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ABSTRACT The widespread use of electronic health records (EHR) systems in health care provides a
large amount of real-world data, leading to new areas for clinical research. Natural language processing
(NLP) techniques have been used as an artificial intelligence strategy to extract information from clinical
narratives in electronic health records since they include a great amount of valuable clinical information.
However, in a free-form text such as electronic health records, many clinical data are still hidden in a clinical
narrative format. Therefore, the performance of biomedical NLP techniques is required to unlock the full
potential of EHR data to convert a clinical narrative text automatically into structured clinical data. In this
way, biomedical NLP applications can be used to direct clinical decisions, identify medical problems, and
effectively postpone or avoid the occurrence of a disease. This review discusses the current literature on the
secondary use of electronic health record data for clinical research on chronic diseases and addresses the
potential, challenges, and applications of biomedical NLP techniques. We review some of the biomedical
NLP methods and systems used over EHRs and give an overview of machine learning and deep learning
methodologies used to process EHRs and improve the understanding of the patient’s clinical records and
the prediction of chronic diseases risk, providing a great chance to extract previously unknown clinical
information. Moreover, this review summarizes the utilizing of Deep Learning and Machine Learning
techniques in biomedical NLP tasks based on chronic diseases related EHR data. Finally, this review
presents the future trends and challenges in the biomedical NLP.

INDEX TERMS Artificial Intelligence, Clinical Information, Deep Learning, Electronic Health Records
(EHR), Machine Learning, Natural Language Processing (NLP).

I. INTRODUCTION

There is a significant impact of Natural Language Process-
ing (NLP) and Machine Learning techniques on processing
digital data. The reliance on digital data is increasing, so it
is essential to use the value of data in different research
fields. Extracting information from the clinical text can be
applied to various applications such as automatic terminol-
ogy management, de-identification of the clinical text, data
mining, identification of research subject, prediction of the
onset and progress of different chronic diseases, analysis
of the disease medication and its side effect, etc. Although
NLP-based machine learning techniques have a better
performance in the field of biomedicine and healthcare,
more experience is required in the analysis of the narrative
clinical text [1]. Therefore, it is necessary to intensively
review the problems and challenges of extracting informa-

tion from the clinical text to develop new opportunities in
this field of research [2].

Biomedical NLP is a field of research that includes
natural language processing, bioinformatics, medical in-
formatics, and computer linguistics [1]. Extracting valu-
able information from a free clinical text embedded in
unstructured data is a significant task of NLP that can
support decision making, reporting on administration, and
research. Applying biomedical NLP applications in EHRs
has a considerable effect on several domains of healthcare
and biomedical research.

Healthcare-related NLP paved the way to medical lan-
guage processing. Usually, most of the biomedical data
exist in an unstructured form, which is the result of dic-
tated transcriptions, direct entry, or using speech recog-
nition applications. Consequently, data pre-processing is

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119621, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

required for information extraction because the summa-
rization and decision-support tasks cannot be performed
using the input data in its narrative form. Preprocessing
includes document structure analysis, tokenization, part-
of-speech tagging, spell checking, sentence splitting, Word
Sense Disambiguation (WSD), and some form of parsing.
Situation dependent features like event subject identifica-
tion, temporality, and negation play a crucial role in the
inappropriate interpretation of the extracted information
[3].

There are various information extraction techniques,
such as rule-based techniques, pattern matching tech-
niques, and machine learning and statistical techniques.
Then, the extracted information can be used to analyze
the clinical text as well as improve the EHR and the de-
cision support systems and to be related to concepts in the
standard terminologies. The biomedical natural languages
processing involves the methods and studies of how NLP
can be applied to the biomedical and electronic medical
record texts and literature.

Recently, deep learning techniques have achieved bet-
ter performance by applying their techniques to different
general NLP tasks such as language modeling, (Part of
Speech) POS tagging, named entity recognition, para-
phrase detection, and sentiment analysis compared to tra-
ditional machine learning (ML) techniques. Because of
the frequent use of acronyms and non-standard clini-
cal terminology by healthcare professionals, unorganized
structure of the document, and the need for complete de-
identification and anonymization to protect the privacy
of patient data, clinical reports typically face specific
challenges compared to general-domain text. Eventually,
addressing and solving these challenges could promote
further research and improvement for various biomedical
applications such as clinical decision support, identifica-
tion of patient cohorts, patient engagement support, public
health management, pharmacovigilance, medications, and
summarization of clinical texts.

A. MOTIVATION
Historically, extracting clinical information from narrative
clinical texts is done manually by clinical experts, which
caused several issues such as lack of scalability and high
cost. These issues have particularly affected chronic dis-
eases since clinical notes are more than structured data;
for example, the number of clinical notes compared to
structured data for chronic diseases such as rheumatoid
arthritis, Parkinson’s disease, and Alzheimer’s disease is
graphically quantified by Wei et al., [4].

NLP approaches have a significant roles in addressing
and solving several challenges of various clinical tasks
such as automatic extraction of relevant clinical informa-
tion that may postpone or avoid the onset of disease for
instance:
• We have identified the NLP in general and biomedical

NLP with its methods and technologies.

• Then we have presented the application areas of ma-
chine learning/deep learning in the biomedical NLP.

• We have provided an overview of the most popular
biomedical NLP systems and their general architec-
ture.

• We have identified the usage of NLP applications in
clinical notes to identify chronic diseases and under-
stand the challenges currently facing them.

• Next, we have discussed a literature review of the
application of various NLP techniques to narrative
clinical notes on chronic diseases, including the anal-
ysis of difficulties faced by NLP methodologies in
clinical narrative comprehension.

• Finally, we conclude this review paper by describing
existing challenges currently faced and open issues
associated with the processing of the biomedical and
clinical text and providing the NLP domain with
sufficient resources and opportunities to extract new
methodologies.

B. CRITERIA FOR SEARCH AND SELECTION
We searched for previous studies released from 2009 to
2021 using Google Scholar, PubMed, and the Web of
Science. All searches used the keywords "electronic health
records" or "electronic medical records" or "EHR" or
"EMR," in combination with either "machine learning" or
the name of a particular technique of machine learning
in conjunction with ’chronic diseases’. Figure 1a shows
the number of publications related to applying machine
learning to EHR per year. Figure 1b shows the number of
publications related to the use of EHR in chronic diseases
per year.

In the rest of this review paper, we propose an overview
of the most significant and noticeable articles and re-
searches that focus on EHR using the machine learning and
deep learning techniques.

We start with a general review of NLP in general, NLP in
biomedicine and healthcare with its methods, technologies
and potential tasks/usecases in the biomedical and health-
care domains in Section II and Section III, followed by
application areas of machine learning in the biomedical
NLP in Section IV. Then we provide an overview of NLP
systems and system architecture in Section V. Next, we
discuss a literature review of recent related works about
applying NLP on chronic diseases in Section VI. Then we
look at current open issues and challenges in the domain
of the biomedical NLP in Section VII. Finally, Section
VIII demonstrates the conclusion of the review paper by
identifying current challenges and open issues.

II. BASICS AND BACKGROUND
A. NATURAL LANGUAGE PROCESSING OVERVIEW
NLP is a sub-field that combines computer science, Ar-
tificial Intelligence (AI), and linguistics, where the aim
is to process and interpret human language to carry out
several tasks (e.g., automatic answering questions and,
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(a) The number of publications per year related to applying machine
learning techniques to EHR.

(b) The number of publications per year related to the use of EHR
in chronic diseases.

FIGURE 1: The number of publications per year related to
EHR.

translation of languages). NLP is widely considered an
AI-complete problem because of the various complexities
involved in describing, understanding, and utilizing lin-
guistic, social, global, or visual information. NLP usually
requires processing at different levels of an input text such
as tokenization, morphological analysis, syntactic analysis,
semantic analysis, and discourse processing [5]. NLP is a
specialized branch of AI that focuses primarily on percep-
tion and human-generated data-text or speech-based. The
technology has several sub-disciplines, including Natural
Language Query (NLQ), Natural Language Generation
(NLG), and Natural Language Understanding (NLU)[5].

B. NATURAL LANGUAGE PROCESSING IN
BIOMEDICINE AND HEALTHCARE
Many challenges are facing natural language processing
when it is applied to general language, but some critical
issues are especially relevant to the biomedical and health-
care domains. There is a wealth of electronic information
concerning the healthcare domain, including publications,
e-health records, and the Internet. Subsequently, there are
many critical aspects relating to biomedical information,
most of which are in textual form, in terms of controlling

and using such information which is necessary to health
research promotion, quality improvement and cost reduc-
tion. NLP is important because it is required to convert
narrative clinical texts into structured data that can be used
in computer applications [6].

The adoption of electronic health records systems in
hospitals has increased significantly in the last ten years,
by providing incentives of $30 billion to hospitals and
physicians practices for the adoption of EHR systems,
partly because of the 2009 Health Information Technology
for Economic and Clinical Health (HITECH) Act [3]. The
basic EHR system is used by 84% of hospitals, which has
increased 9-fold since 2008, according to the most recent
study from the Office of the National Coordinator for
Health Information Technology (ONC) [7]. Furthermore,
the use and adoption of basic and certified EHRs by office-
based physicians has increased from 42% to 87%. Data
of each encountered patient are stored by EHR systems
such as demographic information, diagnosis, laboratory
examinations, drugs, radiological images, clinical notes,
etc.

Generally, the use of Electronic Health Records (EHR)
Systems in both the hospital and outpatient care settings
has increased significantly [7]. The use of EHR in hospitals
and clinics has the potential to enhance patient care by
reducing errors, and improving efficiency, the quality of
treatment, while providing researchers with a rich data
source [8]. The functionality of EHR systems can vary
and are usually classified into basic EHRs without clinical
notes, basic EHR with clinical notes, and comprehensive
systems [7]. Even basic EHR systems can provide a wide
range of patient information such as medical history, dis-
eases, and medication use while lacking more advanced
features. As the EHR was mainly developed for admin-
istrative activities at the hospital, there are many classi-
fication schemes and controlled vocabulary for recording
patient medical data and events. Table 1 shows some codes
from International Statistical Classification of Diseases
and Related Health Problems (ICD) containing diagnosis
codes, codes from Current Procedural Terminology (CPT)
containing procedure codes, codes from Logical Obser-
vation Identifiers Names and Codes (LOINC) containing
laboratory notes, and codes from RxNorm containing drug
codes.

