
located the minimum along the direction wg indicated by the
arrow in Fig. 1(a), and we now want to choose a new direction
along which to search for a one-dimensional minimum. In
Fig. 1(b) the new search direction, w;, is chosen to point in a
direction opposite to the gradient at the position of the current
minimum; it is clear that it will be necessary to minimize along
wy again after the minimum along w; has been located. The
search direction in Fig. 1(c), on the other hand, was chosen
to ensure that the minimum along wg is maintained (that is,
all points along w; share the property that their value cannot
be decreased by moving in the direction of wq). This obviates
the need for another search along wq. This example suggests
a reasonable criterion for the choice of a new search direction,
namely that it should not interfere with the minima found
along the previous search directions. It turns out that there is
a simple algorithm for constructing such a direction out of the
gradient and the previous search direction when the function
to be minimized is quadratic [21]. This algorithm requires only
O(N) computation per iteration and storage, and is known as
the conjugate gradient algorithm.

It is indicative of the analytical complexity of nonlinear
optimization that no general results on the relative merits of
these two types of algorithms exist, despite their popularity in
practical use. Because the variable-metric methods accumulate
more knowledge of the error function, one expects that they
will generally require fewer iterations to find the minimum
than conjugate-gradient techniques; this is indeed what is
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observed in most benchmarks (see, e.g., Gill et al. [14]).
however, we know of no characterization which will enable
one to decide which method is most efficient computationally
in a given situation. Thus, for a particular type of problem, it is
necessary to empirically compare the two types of algorithms
to see whether the increased rate of convergence of variable-
metric methods outweighs its additional computational and
storage requirements. For the case of neural-net criterion
functions, such an empirical comparison will be performed
in Section IV.

III. OPTIMIZATION AS A STOCHASTIC PROBLEM

If we view the training samples as random samples from an
unknown distribution, the training problem is the minimization
of the expected value F; of the criterion function, where
the expectation value is to be computed with respect to the
unknown distribution. In the controls literature this problem is
known as stochastic approximation. It was solved conceptually
by Robbins and Munroe [22]. The Robbins—Munroe procedure
can be understood as a stochastic version of gradient descent
[1]: from a sample vector z, we calculate a sampled gradient
g, and then adjust the optimization variables w in a direction
opposite to this gradient. Thus, w is adapted according to

@

where « is a positive parameter. The choice of « is of ex-
treme importance. For deterministic techniques, one attempts
to choose such “step size” parameters so that the criterion
function takes on its (locally) minimal value along the search
direction after the update (2). This is not appropriate for
stochastic techniques, since the sampled criterion function is
not the same as the expectation value of the criterion function.
Thus, the purpose of each iteration is now to accumulate
information about the position of the minimum, rather than to
move directly toward that minimum, and o should be chosen
accordingly. In fact, it is easy to see that « should not be
constant: initially, when the weight vector is far from its
optimal value, « should be large, so that w is driven toward the
location of the minimum as quickly as possible. As w starts to
converge, however, « should be decreased, so that outliers do
not drive it away from the minimum which it is approaching.

It can be shown that, under fairly general conditions, algo-
rithms such as the one described by (2) converge to a minimum
of E as long as

1) 377 an = oo (where n counts the number of sample

presentations and «, is the value of « after n iterations)
and

2) Y72 < .

Beyond these constraints it is very hard to determine how «
should be chosen for fast, assured convergence; even these
constraints are obviously not practical, since they refer to
asymptotic quantities.

This problem of choosing the step size appropriately is a
major hurdle for the efficient use of techniques derived from
stochastic approximation for the training of neural nets. This
is exactly the same problem researchers have to face when
they try to find appropriate values for the learning rate and
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momentum parameters when performing BP learning in the
sequential training mode. Thus, an understanding of stochastic
approximation leads to useful theoretical insights, but not a
practical solution.

