Estefanía Moreno Guillén

Estefanía Moreno Guillén
University of Barcelona | UB · Department of Biochemistry and Molecular Biomedicine (Faculty of Biology)

PhD
Professor and Researcher at University of Barcelona

About

116
Publications
22,790
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,665
Citations
Citations since 2017
53 Research Items
2819 Citations
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
Additional affiliations
May 2012 - October 2016
University of Barcelona
Position
  • PostDoc Position

Publications

Publications (116)
Preprint
Full-text available
The type-1 cannabinoid receptor (CB1R) is widely expressed in both excitatory and inhibitory nerve terminals, and its activation, by suppressing neurotransmitter release, modulates neural circuits and brain function. While the interaction of CB1R with various intracellular proteins is thought to alter receptor signaling, the identity and role of th...
Article
Full-text available
The functional and pharmacological significance of the dopamine D 4 receptor (D 4 R) has remained the least well understood of all the dopamine receptor subtypes. Even more enigmatic has been the role of the very prevalent human DRD4 gene polymorphisms in the region that encodes the third intracellular loop of the receptor. The most common polymorp...
Article
Full-text available
Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circu...
Article
A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization o...
Article
Recent studies have proposed that heteromers of µ-opioid receptors (MORs) and galanin Gal1 receptors (Gal1Rs) localized in the mesencephalon mediate the dopaminergic effects of opioids. The present study reports converging evidence, using a peptide-interfering approach combined with biophysical and biochemical techniques, including total internal r...
Article
Full-text available
Background: Memory consolidation is a process required for the formation of long-term memories. The G-protein-coupled receptor (GPCR) neurokinin-3-receptor (Nk3R) and its interactions with sex hormones seem important for the modulation of fear memory consolidation: Nk3R antagonism in male mice impairs fear memory, but enhances it in females. Howev...
Preprint
Full-text available
Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circui...
Article
Full-text available
Games are excellent teaching tools for self-learning. Students playing a game enjoy themselves and at the same time learn basic and important concepts. Different games including crossword puzzles, word search puzzles, knight’s tour games, connecting dots, mazes, matching two sets, amidakuji, and logic games were used for continuous assessment durin...
Article
A G protein-coupled receptor heteromer that fulfills the established criteria for its existence in vivo is the complex between adenosine A2A (A2AR) and dopamine D2 (D2R) receptors. Here, we have designed and synthesized heterobivalent ligands for the A2AR-D2R heteromer with various spacer lengths. The indispensable simultaneous binding of these lig...
Article
Full-text available
Ghrelin receptor, also known as growth hormone secretagogue receptor or GHS-R1a, is co-expressed with its truncated isoform GHS-R1b, which does not bind ghrelin or signal, but oligomerizes with GHS-R1a, exerting a complex modulatory role that depends on its relative expression. D1 and D5 dopamine receptors (D1R and D5R) constitute the two D1-like r...
Article
Cannabinoids, the bioactive constituents of cannabis, exert a wide array of effects on the brain by engaging Type 1 cannabinoid receptor (CB1R). Accruing evidence supports that cannabinoid action relies on context-dependent factors, such as the biological characteristics of the target cell, suggesting that cell population-intrinsic molecular cues m...
Article
Polymorphic alleles of the human dopamine D4 receptor gene (DRD4) have been consistently associated with individual differences in personality traits and neuropsychiatric disorders, particularly between the gene encoding dopamine D4.7 receptor variant and attention deficit hyperactivity disorder (ADHD). The α2A adrenoceptor gene has also been assoc...
Preprint
Cannabis is the most widely used illicit drug worldwide. Its principal psychoactive component, ∆9-tetrahydrocannabinol (THC), acts as a partial agonist of the main cannabinoid receptor in the brain, the cannabinoid type-1 receptor (CB1R), being the main responsible for the central effects of THC including memory impairment. CB1Rs may form heterodim...
Article
Full-text available
The activation of cannabinoid CB 1 receptors (CB 1 R) by Δ 9-tetrahydrocannabinol (THC), the main component of Cannabis sativa, induces analgesia. CB 1 R activation, however, also causes cognitive impairment via the serotonin 5HT 2A receptor (5HT 2A R), a component of a CB 1 R−5HT 2A R heteromer, posing a serious drawback for cannabinoid therapeuti...
Article
Full-text available
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellul...
Article
Full-text available
The various components of the endocannabinoid system (ECS), such as the cannabinoid receptors (CBRs), cannabinoid ligands, and the signalling network behind it, are implicated in several tumour-related states, both as favourable and unfavourable factors. This review analyses the ECS’s complex involvement in the susceptibility to cancer, prognosis,...
Article
Full-text available
The various components of the endocannabinoid system (ECS), such as the cannabinoid receptors (CBRs), cannabinoid ligands, and the signalling network behind it, are implicated in several tumour-related states, both as favourable and unfavourable factors. This review analyses the ECS’s complex involvement in the susceptibility to cancer, prognosis,...
Article
Full-text available
The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). H...
Article
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic bra...
Article
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic bra...
Article
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic bra...
Article
Full-text available
Schizophrenia (SCZ) has been associated with serotonergic and endocannabinoid systems dysregulation, but difficulty in obtaining in vivo neurological tissue has limited its exploration. We investigated CB1R-5-HT2AR heteromer expression and functionality via intracellular pERK and cAMP quantification in olfactory neuroepithelium (ON) cells of SCZ pa...
Article
Full-text available
Background: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existen...
Preprint
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D 1 receptors (D 1 R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D 1 R over-activation, we present a strategy based on targeting complexes of D 1 R and histamine H 3 receptors (H 3 R). Using an HD striatal cell model and HD organotypic brain...
Article
Full-text available
Several studies found in vitro evidence for heteromerization of dopamine D1 receptors (D1R) and D3 receptors (D3R), and it has been postulated that functional D1R-D3R heteromers that are normally present in the ventral striatum mediate synergistic locomotor-activating effects of D1R and D3R agonists in rodents. Based also on results obtained in vit...