Such codes may differ between organizations, with par-
tial mappings managed by tools such as the United Medical
Language System (UMLS) and the Systemized Nomen-
clature of Medicine - Clinical Terms (SNOMED CT).
With the availability of various classification schemas,
coordinating and analyzing data through terminologies and
across organizations is a field of ongoing research.

Diverse types of patient information are stored in EHR
systems, including demographics, diagnostics, physical ex-
aminations, sensor measurement, lab results, prescribed or
managed medicines, and clinical notes. One difficulty is
to deal with the complexity of EHR data with its different
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TABLE 1: Example of classification schema for diagonoses, proceduews, lablatory examinations, and drugs.

Classification Schema Number of Codes Examples

ICD-10 (Diagnosis) 68,000

Code Associated Diagnosis
J9600 Acute respiratory failure
I509 Heart failure
I5020 Systolic heart failure

CPT (Procedures) 9,641

Code Associated Procedures
72146 MRI Thoracic Spine
67810 Eyelid skin biopsy
19301 Partial mastectomy

LOINC (Laboratory) 80,868

Code Associated Laboratory
4024-6 Salicylate, Serum
56478-1 Ethanol, Blood
3414-0 Buprenorphine Screen

RxNorm (Drugs) 116,075

Code Associated Drugs
161 Acetaminophen
7052 Morphine
1819 Buprenorphine

types of data, including the following:

(i) Numerical Quantities like the index of body mass.
(ii) Date/Time Items like the date of birth or admission

time.
(iii) Categorical Values like ethnicity or controlled vo-

cabularies codes like ICD-10 (formerly ICD-9) diag-
noses or CPT procedures.

(iv) Free-Text Natural Language like progress reports
or discharge summaries. Those types of data can also
be ordered chronologically.

(v) Time-Series Derived like signals of vital periopera-
tive sign or multimodal patient history.

While other biomedical data such as medical images or
genomic information are present and treated in important
recent researches [9][10][11], we concentrate in this review
paper on the five types of data that exist in most modern
EHR systems. In the field of chronic diseases, new methods
are needed to support and advance evidentiary medicine,
given the increasing incidence of such conditions all over
the world. There is a powerful and successful impact of
the secondary use of EHRs in processing clinical data for
biomedical and translational applications.

Several research studies have discovered a secondary
use of EHRs in bioinformatics and healthcare applica-
tions [12][13], although it is designed primarily to en-
hance operational healthcare performance. In particular,
patient-relevant data stored in EHR systems were used
for biomedical tasks such as extracting medical concepts
[2][14], modeling patient trajectories [15], diagnosing dis-
eases [16][17], supporting clinical decisions [18], etc.

Processing EHRs using machine learning and deep
learning methods contributes to a better and more deep
understanding of clinical patient trajectories which track
the patient status from one health state to another being
diagnosed with a specific clinical condition and risk pre-
diction of chronic diseases, giving a unique opportunity to
get unknown clinical information. However, A wide range
of clinical history, remains locked in free-form texts behind
clinical narratives. As a result, the unlocking of the full

potential of EHR data depends on the development of NLP
techniques to automatically convert the clinical text from
its narrative nature to a structured form that can direct
clinical decisions and potentially postpone or prevent the
onset of diseases [19].

EHR processing and modeling are significant chal-
lenges due to its high dimensionality, noise, heterogene-
ity, sparse design, incompleteness, random errors, and
systematic biases. In addition, a vast amount of infor-
mation about patient clinical history is usually stored in
free-text clinical narratives [20] since the most widely
and descriptive method for recording clinical events re-
mains written text. The development of NLP techniques
integrated into machine learning algorithms is essential
for the automatic conversion of clinical free-text into a
structured data format. NLP has been used for a broader
variety of applications in the clinical domain, including
the detection of medical concepts from nursing docu-
mentation [21], discharge summaries [22] and radiology
reports [23] as much potentially useful clinical informa-
tion for pharmacoepidemiological research is contained
in unstructured free-text documents. Routine health data
such as Scottish Morbidity Records (SMR01) frequently
use generic ’stroke’ codes. Free-text Computerised Radi-
ology Information System (CRIS) reports have potential
to provide this missing detail. In order to increase the
number of stroke-type-specific diagnoses by augmenting
SMR01 with data derived from CRIS reports and to as-
sess the accuracy of this methodology. However, applying
NLP-based frameworks to a narrative clinical text has not
been widely used in clinical activities and tasks to direct
decision-support systems or administrative processes.

C. TASKS OF NLP IN THE HEALTHCARE DOMAIN

There are several Tasks of the clinical NLP:

• Word Sense Disambiguation (WSD): is the process
of automatically assign an accurate meaning (sense)
to an ambiguous word in a specific context. The
biomedical NLP tasks require the ability to accurately
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understanding ambiguous words within a specific
context which is a critical issue. According to the
medical word sense disambiguation, there is a list of
all possible meanings (senses) for each ambiguous
word. There are many ambiguous terms in clinical
notes. There are a variety of interpretations for the
abbreviation "PCA," including principal component
analysis, patient-controlled analgesia, and prostate
cancer. WSD is a critical issue in the medical domain
[24] [25] [26] [27] because it is an essential step for
the analysis of clinical notes [28].

• Name Entity Recognition (NER): is a subtask of IE
(Information Extraction). One of the most important
tasks in biomedical NLP is to turn unstructured text
into computer-readable structured data [29]. NER is
the task of identifying expressions that denote named
entities (such as diseases, medications, and lab tests)
in clinical notes. Many techniques can be used in
NER such as[30] dictionary-based approach, rule-
based approach, statistical approach, deep learning
approach, hybrid approach [31].

• Adverse Drug Events (ADEs) Detection: Both med-
ical research and hospital medical treatment ben-
efit from detecting adverse drug events (ADEs)
and medication-related information in clinical notes.
ADEs are known as diseases occurring from med-
ical interventions of medicines such as prescription
errors, overdoes, adverse drug reactions, and allergic
reactions [32]. EHRs have a wealth of information
on ADEs which is hidden in unstructured data such
as discharge summaries, procedural notes, medical
history, laboratory results [33][34][35]. The process
of identifying and detecting the information related
to ADEs from narrative clinical notes is very difficult
and time-consuming. So there is a need for the NLP
system for automatically processing narrative EHRs
and detecting drugs, ADEs, and their interactions
[36].

• Information Extraction (IE): is an important
biomedical NLP task that facilitates the use of EHRs
for clinical decision support, quality improvement,
or clinical and translation research by automatically
extracting and encoding clinical concepts from nar-
ratives notes. In the general domain, IE is commonly
recognized as a specialized area in empirical NLP and
refers to the automatic extraction of concepts, entities,
and events, as well as their relations and associated
attributes from free text [34] [37]

• Relation Extraction (RE): is an important subtask of
information extraction (IE) that focuses on identifying
and detecting semantic relationships between clinical
concepts in clinical notes [38][39]. For example, in
this clinical note "an MRI revealed a C5-6 disc herni-
ation with cord compression", the lab test "MRI" indi-
cates two diseases "a C5-6 disc herniation" and "cord
compression". Many types of relations are mentioned

by previous researches such as disease-attribute pair
extraction [40][41], temporal relation identification
[42], adverse drug event detection [43][44], etc. clini-
cal NLP domain has recently launched several shared
tasks related to relation extraction from clinical notes
such as Integrating Biology and the Bedside (i2b2)
challenges [45], the Semantic Evaluation (SemEval)
challenges [46] and the most recent 2018 National
NLP Clinical Challenge (n2c2) [47]. These open
shared tasks and challenges provide many resources
and methods for medical RE tasks [40].

III. BIOMEDICAL NLP METHODS
This review paper gives an overview of the most recent
articles based on most of the main biomedical NLP meth-
ods employing dictionary-based, rule-based, and machine
learning techniques. Figure 2 shows the number of publica-
tions in the EHR domain applying deep/machine learning
methods and rule-based techniques per year. Although the
use of machine-learning methods is growing compared
to rule-based methods, the performance and efficiency of
machine learning algorithms can be highlighted by using
rule-based methods as a benchmark because we are still
seeing a shift from rule-based methods to machine learning
algorithms [48].

Recently, biomedical NLP researches have shown the
significant performance of the methods based on deep
learning. The effective performance of Recurrent Neural
Network (RNN) in biomedical texts for the NER (Name
Entity Recognition) task was proposed by Sahu and Anand
[49]. They developed a model which is a combination
of a bidirectional Long Short-Term Memory Network
(BiLSTM) and Conditional Random Field (CRF) apply-
ing character-level word embedding. Habibi et al., [50]
combined the BiLSTM-CRF model developed by Lample
et al., [51] and the word embedding model developed by
Pyysalo et al., [52]. To generate important features such
as orthographic features of biomedical organisms, Habibi
et al., [50] used character-level word embedding to show
that the characteristic word embedding is successful in
biomedical NLP tasks.

A. RULE-BASED TECHNIQUES
Rule-based techniques are based on a set of specific textual
relationship rules that called patterns that encode similar
structures in the expression of relationships. These rules
are represented over words or POS tags as regular ex-
pressions. In such systems, the rules extend as patterns
by adding more constraints to resolve a few issues, in-
cluding checking negation of relations and determining
the direction of relationships. The rules are generated in
two ways: manually and automatically generated from the
training dataset. The efficiency of the rule-based system
can be enhanced to a certain extent using an extension with
additional rules, but it tend to produce much FP informa-
tion. Therefore, rules-based systems usually provide high
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FIGURE 2: The number of publications per year in the
EHR domain applying deep/machine learning methods and
rule-based techniques.

precision but low recall because the rules for a particular
dataset cannot be created for other data sets. However, the
recall of such systems can be improved by relaxing the
constraints or by learning rules automatically from training
data [53].

Although the architecture of dictionary-based systems is
simple, they cannot be applied to manage unknown entities
or ambiguous words, resulting in low recall [54][55]. It
also requires a considerable amount of manual labor to
develop and maintain a comprehensive and up-to-date dic-
tionary. Although the rule-based method is more flexible,
the features are handcrafted to fit a model into a dataset
[56][57]. Both rules and dictionary-based methods can
achieve high precision [58], but they can generate wrong
predictions when the out-of-vocabulary problem occurs if
a new word, which is not found in the training data, appears
in a sentence. The issue of out-of-vocabulary arises in
the biomedical field in particular because it is common to
register a new biomedical term such as the name of a new
drug.