Extended Kalman estimation provides a different approach
to optimizing a function which is only known through random
samples. Consider the following situation: we have a system
which is described by a state vector w(n), where n is a
discretized time parameter. This state vector is not measurable,
but is known to evolve according to the relationship

w(n + 1) = Aw(n) + S=z(n), 3)

where z(n) is the input to the system, and A and S are known
matrices. We wish to estimate w(n) by observing the output
d(n) of the system; it is known that d is related to w by

d(n) = Tw(n) + r(n). 4

Here r(n) is the observation noise (of which we know the
statistics), and T is a known matrix. The Kalman algorithm
supplies a solution to this problem, i.e., an estimate for
w(n) which is optimal in a well-defined sense. Although this
algorithm is directly applicable only when the input-state and
state-output relationships are linear (as assumed in (3) and 4)),
it can also be applied to nonlinear problems by linearizing
the problem around the current estimated state of the system.
This approach to nonlinear estimation is known as extended
Kalman filtering.

The power of Kalman estimation is obtained at a price:
the algorithm involves a fairly large amount of computation
for every update. In its basic form, O(N?) calculations have
to be performed to update the state estimate, and the storage
requirements are also O(NV?), where N is the dimensionality
of the state vector.

To apply this algorithm to the training of neural nets, Singhal
and Wu [23] suggested that we identify the state variable w
with the weight vector, the input £ with the measured input
sample, and the output d with the desired neural-net output.
Equations (3) and (4) become

w(n + 1) = w(n) )
and
d(n) = z(n) + r(n), (6)

where z(n) is the actual output of the neural net when
presented with the input z(n). Since z(n) is a known nonlinear
function of the weights w(n), the extended Kalman algorithm
can be applied.

For this application the computational requirements of the
extended Kalman algorithm can be particularly severe, since
updating of the weight vector is performed after every presen-
tation of a sample. Thus, if N is large, the O(N 2 calculations
which have to be performed for these updates can eas-
ily outweigh the advantages that fast convergence with the
Kalman algorithm can offer. For example, if N = 1000,
we can perform approximately 1000 iterations of a system
which has linear computational requirements in the time that
it takes to perform one iteration with the extended Kalman
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algorithm. (This should be contrasted with the computational
requirements of variable-metric methods: since those methods
update the weight vector only after a pass through the entire
training sets, the O(N?) computation required for them is not
such an important issue.)

We therefore now introduce a practical sequential (“sto-
chastic”) algorithm which requires only O(N) storage and
computation. This algorithm is based on the observation that
there is a characteristic length scale, L, which is traversed
on every iteration as one approaches the minimum, and that
this length scale generally changes rather slowly. Thus, if we
can approximate L at every stage during the minimization
procedure, we can always adjust the step-size parameter(s)
appropriately.

To estimate L, we accumulate a large number of samples
(how large will be discussed below), and form a deterministic
criterion function as the sum of the individual criterion func-
tions. One line search along the gradient of the deterministic
function is then performed; the distance in weight space
traversed by this line search provides an estimate of L.

Using this accumulated set of samples we also compute
the average length, [, of the sample gradient vectors at the
current position in weight space. An appropriate step size for
an algorithm such as (2) is then

(Y:L/l. (7)

Note that this ensures that the average adjustment to the
weight vector will have the correct length scale, but that the:
actual change on the presentation of any sample will still
be proportional to the gradient computed from the sample.
This is preferable to forcing every weight change to have the
same norm, since the information contained in the norm of
the gradient is retained.

Three issues which have to be addressed are how large a
sample set should be used to estimate L and 1, how often «
should be updated, and the appropriate way to terminate this
algorithm. The sample size should be large enough to ensure
that the estimates are sufficiently accurate, but the larger it is,
the more storage and computation are required for this step. In
typical pattern-recognition applications a fixed training set is
used, so that this compromise must already be addressed when
the training set is selected. Since the trade-offs are equivalent,
a suitable training-set size is also a suitable sample-set size
for the estimation procedure. We can therefore estimate [ and
L using the entire training set.

The frequency with which o is updated is dictated by the
following dichotomy: if updating takes place too seldomly,
the estimates of [ and L might become inaccurate; on the
other hand, if we update these parameters too often we loose
the computational advantages of the stochastic method. Our
compromise is to set a fixed upper limit to the number of
sample presentations between every update, and to force a
new update when this limit is exceeded or whenever it is
found that (E) is no longer decreasing. The upper limit is
chosen to ensure that the amount of computation required for
the deterministic updating phase is less than the computation
involved in stochastic learning as long as progress towards
the minimum of E is being made; for a fixed training set, it
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has been determined empirically that approximately 20 passes
through the training set constitute an appropriate upper limit.