Article
Introduction: G protein-coupled receptors (GPCRs) are a superfamily of membrane proteins highly expressed in the brain that are involved in almost all functions of the CNS. During the last twenty years, a large number of GPCRs have been reported to form homodimers, heterodimers and higher order oligomers. Areas covered: This review summarizes the f...
Article
Full-text available
The two most common polymorphisms of the human DRD4 gene encode a dopamine D4 receptor (D4R) with four or seven repeats of a proline-rich sequence of 16 amino acids (D4.4R or D4.7R). Although the seven-repeat polymorphism has been repeatedly associated with attention-deficit hyperactivity disorder and substance use disorders, the differential funct...
Article
Full-text available
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into...
Article
Full-text available
Identifying non-addictive opioid medications is a high priority in medical sciences, but μ-opioid receptors mediate both the analgesic and addictive effects of opioids. We found a significant pharmacodynamic difference between morphine and methadone that is determined entirely by heteromerization of μ-opioid receptors with galanin Gal1 receptors, r...
Article
Significance There is a subtype of breast cancer characterized by the overexpression of the oncogene HER2. Although most patients with this diagnosis benefit from HER2-targeted treatments, some do not respond to these therapies and others develop resistance with time. New tools are therefore warranted for the treatment of this patient population, a...
Chapter
Dopaminergic and purinergic signaling play a pivotal role in neurological diseases associated with motor symptoms, including Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, Huntington disease, Restless Legs Syndrome (RLS), spinal cord injury (SCI), and ataxias. Extracellular dopamine and adenosine exert their functions...
Article
Full-text available
The poor norepinephrine innervation and high density of Gi/o-coupled α2A- and α2C-adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this st...
Article
An increasing number of G protein-coupled receptors (GPCRs) have been reported to be expressed in the plasma membrane as dimers. Since most ligand binding data are currently fitted by classical equations developed only for monomeric receptors, the interpretation of data could be misleading in the presence of GPCR dimers. On the other hand, the equa...
Article
Bivalent ligands have emerged as chemical tools to study G protein-coupled receptor dimers. Using a combination of computational, chemical, and biochemical tools, here we describe the design of bivalent ligand 13 with high affinity (KDB1=21 pM) for the dopa-mine D2 receptor (D2R) homodimer. Bivalent ligand 13 enhances the binding affinity relative...
Article
Full-text available
Cannabinoid CB1 receptors (CB1R) and serotonergic 2A receptors (5HT2AR) form heteromers in the brain of mice where they mediate the cognitive deficits produced by delta-9-tetrahydrocannabinol. However, it is still unknown whether the expression of this heterodimer is modulated by chronic cannabis use in humans. In this study, we investigated the ex...
Article
While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely...
Article
Full-text available
The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the...
Article
Full-text available
G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex....
Article
Full-text available
Background: G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A1R or A2AR) can form A1R-A2AR heteromers (A1-A2AHet), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (β-arre...
Article
Full-text available
Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosin...
Article
Full-text available
The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be i...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual re...
Article
Introduction Despite multiple clinical and preclinical studies investigating schizophrenia, the neurobiological basis of this disease is still unknown. The dysregulation of the serotonergic system, in particular the 5-HT2A receptor and the endocannabinoid system have been postulated as possible causes of schizophrenia. Objectives The aim of this s...
Article
Full-text available
The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) a...
Chapter
Sensory information in the mammalian brain is encoded in the cortex. The brain structure is considered to store, at least partially, long-term memories. This area modulates planning, cognitive flexibility, abstract thinking, rule acquisition, implementation, behavioral inhibition, and the selection of relevant sensory information, playing a key rol...
Article
Full-text available
Significance statement: The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA we demonstrate that a significant population of these MOR form fu...
Article
Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors (mGluR1/5), with allosteric modulators showing particular promise. Methods: We evaluated t...
Article
Full-text available
Dopamine receptors in striatum are important for healthy brain functioning and are the target of levodopa-based therapy in Parkinson's disease. Lateralization of dopaminergic neurotransmission in striata from different hemispheres occurs in patients, but also in healthy individuals. Our data show that the affinity of dopamine binding to dopamine D1...
Article
Previous findings indicate that reducing brain insulin-like growth factor I receptor (IGF-IR) activity promotes ample neuroprotection. We now examined a possible action of IGF-IR on brain glucose transport to explain its wide protective activity, as energy availability is crucial for healthy tissue function. Using (18) FGlucose PET we found that sh...
Article
Introduction: Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) h...
Article
Full-text available
The truncated non-signaling ghrelin receptor GHS-R1b has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and...
Article
Heteromers of G-protein-coupled receptors (GPCRs) have emerged as potential novel targets for drug development. Accumulating evidence indicates that GPCRs can form homodimers and heteromers, with homodimers being the predominant species and oligomeric receptors being formed as multiples of dimers. Recently, heterotetrameric structures have been pro...
Article
Full-text available
Background G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of...
Book
Full-text available
Neuropathology of Drug Addictions and Substance Misuse, Volume 3: General Processes and Mechanisms, Prescription Medications, Caffeine and Areca, Polydrug Misuse, Emerging Addictions and Non-Drug Addictions is the third of three volumes in this informative series and offers a comprehensive examination of the adverse consequences of the most common...
Chapter
The pentameric structure constituted by one G protein coupled receptor (GPCR) homodimer and one heterotrimeric G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal...
Article
Full-text available
Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of TH...