There are several methods based on rule-based tech-
niques such as:

• Dictionary Lookup [59], [60], [61].
• Domain ontology-based terminology recognition[62],

[63], [64], [65].
• Set of manual rules [66], [67].
• Regular expressions patterns [68], [69].

B. MACHINE LEARNING TECHNIQUES

There are two main categories of learning techniques of
machine learning algorithms: supervised learning and un-
supervised learning. Supervised learning techniques pro-

vide a function that maps from inputs x to outputs y:

y = f (x) (1)

There are two main types of supervised learning tech-
niques: classification and regression, and the most widely
learning algorithms are logistic regression algorithm and
support vector machine algorithm. On the other hand, the
purpose of unsupervised learning techniques is to learn
about the input x distribution features. There are two main
methods of unsupervised learning:- cluster analysis and
principal component. The input representation is an essen-
tial task for all machine learning frameworks. Machine-
learning techniques input is a set of attributes known as
features that are extracted for each data point. Such fea-
tures are handcrafted based on domain knowledge in tra-
ditional machine learning where automatic data-oriented
feature extraction is an essential aspect of deep learning
techniques.

Up to the last few years, machine learning methods such
as logistic regressions, support vector machines (SVM),
and random forests were employed as key methods for
analyzing and processing rich EHR data [70]. Most mod-
ern NLP platforms are built on models refined through
machine learning techniques [71][72]. Machine learning
techniques are based on four components: a model; data;
a loss function, which is a measure of how well the model
fits the data; and an algorithm for training (improving) the
model [73].

Deep learning techniques: Deep learning is a sub-
field of machine learning methods based on multi-layered
neural network architectures with hierarchical data repre-
sentations learning, as shown in Figure 3. Machine learn-
ing techniques require time-consuming and hard work for
data representation feature extraction [74], While learning
multiple levels of representations can be automatically
done by deep learning techniques with increasing order of
abstractions [75].

There are several factors contributed in the development
of deep learning such as the availability of extensive un-
labeled data along with rapid computing resources based
on powerful graphics processing units (GPUs), new algo-
rithms and frameworks and adaptations/transformations of
learned data features/representations to similar or a new
domain of interest.

Several non-linear classification problems with hierar-
chical inputs that naturally occur, such as language and
images, can be solved by deep learning methods. Recently,
deep learning techniques can be applied to NLP appli-
cations providing better results than techniques based on
linear models such as support vector machines (SVMs) or
logistic regression [76].

The most popular deep learning architectures are illus-
trated in this section by highlighting their key equation that
demonstrates their operation method. Data representation
is the primary task of deep learning. Using a machine
learning algorithm, input features must be hand-crafted
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FIGURE 3: A deep neural network architecture.

from the dataset based on the researcher’s experience and
the domain of knowledge to identify specific patterns of
prior interest.

The development method of designing, reviewing,
choosing and testing suitable features can be complicated
and time-consuming. It can also be regarded as a "black
art" [77] requiring creativity, trial-and-error, and some-
times luck. On the other hand, learning the optimal feature
directly from the given dataset is performed by deep learn-
ing techniques without any handcrafting. Through deep
learning, complex data representation is sometimes repre-
sented as compositions of other, simpler representations.

Recurrent deep learning architecture is a complex un-
supervised hierarchical representation. Many of the major
deep learning algorithms and architectures are based on the
artificial neural network (ANN) architecture. ANNs con-
sist of multiple interconnected nodes (neurons) organized
in layers, as shown in Figure 3. Hidden units are neurons
that do not appeared in the input or output layers and store
several weights W, which are updated with the training of
the model.

The optimization of ANN weights is performed by min-
imizing loss function as shown in Equation 2, such as a
negative log-likelihood.

E (θ,D) = −
D∑

(t=0)

[log P (Y = yt|xt, θ)] + λ ‖ θ ‖p (2)

The summation of the log loss over the given training
dataset D is minimized by the first term. While the mini-
mization of the learned model parameters θt p-norm con-
trolled by a tunable parameter λ is performed by the second
term, which is known as the regularization technique used
to prevent the model overfitting and to improve its ability to
be applied to new problems. Usually, the backpropagation
technique is used for loss function optimization by mini-
mizing the final layer loss over the network [75].

Many open-source sources are supported by differ-
ent programming languages such as TensorFlow, Theano,
Keras, Torch, PyTorch, Caffe6, CNTK, and Deeplearn-
ing4j to deal with deep learning algorithms. In the fol-
lowing subsections, we give an overview of the most

common deep learning techniques which can be applied
to biomedical NLP applications, such as supervised and
unsupervised techniques.

A) Multilayer perceptron (MLP)

FIGURE 4: Multilayer perceptron architecture.

A multi-layer perceptron is a multiple-hidden layered
type of ANN that completely connects each neuron
in the layer i to each neuron in the layer i + 1. These
networks are usually limited to specific hidden layers,
and unlike recurrent or undirected architectures, the
data flows only in one direction. From the definition
of the single-layer ANN, as shown in Equation 3,
the outputs weighted sum from the previous layer is
calculated by each hidden unit, followed by a non-
linear activation σ of the calculated sum. Where d is
the number of the previous layer units, xj is the output
of jth node of the prior layer, and ωij and bij are the
weight and bias terms of each xj . The most common
nonlinear activation functions are usually sigmoid or
tanh, but recently rectified linear units (ReLU) are
used by modern networks [75].

hi = σ

 d∑
(j=1)

xjωij + bij

 (3)

The network can learn the relationship between the
input X and the output Y after optimizing the weights
of the hidden layer during training. With the addition
of more hidden layers, the input data is supposed to
be more abstractly represented due to the non-linear
activations of each hidden layer. Although MLP is
one of the simplest architecture, other architectures
combine fully connected neurons in their final layers.

B) Convolutional neural networks (CNN)
Recently, the most popular method is Convolutional
Neural Networks (CNN) especially when applied in
the image processing domain. CNNs require local raw
data connectivity. A one-dimensional time series is
also a set of local signal segments.Equation 4 demon-
strates one-dimensional convolution where the input
is x and the weighting function or convolution filter is
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w.

C1d =
∞∑

(a=−∞)

x (a)ω (t− a) (4)

In Equation 5, where X is a 2-D grid (e.g., image) and
K is a kernel, is demonstrated in a two-dimensional
convolution in which a kernel or filter can pass a
matrix of weights through the entire input to the
feature maps.

C2d =
∑
m

∑
n

X (m,n)K (i−m, j − n) (5)

The generated number of parameters is small since
the filters are usually smaller than the input; therefore,
CNNs have limited interactions. CNNs facilitates pa-
rameter sharing since all filters are applied across the
entire input. The convolution layer in CNN contains
several convolutional filters which receive the same
input from the previous layer to extract different
lower-level features. For features aggregation, these
convolution layers are usually pooled or subsampled.
Figure 5 provides an example of two convolutionary
layers of the CNN architecture, followed by a pooling
layer.

FIGURE 5: Example of data classification using CNN.

C) Recurrent neural networks (RNN)

FIGURE 6: Recurrent neural networks architecture.

In the case of a simple-spatial structure of input
data (like image pixels), CNNs are the appropriate
approach, but in the case of sequential organized data
(such as time-series data or the natural language),
recurrent neural networks (RNN) is the best method.
The generated features are shallow when the CNN is
fed with single-dimensional sequences, which means
that the feature representations include only very
close localized relationships between some neighbors
[75]. RNNs are designed to manage this time depen-
dencies for a long time. The RNNs are used to update
the hidden ht state sequentially, based not only on the

activation of the current input xt at time t, but also
on the previously hidden state ht−1, which in turn
was updated from xt−1, ht−2, and so on as shown
in Figure 7. Thus, after processing a whole sequence,
the final hidden state includes information from all its
previous sequences.

FIGURE 7: Recurrent neural networks architecture.

Long-term memory (LTM) and Gated Recurrent Unit
(GRU) models, both known as Gated RNNs, belong to
the popular RNN architectures. While standard RNNs
consist of interconnected hidden cells, a particular
cell containing an internal recurrence circuit and a
gate system that controls the information flow is sub-
stituted for each unit in the gated RNN. The gated
RNNs have demonstrated better performance when
modeling LSTM [75].

D) Autoencoders (AE)
The autoencoder (AE) is one of the deep learning
models that demonstrate the concept of unsupervised
representation learning. First they were considered
as a tool for pre-training supervised deep learning
models, but they are still useful for completely un-
supervised tasks like phenotype discovery. Autoen-
coders are used to convert input data into a lower-
dimensional space called z. After that, the encoded
representation is decoded by reconstructing an esti-
mated representation of the input x, called x̀.
The process of encoding and reconstruction for an
autoencoder with one hidden layer are illustrated in
equations 6 and 7, respectively. The weights of en-
coding and decoding processes are W and Ẁ and the
encoded representation z is considered more accurate
when minimizing the reconstruction error ‖ x− x̀ ‖.

z = σ (Wx+ b) (6)

x̂ = σ
(
Ẁz + b̀

)
(7)

A single input is fed through the network as the
encoded representation of the input after the AE has
been trained with the innermost hidden layer activa-
tions. The main task of AEs is to convert and encode
the input data to only represent the most significant
derived dimensions. Therefore, AEs are similar to
traditional dimensionality reduction techniques such
as principal component analysis (PCA) and singular
value decomposition (SVD), but they provide a major
impact for solving complex problems due to nonlinear
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transformations through the activation functions of
each hidden layer.
Many models of AEs have been developed, such
as variation autoencoders (VAE), de-noising autoen-
coders (DAE) [78], and sparse autoencoders (SAE)
[75].

E) Restricted Boltzmann machine (RBM)
The restricted Boltzmann machine (RBM) is another
deep learning model that demonstrates the concept
of unsupervised representation learning. RBMs are
similar to autoencoders in that they estimate the prob-
ability distribution of the input data, but they do so in
a stochastic manner. Therefore RBMs are considered
to be generative models as they attempt to model the
underlying process by which the data was generated.
The energy-based model with visible binary units ~v
and hidden units ~h, with energy functions defined in
the Equation 8 is called the canonical RBM [75].

E (v, h) = −bT − cTh−WvTh (8)

However an RBM has no connected visible or hidden
units, all the units in a standard Boltzmann machine
(BM) are fully connected. It generates the learned
representation of the input data in a form of h. RBMs
can be stacked hierarchically for the development of
a deep belief network (DBN) for supervised learning
tasks.