It is clear that the optimal value for this parameter is
problem dependent: as problem complexity increases, the error
function becomes more complicated in weight space, and more
frequent updates of L are required. Thus, the dimensionality
of the input space may be used as an indicator of the update
frequency, since a high-dimensional input space may be an
indicator of problem complexity. Fortunately, the method is
not very sensitive to the value chosen, and a fixed (problem-
independent) upper limit has been found to suffice.

The termination problem is the following: as we converge
towards the optimal w, the estimate for L which is calculated
by the line-search procedure will tend to be dominated by the
corrections in the transition from stochastic to deterministic
operation. That is, after a sequence of stochastic updates with
step size o, the estimated w will be stochastically perturbed
by a quantity proportional to this step size (because the
estimate is based on random sampling). The deterministic
estimate for L will therefore include a contribution which
is caused by the correction of this stochastic fluctuation.
This contribution will dominate as the procedure converges
to the optimal w. Once we are this close to the optimal
w, however, deterministic techniques should converge very
quickly. In practical problems, we therefore always terminate
our learning procedure with a few iterations of deterministic
search (i.e., using a fixed set of samples as above), to eliminate
the effects of overestimating L. However, in the tests described
in Section IV such a terminating step is not included, since this
step will typically employ one of the other techniques which
are compared with this stochastic method in Section IV. Thus,
the efficacy of the termination process can be determined by
examining the performance of those techniques.

This basic algorithm is embellished with some standard
techniques from numerical analysis, for instance the retention
of an optimal estimate for w at all times (to restart in case
some unexpected aspect of the energy function throws the
optimization procedure off track) and the use of a proven line-
search algorithm for the deterministic phase of the algorithm.
These precautions ensure the robustness of our stochastic
algorithm; its efficiency, however, will depend strongly on the
validity of the assumption that there is a meaningful, stable
length scale which can be estimated with a deterministic line
search. Thus, as with the deterministic techniques, it is possible
to know whether this technique performs well on a given class
of problems only by investigating it empirically.

IV. SIMULATION RESULTS

To compare the various optimization procedures on neural-
net training problems, we used three benchmark data sets.
The first set is the standard “exclusive-or” benchmark, which
consists of four two-dimensional training samples from two
classes, as shown in Fig. 2. This benchmark has become
standard in neural-network literature, because it cannot be
solved by a simple linear classifier. It is unsatisfactory from
a pattern-recognition point of view, however, since there is
no contiguity relationship between samples in the same class.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 2, MARCH 1992

A @ - class 1
M -class2
[ | @
X2

© o >

X

Fig. 2. The exclusive-or classification problem.

Thus, the ability of the classifier to “generalize” (so that a
relatively small number of classifier parameters describe many
training samples), which is usually an important property of
classifiers, is not tested by the exclusive-or problem. The
other two data sets are more realistic in this sense. The
second set is the artificial set shown in Fig. 3. It consists
of 383 two-dimensional samples from three classes. The third
data set was generated from the Fourier transform of artificial
aircraft data, as is discussed in more detail elsewhere [4], [24].
There were three classes of aircraft, and 630 32-dimensional
training samples from each class were employed, for a total
of 1890 samples.

Two different neural-net algorithms were used to classify
these samples, namely standard three-layered BP [6] and the
adaptive-clustering (AC) classifier [4]. The criterion functions
used in conjunction with these classifiers were also standard:
the sum-of-squares criterion function for BP and the percep- .
tron criterion function (with safety margin) for AC. In our
comparison we compare the actual values of the criterion
function as a function of the number of iterations performed
with the various techniques, since we are interested in the
ability of the various algorithms to minimize such a function.
The performance of the classifier on a separate test set would
be more appropriate as a measure of the overall performance
of the classifier. However, this performance also depends on
such factors as the nature of the criterion function used, and our
purpose is to compare the optimization techniques in isolation.