IV. APPLICATION OF MACHINE LEARNING AND DEEP
LEARNING TECHNIQUES IN THE BIOMEDICAL NLP
DOMAIN
Early EHR analyses were based on simpler and more
conventional statistical techniques [79]. Recently, machine
learning techniques, such as: Logistic Regression [80],
Support Vector Machines (SVM) [81], Cox Proportional
Hazard Model [82] and Random Forest [83] have been
applied to EHR data for mining reliable predictive patterns.

There are critical issues based on the statistical model
when being applied to EHR data analyses [84][85][86].
Such issues can be overcome by applying modeling tech-
niques that can be used to analyze and extract complex
nonlinear variables interactions [75][87] which come from
each entire patient’s medical history such as mixed and
multimodal data obtained in random times [86].

The support vector machine algorithm is the most pop-
ular machine learning method that has been applied to
medical reports for the prediction of heart disease [88][89],
the identification of diabetes EHR progress notes and the
classification of breast radiology reports according to BI-
RADS [90].

The second most popular machine learning method is
Naïve Bayes which has been applied to medical records for
the prediction of heart disease [91][92], the classification
of smoking status [93], for the identification of multiple

sclerosis [94], and the EHR records classification for obe-
sity [95] and cancer [96][20][97].

Conditional random fields (CRFs) are the third most
common machine learning method, which has been applied
to medical records for the prediction of heart diseases
[98][88], for the identification of diabetes EHR progress
notes [99], for breast radiology reports classification [90],
and identifying tumor characteristics in radiology reports
[100].

Finally, random forests have been used for heart disease
prediction, cancer classification [101], and identification of
hypertension [102].

Table 2 outlines the most recent biomedical models
using machine learning techniques with their major appli-
cation.

The drawback of machine learning is in handling high-
scale data, their adoption of several statistical and struc-
tural assumptions, and their use of hand-crafted fea-
tures/markers make the use of such statistical models in
analyzing the EHR data is impractical, despite its simplic-
ity and interpretability required for biomedical applications
[84][85][86]. Recent breakthroughs in these areas have led
to vastly improved NLP models that are powered by deep
learning, a subfield of machine learning [103].

Through the deep hierarchical construction of features
and the efficient capture of long-range data dependencies,
deep learning techniques have recently achieved significant
progress in many fields [75]. There is an increased number
of researches which apply deep learning techniques to
EHR data for biomedical tasks [62][104] , due to the
growing development of deep learning methods and the
increasing number of patient data providing enhanced re-
sults and requiring less time-consumption preprocessing
and feature extraction compared with traditional methods.

Modern biomedical NLP systems can identify and
model more complex relationships and concepts [105] by
using the main deep learning architectures such as feed-
forward neural networks (FFNN), convolutional neural
networks (CNN), and recurrent neural networks (RNN)
that can be applied for the analysis and modeling of HER.
Vector-embedding approaches are used for data prepro-
cessing by encoding words before feeding them into a
model. These approaches understand that words may have
different meanings depending on context (for example, the
meanings of "patient," "shot," and "virus" differ depending
on context) and treat them as points in a conceptual space
rather than separated entities. The emergence of transfer
learning has improved the performance of the models,
which involves taking a model trained to perform one task
and using it as the starting model for training on a similar
task [106].

Convolution neural networks (CNNs) have an effective
performance in a wide range of NLP biomedical tasks, for
example:

1) CNNs have an effective success in the development of
a model for classifying biomedical articles to identify
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TABLE 2: A recent review of the applications of EHR research using machine learning techniques.

Model Biomedical NLP application on chronic disease Reference

SVM
Predicting heart disease.
Identification of diabetes.
Classification of breast radiology reports.

[88][89][90]

Naïve Bayes

Prediction of heart disease.
Classification of smoking status.
Identification of multiple sclerosis.
Classification of obesity and cancer.

[91] [92] [93] [94] [95] [96] [20] [97]

CRFs

Prediction of heart disease.
Identification of diabetes.
Identification of multiple sclerosis.
Classification of breast radiology reports.
Identification tumor characteristics in radiology reports

[98] [88] [99] [90] [100]

Random forests
Prediction of heart disease.
Cancer classification.
Identifying tumor characteristics Hypertension identification

[101] [102]

cancer hallmarks associated with an abstract article
[107].

2) CNNs are used to learn the representation of time ex-
pressions for clinical temporal relationship extraction
[108].

3) CNNs can be applied to model the appropriate article
for the biomedical article retrieval task [109].

4) CNNs can be applied to biomedical reports to identify
protein-protein interaction relations [110].

5) CNNs can be used with an attention mechanism to
extract drug-drug interactions [111].

6) CNNs can be used for classifying free-text radiology
reports using the pulmonary embolism results [112].

7) CNNs can effectively support the classification of
patient portal messages [113].

8) CNNs can be applied to biomedical text for named
entities recognition [114].

In the case of automated coding in radiology reports
by using an International Classification of Disease (ICD-
10) system, CNN models have contributed to achieving
improved efficiency compared with machine learning clas-
sifiers [115]. There is also a semi-supervised CNN archi-
tecture that can be used in social media to automatically
detect adverse drug events (ADE), inspired by the previ-
ously mentioned accomplishments of CNNs for different
clinical NLP applications, unlike conventional systems
[116] that usually employ lexicon-and machine learning-
based techniques that depend on expert annotations for
ADE detection by producing large quantities of labeled
data to train supervised machine learning algorithms.

Many clinical events can be detected from free text
EHR notes by applying Recurrent Neural Network (RNN)
architectures such as disorders, medications, tests, ad-
verse drug effects [117], and patient data de-identification
from EHRs [118]. Bidirectional RNNs / LSTMs have
been successfully applied to several biomedical NLP tasks
such as building models for the prediction of the missing
punctuation in medical reports [119], the identification

of biomedical events [120], the modeling of relational
and contextual similarities between the named entities in
biomedical articles to understand important information
to provide appropriate treatment suggestions [121], the
extraction of clinical concepts from EHR reports [122], and
the recognition of named entities in clinical texts [123].
Many recent researches develop models using the embed-
ded graph information for adverse drug reaction detection
in social media data [124] by applying bidirectional LSTM
transducer. RNNs are used to develop recognition models
for disease name learning with term- and character-level
embedding features [49] when they are used in conjunction
with CNNs. We provide, in this section, an overview of
the recent state of the art of biomedical applications as
a consequence of the rapid and recent development of
deep learning techniques being applied to electronic health
records (EHR). Table 3 outlines the most recent biomedical
models using deep learning techniques with their major
application, subtask definitions, and type of input data
according to current research’s logical classification.

V. BIOMEDICAL NLP SYSTEMS
We give an overview of NLP systems and their architecture
in this section.
General architecture of the Biomedical NLP System

Friedman and Elhadad’s discussion [6] illustrates NLP
and its different aspects and parts, as shown in Figure 8a.

As shown in Figure 8a, the left part consists of the
trained corpora, domain model, domain knowledge, and
linguistic knowledge; the right part includes techniques,
tools, systems, and applications. Thus aspects of NLP can
be divided into two parts.

Figure 8b provides an overview of the general architec-
ture of the NLP system, in which there are two primary
components of the NLP system: background knowledge
corresponding to the left part of the figure, and a frame-
work that incorporates NLP tools and modules correspond-
ing to the right part of the figure. The two primary com-
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TABLE 3: A recent review of the applications of EHR research using deep learning techniques.

Application Task Input Data Models References

Information Extraction

1. Single Concept Extraction

Clinical Notes

LSTM, Bi-LSTM, GRU, CNN [125] [126] [127]
2. Temporal Event Extraction RNN+ Word Embedding [128]

3. Relation Extraction AE [129]
4. Abbreviation Extraction Custom Word Embedding [130]

Representation Learning 1. Concept Representation Medical Codes RBM, Skip-gram, AE, LSTM [131] [129]
2. Patient Representation RBM, Skip-gram, GRU, CNN, AE [62] [104] [131] [129] [132] [133]

Outcome Prediction 1. Static Prediction Mixed AE, LSTM,RBM [62] [104] [131][134] [135]
2. Temporal Prediction LSTM [84] [136] [132] [137] [138]

Phenotyping 1. New Phenotype Discovery Mixed AE, LSTM,RBM [62] [133] [139][140]
2. Improving Existing Definitions LSTM [141] [142]

De-Identification Clinical Text de identification Clinical Notes Bi-LSTM, RNN+ Word Embedding [143] [144]

ponents of biomedical NLP systems and their tasks are
illustrated below, which are how NLP tools incorporated
into a pipeline designed on top of a particular framework.
Regarding the framework, which is a software platform
for controlling and managing pipeline components like
loading, unloading, and handling, the framework’s com-
ponents may be integrated, combined, or used in the
system as plug-ins. There are two levels of the frame-
work of biomedical NLP systems:- low-level and high-
level processors. Basic NLP tasks are carried out by low-
level processors such as part-of-speech tagging, segment
tagging, sentence boundary detection, and chunking of
noun phrases. Semantic level processing, such as named
entities recognition (e.g., disease/disorder, sign/symptoms,
medicines), relationship identification, and timeline extrac-
tion, is performed by high-level processors.

A. BIOMEDICAL NLP BACKGROUND KNOWLEDGE
The Unified Medical Language System (UMLS)
Biomedical and linguistic knowledge are essential com-
ponents in the development of biomedical NLP systems.
The Unified Medical Language System (UMLS) was
developed in 1986 and applied to the biomedical NLP
systems. There are three key components of the UMLS: the
Metathesarus, the Semantic Network, and the SPECIALIST
lexicon. The UMLS can be known as the ontology of
biomedical concepts and their relationships for practical
applications.

Furthermore, background knowledge includes domain
models and trained corpora that are used to be applied
to particular fields like radiology/pathology reports and
discharge summaries. Annotated corpora will be labeled
by human annotators manually and will be used to train
machine/deep linguistic classifiers and to evaluate rule-
based systems.

The Metathesarus of UMLS currently comprises over
one million biomedical terms and five million concept
names have been derived from more than several biomedi-
cal controlled vocabularies, such as RxNorm, MeSH, ICD-
10, and SNOMED CT.