We compared the performance of four optimization tech-
niques on these data sets and neural-net algorithms. Three of
the techniques are deterministic, namely the BFGS variable-
metric technique [20] and conjugate-gradient method with
restarts [21] (these two techniques are based on the al-
gorithms described in Section II), and the steepest-descent
technique. The last method minimizes the criterion function
by 1) computing the gradient at the current weight value, 2)
performing a line search in the direction of the gradient to
locate the local minimum in this direction, and 3) using this
as the new weight value for step 1. This method provides
a useful baseline reference as the most crude gradient-based
optimization algorithm. It can also be viewed as an upper
limit for the performance of standard back-propagation [6]
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Fig. 3. Artificial two-dimensional data set used in optimization comparison.
TABLE 1

Sizes oF NEURAL NETS USED IN COMPARATIVE STUDIES

Size of Input Size of Hidden Size of Output

Problem Layer Layer Layer
Exclusive Or 3 4 2
Artificial 3 6 3
Aircraft 33 10 3

in “batch” mode, since it dynamically adjusts the effective
step size during line searches. (Standard “on-line” and “batch-
mode” implementations of back-propagation are not included
in our comparison, since results obtained are so sensitive to
the values of learning parameters chosen. It is clear, however,
that on most problems such fixed learning rates will lead to
inferior performance, and both the published literature [3], [8]
and our informal experience on the data sets described above
confirm this expectation.) The fourth optimization algorithm
employed was the stochastic method described in Section III.

For all problems the sizes of the second (hidden) layers of
the neural nets were chosen to give satisfactory classification
performance. The values used are listed in Table I. Also shown
are the sizes of each input layer (one more than the number
of features) and each output layer (equal to the number of
classes).

In parts (a), (b), and (c) of Fig. 4, the results obtained with,
respectively, the BP classifier on the exclusive-or, artificial

two-dimensional, and aircraft data sets are shown. Since the
convergence of BP depends on the random initial values of
the weight vector, all BP results represent the average of
five trials with different initial weights. (The random initial
weights were uniformly distributed in the interval [—1, 1],
and the input features were all scaled to lie in the interval
[0, 1].) In Fig. 4(a) we see that both the BFGS and the
conjugate-gradient method lead to fast minimization of the
criterion function when the exclusive-or data are employed,
whereas the other two methods were less successful. That these
differences are indeed significant can be deduced from the fact
that the standard deviation of each of the points in Fig. 4(a)
is approximately 0.02. The slow convergence of the steepest-
descent method is caused by the well-known drawbacks [25]
of such methods when the condition number of the Hessian of
the criterion function is large on the average. The stochastic
technique, on the other hand, fares badly because the length
scale L is estimated from only four samples, and is thus
inaccurate. This can be deduced from the results on the
other two BP problems. When the artificial two-dimensional
set is employed (Fig. 4(b)), the stochastic technique already
converges approximately twice as fast as the BFGS algorithm,
which performs second best, and on the aircraft data set (which
has the largest number of samples) the stochastic technique
converges at a rate approximately five times as high as the rate
of the best deterministic technique. For these two problems
the standard deviations on each of the data points were on
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problem, (b) the artificial two-dimensional problem, and (c) the aircraft problem.

the order of 0.3 and 1.3, respectively, implying that all the
observed differences are statistically significant.

Of the deterministic techniques, the variable-metric tech-
nique consistently performs best, as expected. However, the
difference between the variable-metric and conjugate-gradient
techniques is always relatively small, and as the complexity of
the problem increases, this difference decreases. These results
indicate that, if a deterministic technique is to be used, the

additional computation and storage required for the BFGS
method are probably not justified, especially if the neural
net is large. The steepest-descent algorithm never performs
competitively; this confirms the observation [26] that BP
criterion functions have large condition numbers in realistic
applications.