The UMLS Semantic Network categorizes all UMLS
Metathesaurus concepts consistently depending on their
semantic types to minimize Metathesaurus complexity. It
currently contains 135 main categories and 54 relationships

(a) Aspects of biomedical NLP systems.

(b) A general biomedical NLP system architecture.

FIGURE 8: Biomedical NLP system

between categories. For example, the “Disease” category
has a relationship “associated with” with the “Finding”
category, and the “Hormone” category has a relationship
“Affects” with the “Disease” category.

The UMLS SPECIALIST lexicon contains informa-
tion for biomedical terms on their syntax, morphology,
and spelling [145]. Currently, it contains over 200,000
biomedical terms and is used for biomedical NLP tasks by
the UMLS lexical tools.

B. TOOLS AND FRAMEWORKS OF THE BIOMEDICAL
NLP

NLP Tools/Methods: For the construction of NLP tools,
there are two main methods/techniques. The first technique
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is rule-based, mainly focused on rules and dictionary look-
up. The second technique is the machine learning method
based on annotated corpora to train learning algorithms.
The Rule-based approach was often adopted by early sys-
tems because their design and implementation was very
simple. Currently, many biomedical NLP systems have
shifted away from using rule-based methods and depend
on machine learning approaches due to their progress
and the growing number of annotated corpora, while new
annotated training data may have a high cost to generate.
Machine learning approaches often deliver better results
than rule-based methods, as demonstrated in many chal-
lenges of biomedical NLP. At the same time, most recent
NLP systems have been designed from integrating rule-
based and machine learning methods, which have been
called hybrid systems [6].

NLP Frameworks: It is possible to incorporate the
framework into the NLP system itself or to use the avail-
able common architectures. GATE (General Architecture
for Text Engineering) and UIMA (Unstructured Informa-
tion Management Architecture) are the two most common
generalized architectures, which consist of open-source
software.

GATE, which was initially developed in 1995 at
Sheffield University, is commonly applied in the NLP
domain. It contains basic NLP tools for low-level pro-
cessing (e.g., tokenizers, penetration splitters, and part-
speak taggers) packed into a CREOLE wrapper and a high-
level processor for named entity recognition packaged into
an ANNIE which is an information extraction system. It
can incorporate current techniques of NLP and machine
learning such as Weka, RASP, SVM Light, and LIBSVM.
GATE was used as a basis by many clinical NLP systems,
such as HITEx and caTIES, for the extraction of cancer
information.

UIMA belongs to the Apache Software Foundation soft-
ware and it was initially designed since 2006 by IBM. Its
objective is to promote the reuse of analytical components
and to reduce the duplication of analytical development.
The pluggable architecture of UIMA allows you to easily
plug-in your analysis components and combines them with
others.” IBM’s 2011 Jeopardy challenge Watson system
has developed UIMA’s framework, which is recognized as
the best-known foundation. The functionality of UIMA is
broader than that of GATE, since UIMA can be used to an-
alyze audio/video data in addition to textual data. Several
biomedical NLP systems, such as cTAKES, MedKAT/P,
and MedEx, use the UIMA framework for cancer-specific
characteristics extraction [146][147] and medication ex-
traction.

This section provides a general overview of the biomed-
ical NLP system architecture by explaining the most sig-
nificant and influenual NLP systems in the biomedical
NLP field. Two of the common systems for extracting
UMLS concepts from clinical texts are the Linguistic
String Project-Medical Language Processor (LSP-MLP)

[148] and the Language Extraction and Encoding System
(MedLEE) [149]. The Mayo clinical Analysis and Knowl-
edge Extraction System (cTAKES) [150], Special Pur-
pose Understanding System (SPUS) [151], SymText (Sym-
bolic Text Processor) [152] and SPECIALIST language-
processing system [153] are the major systems developed
by few dedicated research groups for maintaining the ex-
tracted information in the clinical domain. Another impor-
tant system widely used in the clinical domain is MetaMap
[154]. Among all, MetaMap is found to be useful with
patients’ HER for automatically providing relevant health
information. Table 4 presents the characteristics of the
major biomedical NLP systems discussed in this section.

C. THE ENSEMBLE METHODS FOR THE BIOMEDICAL
NLP TOOLS
The ensemble approach improves the portability of
biomedical NLP systems by combining the strengths of
individual tools. An ensemble is a meta-algorithm that
incorporates various basic models into a predictive model,
and in several machine learning tasks, this combination has
demonstrated superior results [155][156][157].

The ensemble approach has been widely applied to vari-
ous clinical and biomedical issues such as identification of
biomarker [158], protein-protein interaction [159], causal
molecular networks inference [160] and gene expression
based disease diagnosis [161].

Many studies have explored the ensemble of NLP tools
for medical concept recognition.

For example, Torii et al., developed BioTagger-GM by
combining recognition results from individual systems and
using a voting schema and achieved the best performance
in the BioCreAtIvE II challenge to recognize gene/protein
names from literature [162] [163].

Doan et al. demonstrated that the ensemble classifica-
tion results which incorporate single classification models
into a voting system could perform better than a single
classification model in identifying medical information
from clinical text using the 2009 i2b2 (Informatics for
Integrating Biology and the Bedside) challenge datasets
[164].

Kang et al., merged two dictionaries-based systems with
five statistical systems into a simple voting scheme and
achieved a third-place finish in the 2010 i2b2/VA challenge
to extract medical problems, examinations and medications
[165].

Kuo et al. combined cTAKES and MetaMap to develop
an ensemble pipeline that improved the efficiency of NLP
tools in extracting clinical data terms, but with high varia-
tion depending on the cohort [166].

VI. LITERATURE REVIEW AND RELATED WORKS
Throughout this section, we discuss some articles and
surveys that constitute our literature review, including a
list of all related works for applying machine learning to
biomedical NLP, especially on chronic diseases.
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TABLE 4: Major biomedical NLP systems.

Biomedical
NLP System

Purpose Creator Source of Clinical Dataset Encoding

LSP-MLP NLP system for extraction
and summarization of
signs/symptoms and drug
information, and potential
drugs and side effects
recognition.

New York Uni-
versity

Progress Note. Clinical Note.
X-ray Report. Discharge Sum-
mary.

SNOMED

MedLEE A semantically driven sys-
tem used for: i. Extracting in-
formation from clinical nar-
ratives reports. ii. Participat-
ing in an automated decision-
support system. iii. Allowing
NLP queries

Columbia Uni-
versity

Radiology. Mammography.
Discharge Summary.

UMLS’s CUI

MetaMap A highly configurable pro-
gram to map biomedical text
to UMLS Meta-thesaurus con-
cepts.

National
Library of
Medicine

Biomedical Text Candidate
and Mapping Concepts from
UMLS

UMLS’s CUI

cTAKES Mayo clinical Text Analy-
sis and Knowledge Extraction
System.

Mayo Clinic
and IBM

Discharge Summary. Clinical
Note Clinical Named
Entities: (diseases/disorders,
signs/symptoms, anatomical
sites, procedures,
medications) Relation,
Co-reference Smoking
Status Classifier Side Effect
Annotator

UMLS’s CUI and RxNorm

SPRUS/ Sym-
Text/ MPLUS

A semantically driven IE sys-
tem. NLP system with syntac-
tic and probabilistic semantic
analysis driven by Bayesian
Networks.

University of
Utah

Radiology Concepts from
findings in radiology reports.

ICD-9

SPECIALIST A part of the UMLS project
with the SPECIALIST lexi-
con, semantic network, and
UMLS Meta-thesaurus.

National
Library of
Medicine
(NLM)

UMLS -

Diseases classification: About 106 studies have been
analyzed and were mainly linked to 43 specific chronic
diseases. One objective was to clarify the application of
NLP and its related clinical notes for particular types of
conditions. Therefore, using the International Classifica-
tion of Diseases, 10th Revision (ICD-10) [19], the 43
specific chronic diseases were then classified into ten types
of diseases, as shown in Table 5. Figure 9 shows the
number of EHR-related publications on chronic diseases
per year.

A. DISEASES OF THE CIRCULATORY SYSTEM
A) Cardiovascular Diseases Heart disease is one of the

major death causes, while prediction and prevention
have recently developed. The identification of risk
factors is a necessary first step in predicting and
preventing heart disease. Many studies have been pro-
posed to determine heart disease-related risk factors,
but no one has tried to identify all risk factors. A
challenge for biomedical NLP, in 2014, was released
by the National Center for Computer Science for

FIGURE 9: The number of EHR-related publications per
year on chronic diseases.

Integrating Biology and Beside (i2b2) that involved
a track (track 2) for determining risk factors of heart
disease in the clinical texts over time. The purpose
of this track was to classify information on cardio-
vascular risks, as well as to monitor the quality of
the historical medical records. It was important to
classify tags and characteristics associated with the
existence and development of the disease, risk factors,
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TABLE 5: The classification and the related number of articles reviewed for chronic diseases.

Chronic diseases Diseases related to chronic diseases Number of Research Papers

The circulatory system Diseases

Congestive heart disease.
Coronary artery disease.
Heart disease.
Heart failure.
Hypertension.
Peripheral arterial disease.
Pulmonary disease.

38

Neoplasms

Breast cancer.
Colorectal cancer.
Prostate cancer.
Lymphoma.

34

and medications in inpatient medical history. Table 6
summarizes the number of papers related to diseases
of the circulatory system.

B) Peripheral and coronary arterial disease Millions
of people worldwide were affected by Peripheral
arterial disease (PAD), which is a type of chronic
disease. For automated determination of PAD status
using predetermined criteria in clinical reports, the
NLP algorithm should be used as a determining PAD
status from clinical notes, which is labor-intensive
and time-consuming by manual chart review. Many
researchers have used NLP to identify peripheral
arterial disease (PAD) cases and critical limb is-
chemia in clinical records. It is also used by recent
genome-wide PAD research to identify medications,
diseases, signs/symptoms, anatomical locations, and
procedures. Table 7 summarizes the number of papers
related to peripheral and coronary arterial disease.