The exclusive-or problem could not be implemented sen-
sibly on the AC classifier, since a sufficient number of pro-
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totypes to make this nonlinear classification possible (namely
three) render the optimization procedure trivial. We therefore
tested only the artificial two-dimensional and aircraft data sets
on this classifier. Results are shown in Fig. 5. (Note that the
vertical axes of Figs. 4 and 5 are not directly comparable,
since the different criterion functions penalize the same errors
differently.) Since the AC algorithm does not start from
random initial weights, the results shown in Fig. 5 represent
the outcome of a single trial. On the two-dimensional data
set (Fig. 5(a)), the steepest-descent algorithm again performs
poorly, with the performances of the other three algorithms
being comparable. As before, the stochastic technique out-
performs the deterministic techniques on the aircraft data,
with the BFGS algorithm performing somewhat better than
the conjugate-gradient technique, and the steepest-descent
algorithm converging only very slowly.

Thus, the relative performances of the stochastic and de-
terministic algorithms are approximately the same when this
neural net is used as when BP is used. For this classifier
there seems to be somewhat more reason to prefer the BFGS
algorithm to the conjugate-gradient technique, although the
advantage is still not compelling.

We also compared the approximate computational complex-
ities of the various algorithms by comparing their execution
time on the same system (a Sun 4/260) using similar im-
plementations compiled on the same complier (the gnu-c
compiler). (Note that such a statistical comparison is required
because all the algorithms include steps which are executed
only if certain conditions are met by the data at a given
iteration, which implies that the actual computation on every
iteration is not constant.) Average execution times per iteration
for the BP classifier on the artificial and aircraft data sets
are listed in Table II. It is unfortunately impossible to ensure
that the implementations of all algorithms are exactly equally
efficient; the values in Table II should therefore be taken as no
more than an approximate guide of the relative complexities. It
is clear that on problems such as those considered in Table I1
there is not a large difference between the computation times
for the various algorithms considered. This is because the
calculation of the gradient of the criterion function consumes
most of the computation time, and all algorithms have this
process in common. Thus, it is fair to compare these algorithms
on the basis of results such as those shown in Fig. 4 and Fig. 5
(as long as the training set is large enough for the gradient
calculation to dominate over the update computation).

V. CONCLUSION

We have seen that a large number of optimization techniques
have been proposed for neural-net training. The most important
distinction between the different types of algorithms rests on
whether they perform in sequential or batch mode. Methods
from the latter category have the advantage that they can utilize
the accumulated wisdom regarding numerical optimization
techniques; however, the fact that they update the neural
net only after a complete sweep through the training set is
an important disadvantage. For this reason we introduced an
optimization technique which operates in sequential mode, yet
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Fig. 5. Comparative optimization performance of various techniques when

adaptive-clustering training is used on (a) the artificial two-dimensional
problem (b) the aircraft problem.

does not require the choice of any arbitrary parameters or
extensive computation after every presentation of a training
sample.
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TABLE II
AVERAGE EXECUTION TIMES FOR A SINGLE ITERATION OF BP
USING DIFFERENT OPTIMIZATION TECHNIQUES ON Two DATA SETS
Average Time Average Time
per Iteration per Iteration
on Atrtificial Data on Aircraft Data
Optimization Technique (s) (s)
BFGS 0.34 11.8
Conjugate Gradient 0.27 8.4
Gradient Descent 0.30 8.5
Stochastic 0.33 9.5

Our simulation results indicate two important conclusions:
the sequential algorithm introduced in Section III is the most
efficient of the techniques we studied when the number of
training samples becomes large, and the additional expense of
variable-metric techniques over the conjugate-gradient tech-
nique with restarts does not seem to be warranted, especially
if a BP classifier is implemented. It should be noted that the
efficiency of the sequential algorithm derives from a reduced
number of iterations for convergence, which more than com-
pensates for the fact that each iteration takes somewhat longer
than the same for the fastest deterministic techniques (see
Table II).

This research suggests a number of interesting extensions. It
might be useful to design a sequential algorithm, for instance,
which uses a more sophisticated update equation than (2).
If for example, a term similar to the “momentum” term of
BP is added to the update equation, there is one additional
parameter which has to be estimated during the deterministic
estimation phase; if this parameter can be estimated accurately,
a speedup similar to the difference between the conjugate-
gradient algorithm and the steepest-descent algorithm might
be obtained. A different extension worth considering is the
application of the sequential algorithm to certain problems
where extended Kalman filtering has traditionally been used,
namely those problems where the amount of computation
between sample presentations must be limited.
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