C) Hypertension One of the main health problems is
hypertension (HTN) and high blood pressure (HBP)
diseases. It is estimated that by 2025, adults with
hypertension will increase by 60One of the ma-
jor risks for cardiovascular and kidney diseases is
HTN. Any HTN-relevant patient knowledge has sig-
nificant application in cohort discovery and the de-
velopment of predictive prevention and monitoring
models. Most of this important medical knowledge
typically takes the form of non-structured clinical
records distributed over multiple EHR systems. Ex-
tracting patient-relevant information from unstruc-
tured clinical notes usually takes a lot of resources and
consumes time. In particular, manual extracting of
HTN information is a significant issue, which is time-
consuming as HTN information is usually reported in
multiple records for one patient. Another important
issue besides the manual extraction is coding HTN
information to standard ontologies like SNOMED-
CT. There are simple mining techniques of clinical
texts that can be applied to extracting HTN informa-
tion from unstructured clinical reports. Table 8 sum-

marizes the number of papers related to hypertension
disease.

D) Heart failure identification Heart failure is a
chronic disease usually caused by some deficiency
in structure or function. The quick and accurate pre-
diction of heart failure mortality is important for im-
proving patient health care and preventing death. But,
due to the weak feature representation of heart failure
data, prediction of death caused by heart failure is
a significant challenge using simple models. Table
9 summarizes the number of papers related to heart
failure disease.

B. NEOPLASMS

EHR provides important cancer-related knowledge which
can be valuable for biomedical research because extract-
ing and structuring this knowledge is provided by NLP
methods. This section discusses many studies related to
cancer, such as the identification of multiple cancer types,
the extraction of tumor characteristics and tumor-related
information, cancer patient trajectories, cancer recurrence,
and cancer stage identification. Table 10 summarizes the
number of papers related to neoplasms disease.

Regarding breast neoplasm, a significant data source for
epidemiologic research is the EHR system. In studies re-
lated to population, structured EHR data such as diagnosis
and procedure codes are usually used. They do not accu-
rately capture some conditions such as breast cancer recur-
rence that is only recorded in unstructured clinical reports.
A typical method for extracting information from EHR
data is manual processing, which consumes time, costly
and causes inherent privacy risks, restricting the amount of
available information for the study. NLP methods can be
used to solve this issue by processing unstructured texts
and they were used as an alternative or a supplement to
manual chart abstraction. NLP has been successfully ap-
plied to several biomedical applications such as analyzing
results from imaging and pathology reports, recognizing
persons based on cancer examinations, selecting clinical
trials, detecting postoperative surgical complications, and
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TABLE 6: Summary of the studies that use NLP methods for cardiovascular diseases.

Study Objectives and
Contributions

Methods Dataset Results Weaknesses

Chen et al.,
[98]

Identification
of heart
disease risk
information.

Hybrid pipeline system based
on both: machine learning-
based rule-based approaches
using: SVM, libshortText, and
CRFsuite.

The
i2b2/UTHealth
Challenge.

F1-score of
92.68%

The proposed system did not perform very
well for coronary artery disease (CAD), obe-
sity status, and smoking status.

Torri et al.,
[91]

Detection of
the risk factor
for cardiac
disease.

A hybrid of several ML and
rule-based techniques.

The 2014
i2b2/UTHealth
Challenge.

F1 score of
91.85% Recall
of 94.09%
Precision of
89.72%

The proposed system was not feasible to ob-
tain objective evaluation metrics on the train-
ing set, and the current evaluation results were
solely based on the one test set.

Karystianis et
al., [167]

Extraction
of the risk
factors for
detecting
cardiac
disease.

Knowledge-driven and the
system implement local
lexicalized rules.

The 2014
i2b2/UTHealth
Challenge.

F1 score of
88% Recall of
90% Precision
of 86%

The proposed system achieved lower perfor-
mance with CAD which proved to be the
most challenging class to recognize (F-score
of 73.63%).

Yang et al.,
[88]

Extraction
of the
identification
of heart
disease risk
factors.

Machine learning, Rule-based
methods, Dictionary-based
keyword.

The 2014
i2b2/UT
Health NLP
Challenge.

F-measure of
91. 5%

Poorest classification accuracy is obtained for
CAD (0.787). The main reason for that is
due to the difficulties in the identification of
sentence-level CAD clinical facts, event, test,
and symptom.

Kogan et al.,
[168]

Assessment of
stroke severity.

Several machine learning
models.

The Optum©
de-identified
Integrated
Claims-
Clinical
dataset.

R2
(coefficient of
determination)
of 0.57. R
(Pearson
correlation
coefficient) of
0.76. A root-
mean-square
error of 4.5.

The current EHR database has information
which could be critical for model performance
including imaging of brain scans was not
available. As with all studies based on real-
world data, there is the potential for miss-
ing records. Healthcare information in the
database was not available until January 2007.

Garg et al.,
[169]

Automatic
classification
of the Ischemic
Stroke
subtype.

Machine Learning and NLP
algorithms

The
Northwestern
Enterprise
Data
Warehouse
(EDW).

Kappa of .25 The proposed method relies on the level of
documentation and detail in the EHR. The
proposed system did not include the entire
EHR (e.g., cardiac imaging, laboratory, proce-
dures). The proposed system did not include
CT-based radiology reports to reduce variabil-
ity in the dataset.

Kim et al.,
[170]

Identifying
AIS
patients by
automatically
classifying
brain MRI
reports.

Supervised ML-based NLP al-
gorithms.

All brain
MRI reports
from a single
academic
institution.

F1-measure
of 93.2%
Accuracy of
98.0%

The proposed system used text corpus which
was created at a single institution. The pro-
posed system only included brain MRI reports
with conventional stroke MRI sequence.

Grechishcheva
et al., [171]

Developed
a study of
risk markers
identification.

NLP algorithms. Almazov
National
Medical
Research
Center.

high accuracy. One of the weak sides of the algorithm is
its speed. For current corpus of data, it took
6,100 seconds to remove marginal parts of
speech, short words and form a normal form
for left ones.

performing pharmacogenomics and translational research.
NLP has also demonstrated recent progress in identifying
breast and prostate malignancies recorded in pathology re-
ports. NLP-based algorithms, in some cases, do as the same
as manual processing, or even better. Table 11 summarizes
the number of papers related to breast cancer disease.

VII. OPEN ISSUES AND CHALLENGES
One of the primary healthcare issues is broadly acknowl-

edged as the risk of chronic diseases such as cancers,
diabetes, and hypertension. Although considerable devel-
opment has been achieved in discovering new therapies and
prevention methods, it remains a challenge, and the magni-
tude of this challenge is growing, having a significant effect
on the quality of life and the cost of healthcare. There-
fore, effective strategies and methodologies are required
to supplement and expand beyond existing evidence-based
therapies, which can mitigate the severity of chronic con-
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TABLE 7: Summary of the studies that use NLP methods for peripheral and coronary arterial disease.

Study Objectives and
Contributions

Methods Dataset Results Weaknesses

Afzal et al.,
[63]

Identification
of critical limb
ischemia using
NLP.

NLP algorithm
for PAD identi-
fication.

The Mayo
clinical data
warehouse.

F1-score CLI-NLP of 90% The proposed algorithm used data for a PAD
cohort from a single medical center and future
studies should apply and validate this algo-
rithm to other institutions to make the findings
generalizable.

Afzal et al.,
[172]

Identifying
PAD cases
from narrative
clinical notes.

NLP
Algorithm.

The Mayo
clinical data
warehouse.

accuracy of 91.8% A limitation of this study is that data were
retrieved from the data warehouse of a single
academic medical center.

Leeper et al.,
[64]

Applying
Text-Mining to
clinical notes
for Profiling
the Cilostazol
Safety.

NLP
Algorithm.

The Stanford
Translational
Research
Integrated
Database
Environment
(STRIDE).

No association between the
use of Cilostazol and any se-
rious cardiovascular adverse
event including stroke is ob-
served.

A limitation of this study is that it could have
missed comorbidities due to false negatives
from lower sensitivity (73%). The outcome
measures may not have captured events oc-
curring outside of the hospital or that led to
hospitalizations in other institutions.

Buchan et al.,
[89]

Automatic
prediction
of coronary
artery disease
from clinical
narratives.

Naive Bayes,
MaxEnt, and
SVM

The 2014 i2b2
Heart Disease
Risk Factors
Challenge data
set.

F1 score of 77.4% One limitation of this experiment is embedded
in the selection of patients who do not develop
CAD. Another limitation of proposed study is
embedded in the subsample of patients who
develop CAD. The relatively small size of the
dataset is a limitation of proposed study.

TABLE 8: Summary of the studies that use NLP methods for hypertension.

Study Objectives and
Contributions

Methods Dataset Results Weaknesses

Jonnagaddala
et al., [173]

Extraction of
hypertension
information
from
unstructured
clinical
reports.

HTN-System The 2014
i2b2/UTHealth
Shared-Task 2.

Recall of 87. 70%. Precision
of 78. 63%. F-measure of
82.92%.

The HTN-System had a good overall perfor-
mance on the corpus, but the results may vary
depending on the corpus. The performance
of the HTN-System is very similar to the
performance of other systems.

Boytcheva et
al., [174]

Analysis
of clinical
narratives
to extract
numerical
blood pressure
values.

A hybrid
model for
generating
rules
automatically
for IE from
clinical data.

Bulgarian
NHIF
repository
of nameless
outpatient
records in
XML format.

Precision of 92% Recall of
98%

some limitations in the access to healthcare
documentation, administrative and geograph-
ical scalability is not applicable. limitations of
using small training excerpt.

Teixeira et al.,
[102]

Identification
of hypertensive
individuals.

Natural
Language
Processing
(NLP)
Algorithm.

The Vanderbilt
University
Medical
Center EHR.

Random forests using billing
codes, medications, vitals, and
concepts had the best perfor-
mance with a median area
under the receiver operator
characteristic curve (AUC) of
0.976.

The proposed system evaluated the portability
at only a single additional site. Other insti-
tutions may differ from both Vanderbilt and
Marshfield Clinic. Proposed algorithm also
did not detect the date of onset of hyperten-
sion, which could be clinically interesting in a
number of circumstances.

ditions. The secondary use of EHRs for processing patient
data, promoting medical research, and enhancing the clin-
ical decision making is a promising path. Methods based
on EHR processing and modeling contribute to a better
understanding of patient clinical trajectories and improving
stratification of the patient and risk prediction. Effective
extraction of unknown clinical knowledge is provided by
using machine learning and especially deep learning for
processing EHRs. The longitudinal structure of chronic
diseases provides a broad continuous stream of data that
can identify useful clinical trends and direct clinical deci-
sions in a way that delays or avoids the onset of the disease.

Because of the various difficulties involved in the pro-
duction of clinical reports, progress in NLP research in

the biomedical domain is sluggish and lagging relative
to progress in general NLP. The main reasons for the
challenges to the development of biomedical NLP are that
the access to shared data is very difficult, the annotated
datasets that can be used for training and benchmarking are
insufficient, the annotation agreements and standards are
inadequate, reproducibility is formidable, partnerships are
restricted, and user-centered development and scalability
are missing. The i2b2 / VA Challenge shared tasks, tackle
these obstacles by providing participants with annotated
datasets for potential solutions.

The development of biomedical NLP has several issues
and challenges that faced the process of clinical notes for
chronic disease detection. It is worth noting that these
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TABLE 9: Summary of the studies that use NLP methods for heart failure identification.

Study Objectives and
Contributions

Methods Dataset Results Weaknesses

Liu et al., [175] Heart Failure
Readmission
prediction
from Clinical
Notes.

Convolutional
Neural
Networks
(CNN).

The
MIMIC III
database.

F1 score of 75.6% This study did not test different word embed-
dings trained from clinical notes vs PubMed.

Wang et al.,
[176]

Prediction of
Heart Failure
Mortality
using feature
rearrangement
based on
deep learning
technique.

Deep
Learning
System.

Shanghai
Shuguang
HF (SSHF)
data.

the proposed framework
achieves the best performance
for Heart Failure mortality
prediction. Extensive
experimental results compared
with other machine learning
methods demonstrate that
the proposed method has the
highest average accuracy.

The performance of the FRDLS (feature re-
arrangement based deep learning system) for
heart failure mortality prediction relies on two
hyper-parameters which require some time
to adjust. The prediction label in this study
is binary to “death” or “alive”, making the
complex HF problem simplified.

Topaz et al.,
[177]

Identify
patients
suffering
from heart
failure with
ineffective
self-
management
status.

NLP Algo-
rithm.

The
Partners
Healthcare
System
EHR data.

F-measure of 86.3% Precision
of 95% Recall of79.2%

The performance of proposed system
was evaluated with only one type of
note—discharge notes—in one healthcare
system. So the ability to assess the
system’s performance for different HF
self-management domains was limited
because of the small number of positive cases
in the testing data.

Garvin et al.,
[178]

Automation
of heart
failure quality
measures
using NLP.

NLP
System.

The VA’s
Corporate
Data
Warehouse
(CDW).

Sensitivity (SN) of 98.9% Pos-
itive predictive value of 98.7%

First, it is likely that some clinical information
was not documented in the patient charts and
therefore could not be captured by the NLP
system. Second, although the CHIEF (Con-
gestive Heart Failure Information Extraction
Framework) system performed well using VA
text notes, it might not perform as well in
non-VA settings. Third, documents from only
eight medical centers were used in this re-
search; therefore, the CHIEF might under-
perform initially when used with documents
from other VA medical centers.

Vijayakrishnan
et al., [65]

Recognition
of signs/
symptoms of
HF in EHRs.

EMR Data
Extraction.

The
Geisinger
Health
System
HER data.

A total of 892,805 affirmed
criteria were documented over
an average observation period
of 3.4 years. Among eventual
HF cases, 85% had $1 crite-
rion within 1 year before their
HF diagnosis, as did 55% of
control subjects.

First, unlike the Framingham investigators,
the proposed application was unable to accu-
rately account for other, non-cardiac, causes
for a patient to have experienced minor signs
and symptoms. The variability in the doc-
umentation of HF signs and symptoms by
various clinicians.

challenges remain until now as presented in [53] [106]:

1) Domain knowledge: Adequate knowledge of the
domain is the most important requirement for an NLP
researcher involved in the development of systems
and methodologies for processing biomedical records.
The primary importance of domain knowledge stems
from the fact that the output of the system is made
available for application in healthcare. Thus, the sys-
tem is always required to have sufficient recall, accu-
racy, and F-measurement for the intended biomedical
application, with the necessary performance modifi-
cation. Interestingly, it is possible to apply the NLP
techniques capturing the domain knowledge available
in the free text. The NLP approach for the automated
capture of ontology-related domain knowledge, for
example, uses a two-phase methodology to extract
terms from the linguistic representations of concepts

in the initial phase followed by the extraction of
semantic relations.

2) Confidentiality of the biomedical text: A sample of
training data is required to develop and evaluate an
NLP system. The training dataset is a vast array of
electronic patient records in textual formats in a clini-
cal context. The privacy of patient data is protected by
The Health Insurance Portability and Accountability
Act (HIPAA) in the United States. It is necessary to
de-identify personal information to make the records
accessible for research purposes. However, automated
recognition of details such as names, addresses, tele-
phone numbers, etc., is a highly challenging task,
which often needs manual review. Eighteen personal
information identifiers, i.e., the identification of pro-
tected health information (PHI) in the clinical report,
which should be excluded as required by HIPAA,
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TABLE 10: Summary of the studies that use NLP methods for neoplasms disease.

Study Objectives and
Contributions

Methods Dataset Results Weaknesses

Osborne et al.,
[179]

Effective iden-
tification of re-
portable cases
of cancer na-
tionally autho-
rized.

Natural Language
Processing
Machine learning.

CRCP-
DUAL
dataset.

Accuracy of 0.872
Precision of 0.843
Recall of 0.848.

CRCP-NLP (The Cancer Registry Control Panel) was
compared only to the original manual review process,
due to resource constraints. CRCP-NLP rely on proxy
data, such as monthly state case submissions, to pro-
vide an estimate. Unfortunately, yearly changes in cod-
ing practices as well as multiple changes in registrar
personnel and leadership make comparisons difficult.
Finally, CRCP uses rules for document segmentation
generated solely from UAB training data. Thus, the
reliability of the used set of regular expressions is
expected to be reduced at other institutions to the extent
that provider and sectioning practices differ.

AAlAbdulsalam
at el.[180]

TNM stage
mentions are
extracted and
classified
from the
Utah Cancer
Registry
records
automatically.

A hybrid model
integrating
pattern-matching
for extraction
and supervised
machine learning
for classification.

Utah Cancer
Registry
Data.

Extraction
accuracy:
95.5%–98.4%
classification
accuracy:
83.5%–87%.

Although regular expressions were more robust for
extracting TNM (tumor characteristics (T), lymph node
involvement (N), and tumor metastasis (M)) mentions,
the used range of features used with the CRF classifier
were still limited and potential improvements may be
observed if other more sophisticated feature patterns
were used such as character N-grams. In addition, other
machine learning algorithms could yield better perfor-
mance than CRF(The Conditional Random Fields) and
further investigation is required.

Si Y. et al., [41] Frame-based
NLP system
based on a Bi-
LSTM-CRF
neural network
to extract
cancer-related
information
in clinical
narratives.

Deep Learning-
based Approach.

MIMIC-III. F1 between
87.18% and
96.33% Element
classification F1
up to 93.02%.

A limitation of this study is that its evaluation was lim-
ited to the gold standard for each process in the pipeline
instead of a multi-step evaluation and optimizing the
pipeline.

Datta.[181] This study
presented
a literature
review of
biomedical
NLP related to
cancer.

NLP Algorithm. – The most
common scope of
the papers (36 of
78) was cancer
diagnostics, with
recent work on
the extraction of
information on
treatment and
the diagnosis of
breast cancer.

The first limitation of this review is that, given the rapid
pace of NLP development and publication, it is likely
that papers meeting inclusion criteria were omitted.
Specifically, papers published starting in late 2018 were
likely missed. Second, although the proposed review
have tried to accurately interpret and represent all the
possible information types extracted in the literature as
frames, there might be a few which are not captured
or mis-represented in proposed final frame list. Finally,
there may be inconsistencies in assigning the frames
and associated elements across all the papers.

is very complicated and time-consuming. In 2006,
the challenge of i2b2 de-identification took the most
significant effort to develop and evaluate automated
de-identification tasks. The available approaches to
de-identification include (1) rule-based methods that
use dictionaries and manually crafted rules to match
PHI patterns, (2) machine learning methods that learn
to identify PHI patterns based on training datasets au-
tomatically, and (3) hybrid methods, which combine
both techniques.

3) Abbreviations: The clinical text will include several
medical abbreviations. The abbreviations are often
readily interpreted by healthcare experts due to their
domain knowledge. Nevertheless, when a clinical
NLP system tries to derive clinical information from
the free text, abbreviations are found to be extremely
ambiguous. For example, the clinical text abbrevia-

tion PT could mean a patient, prothrombin, physical
therapy, and so on. The correct interpretation of clin-
ical abbreviations is often challenging and involves
two major tasks: detecting abbreviations and choosing
the proper expanded forms. Dictionary lookup and
morphology-based matching are the most widely used
methods for detecting abbreviations in the clinical
domain, and machine-learning approaches are used
to select the right extended type. Researchers have
contributed several methods to identify abbreviations
present in clinical texts, construct a knowledge base
for clinical abbreviations, and disambiguate ambigu-
ous abbreviations, in addition to developing clinical
NLP systems such as MedLEE, MetaMap, etc. to
extract medical concepts and associated abbreviations
from clinical texts.

4) Diverse formats: There is no standardized format for
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TABLE 11: Summary of the studies that use NLP methods for breast cancer disease.

Study Objectives and
Contributions

Methods Dataset Results Weaknesses

Carrell et al.,
[182]

Identification
of breast
cancer
recurrences
using the NLP
system form
clinical text.

The recurrent
detection system
for breast cancer
based on NLP.

(COMBO)
Study
Commonly
Used Med-
ications
and Breast
Cancer
Recurrence.

Reduce the
number of
charts that
require manual
analysis by
90%.

First, the used NLP modules may require adaptation to ac-
commodate language usage and document sectioning in other
institutional settings. Second, NLP development costs limit
its applicability to large or repeated tasks where it is cost
effective relative to 100% manual abstraction. Third, NLP
requires access to machine-readable clinical text and does not
work with print documents or their scanned copies. Fourth,
proposed study cohort was limited to women with early stage
(I or II) breast cancers; the algorithm has not been tested
for recurrence in women with initial late stage disease or
ductal carcinoma in situ (stage 0 Fifth, reference standard
corrections were limited to the review of charts where NLP
and the reference standard were discordant.

Castro et al.,
[90]

The Breast
Imaging-and
Data System
(BRI-RADS)
Automated
Categories
of Breast
Radiology
Extraction is
discussed.

Rule-based
NLP algorithm.
Supervised
machine learning
approach.

Text
Information
Extraction
System
(TIES) of
Pittsburgh
University.

F-1 measure
of 0.95 F-
1 measure
of 0.91 for
BIRADS
0-6 0.93 for
BIRADS 3-5.

An important potential limitation of proposed methods was
the using of the BROK software to sample by BI-RADS
category during the development of the corpus used for devel-
opment of the used machine-learning base annotator. For the
BI-RADS token annotator, the generalizability of proposed
findings may also be limited because the detection step of
used annotator strongly relies on the accurate performance of
the pre-processing steps.

Miller et al.,
[183]

tested a
generalized a
co-reference
resolution tool
in clinical
texts tested in
both domains
of colon and
breast cancer.

Mention-pair
coreference
system that
operates over
pairs of mentions
with best-first
conflict resolution

The
THYME
colon
cancer
dataset. The
DeepPhe
breast
cancer
dataset.

The mention-
synchronous
system
performs
similarly on
in-domain data
but performs
much better on
new data.

There is still a performance gap when testing in new domains.

Mykowiecka
et al., [184]

An IE system
based on the
rules tested on
mammography
records.

IE techniques
based on natural
language.

Warsaw
health care
institutions
database.

Precision and
Recall were
above 80%

A known limitation of rule-based systems is the necessity of
foreseeing all possible ways of expressing the information to
be extracted and lower precision.

Bozkurt et al.,
[185]

Recognize le-
sions in free-
text mammog-
raphy reports.

NLP information
extraction
Method.

Set of 500
hospital-
report
mam-
mography
reports.

Precision of
94.9% Recall
of 90.9% F
measure of
92.8%

First, since the bulk of the text is automatically generated
by the reporting system, the variability in narrative reporting
style was not represented, which could make the proposed
results seem better than when applied to reports not generated
using the proposed system. Another limitation is that if the
radiologist edits the text report, corresponding changes are
not made in the structured database. Another limitation is that
although the regular expressions that used in the proposed
system seemed to work well for detecting BI-RADS descrip-
tors, this approach is specific to BI-RADS and might not
work as well if radiologists use other types of terminologies
in reporting mammograms.

the biomedical text, especially with patients’ medical
reports: (1) the clinical text often contains the infor-
mation in a free-text format like a pseudo table, i.e.,
text intentionally made to appear as a table. Although
the contents of the pseudo table are easy to interpret
by a human, for a general NLP system, the iden-
tification of the formatting features is complicated.
(2) Although the importance of report sections and
subsections relevant to many applications, the section
headers are either ignored or combined with similar
headers on many occasions. (3) Another issue often
found in the clinical text is the missing or incorrect
punctuation, e.g., to indicate the end of a sentence, a

new line can be used instead of a point. The Clinical
Text Architecture (CTA), which tries to define the
criteria for the clinical report structure, effectively
addresses the issue of different formats of the clinical
text.

5) Expressiveness: The biomedical domain language
is hugely expressive. There are many ways to de-
scribe the same medical concept, e.g., cancer can
be expressed as a tumor, lesion, mass, carcinoma,
metastasis, neoplasm, etc. Likewise, the modifiers of
the concept can also be described with many different
terms, e.g., the modifiers for certainty information
would match more than 800 MedLEE lexicons, thus
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making the retrieval process more complicated.
6) Intra- and interoperability: A biomedical NLP

system is expected to work well in various health-
care and biomedical applications and to be easily
integrated into a biomedical information system. In
other words, the system needs to handle a biomedical
text in different formats. For example, the formats
of discharge summaries, diagnostic reports, and ra-
diology reports are different. The output of the NLP
system can also be stored in the clinical database.
However, it is almost unlikely to map the same to
the clinical database scheme because of the com-
plexity and nested relationships of the output. Ad-
ditionally, the output from the NLP system must be
available for comparison for a variety of automated
applications through widespread deployment across
the institutions. To achieve this, the output must be
mapped onto a standardized vocabulary system such
as UMLS, ICD-10, and SNOMED-CT, and onto a
standard domain representation. Finally, it is consid-
ered essential to interpret the biomedical information
and the relationships between concepts to construct a
representational model. For example, "treats" is one
of the relationships between a drug and a disease.

7) Interpreting information: Interpretation of clinical
information available in a report requires the knowl-
edge of the report structure and additional medical
knowledge to associate the findings with possible di-
agnoses. The complexity of interpreting information
depends on the type of report and section, e.g., it is
easier to obtain information on the vaccination being
administered than to get information from a radiolog-
ical report containing patterns of lights (patchy opac-
ity). An NLP system that interprets light patterns to
specific diseases should contain medical knowledge
related to the findings.

Despite the recent advances and developments, these
recent limitations have affected the use of NLP technology
[106]:

1) The availability, consistency and characteristics of
the training data The availability, consistency and
characteristics of the training data are very essen-
tial for building NLP models [186]. For the train-
ing and implementation of an effective NLP mod-
els, the access and availability of appropriately an-
notated datasets are very important. For example,
the designing of NLP algorithms that can perform
a systematic synthesis of published research on a
specific topic or an analysis and data extraction from
EHR needs unrestricted access to databases of pub-
lisher or primary care/hospital. While the number of
biomedical datasets and pre-trained models that are
publicly available has increased over recent years, the
availability of public health concepts is still restricted
[187].

2) The ability to de-bias data The ability to de-bias
data which means the ability to inspect, explain and
ethically modify data is an important issue for train-
ing and using NLP models in healthcare domain. If
data biases are not taken into consideration in the
development (e.g. data annotation), deployment (e.g.
use of pre-trained platforms) and evaluation of NLP
models, the results of NLP models can be compro-
mised [188]. However, it should be noted that this
does not guarantee the same effect across morally
appropriate levels, even if datasets and assessments
are modified for biases. For example, it must take
into account particular age group and socioeconomic
groups that use social media sites when using the
health data available. A Facebook-trained monitor-
ing system could be biased towards health data and
linguistic issues unique to people older than that
in Snapchat’s data [189]. Recently, several agnostic
model tools have been developed to assess and correct
injustices in machine learning models in accordance
with the efforts of the government and academic
communities to identify unacceptable development of
AI [190][191][192][193][194].

3) The limited access to dataset Recently, the lim-
ited access to data is a major issue that barriers
the progress of NLP system in healthcare domain
[6][19]. Health data are generally regulated regionally
in Canada, and there is reluctance to provide access
to these systems and incorporation with other datasets
without restrictions due to security and confidentiality
issues (e.g. data linkage). Public understanding of the
privacy and data access has also caused critical issues.
A new study of social media users revealed that most
people found analyzing their social media data in
order to find "intrusive and exposing" problems of
mental health is not accepted [195]. Before key public
health NLP activities such as the real-time analy-
sis of national disease patterns can be carried out,
jurisdictions must collectively identify a reasonable
scope and access to data sources of public health (e.g.
EHR and administrative data). Future NLP applica-
tions which analyzing personal EHR rely on their
ability to incorporate varying privacy in models, both
during and after training to avoid breaches of pri-
vacy and data misuse [196]. The current methods for
accessing full text publications often restrict access
to essential data. Total automation and synthesis of
PICO-specific information requires unlimited access
to journal databases or new data storage modelling
[197]. The available clinical datasets are MIMIC-
II,the Informatics for Integrating Biology and the
Bedside (i2b2) datasets, PhenoCHF, Temporal His-
tories of Your Medical Event (THYME), and Cancer
Deep Phenotype Extraction (DeepPhe).

4) The assessment and evaluation of NLP models
Finally, as with any emerging technology, validation
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and evaluation of NLP models should be taken into
account to ensure that they operate as expected and
keep up with the changing ethical views of society.
These NLP technology must be tested to ensure it
performs as intended and to take bias into account
[198]. Although many methods today publish equal or
better-than-human scores on tasks of textual analysis,
it is important not to equate high scores with a real
understanding of language. But it is also important
not to consider the lack of true understanding of the
language as an inefficiency. Models with a “relatively
poor” depth of understanding can still be highly effec-
tive at information extraction, classification and pre-
diction tasks, particularly with the increasing avail-
ability of labelled data.

VIII. CONCLUSIONS AND FUTURE RESEARCH
ISSUES
We have discussed in this review paper, an overview of
NLP in general and NLP in biomedicine and healthcare
with its methods and technologies and its potential tasks
and use-cases in the biomedical and healthcare domains.
Then we have presented the application areas of machine
learning/deep learning in the biomedical NLP. We have
provided an overview of the most popular biomedical
NLP systems and their general architecture. Next, we have
discussed a literature review of the application of vari-
ous NLP techniques to narrative clinical notes on chronic
diseases, including the analysis of difficulties faced by
NLP methodologies in clinical narrative comprehension.
Finally, we conclude this review paper by describing exist-
ing challenges currently faced and open issues associated
with the processing of the biomedical and clinical text and
providing the NLP domain with sufficient resources and
opportunities to extract new methodologies.

In this review paper, we have discussed essential chal-
lenges such as domain knowledge, the confidentiality of
clinical texts, abbreviations, diverse formats, expressive-
ness, intra-operability and interoperability, and informa-
tion interpreting. These discussions provide an opportunity
to understand the complexity of the clinical text processing
and various approaches available. An important area of
research related to the understanding of the challenges
involved in processing the clinical text is the development
of methodologies for processing the diverse format of
clinical texts. Each format, on its own, is a challenge for
NLP researchers and can be explored using traditional and
hybrid methodologies. Our review has shown that biomed-
ical NLP methods need to be modified and updated beyond
the extraction of clinical terms to concentrate more on
the interpretation of concepts (i.e., not only understanding
of relationships between concepts but also combining the
clinical data, domain knowledge, and general knowledge
in the reasoning process).

In conclusion, NLP provides a powerful methods for
unlocking information about chronic diseases from un-

structured clinical narratives. Despite of developing new
standards and better encoding EHR with clinical terminol-
ogy standards, there is still a narrative aspect, which makes
the biomedical NLP methods essential for clinical research
informatics. There have also been widespread application
of different techniques and models to biomedical literature
and all of these NLP techniques are important and can be
applied to effectively mining EHRs to support essential
clinical research activities. New deep learning techniques
have contributed with a significant progress across various
tasks and will be increasingly adopted to analysis big
data of EHRs effectively and efficiently, further advancing
disease management, quality improvement, and all aspects
of clinical research.
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