
Republic of Iraq

Ministry of Higher Education and

Scientific Research

University of Technology

Control and Systems Engineering Department

Multi Objective Decision Maker for Single and

Multi Robot Path Planning

A Thesis Submitted to the Control and Systems Engineering Department,

University of Technology in a Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computers Engineering.

By

 Esraa Adnan Hadi

Supervised By

 Assist. Prof. Dr. Muna Mohammed Jawad

1440 A.H 2018 A.D

 ◌ۖ مهإلِاَّ أَنفُْس لوُّنضا يملُّوكَ وضي أَن مهنفةٌَ مطاَئ َتمَله تُهمحرو كلَيع لاَ فَضْلُ اللَّهلَوو ﴿

وما يضُروُنكَ من شيء ۚ◌ وأنَْزلَ اللهَّ علَيك الكْتَاب والْحكمْةَ وعلمَّك ما

 لَم تكَنُ تَعلمَ ۚ◌ وكاَن فضَلُْ اللهَّ علَيك عظيما ﴾

 العظيمالله صدق

 سورة النساء أية ﴿113﴾

Acknowledgements

 First of all, I have to express all the thanks, gratitude to Almighty

Allah Who gives me the ability to achieve this imperfect work and all what

has been done, and without His bless and support nothing can be done.

 I would like to express my deep sense of gratitude and respect to my

supervisor, Assist. Prof. Dr. Muna Mohammed Jawad, for her excellent

guidance, encouragement and support she has provided during my time

as her student. I consider myself fortunate to be her student.

 Words cannot express how grateful I am to my parents, brother and

two sisters who have been a source of encouragement and inspiration to

me throughout my life. Their prayers for me were what sustained me. I

thank them for being there for me throughout my entire study. I also would

like to thank the head and all staff of the Control and Systems Engineering

Department in University of Technology for their help.

 Finally, I would like to thank all of my friends and my colleagues who

have offered support and advice.

Esraa Adnan Hadi

 2018

Dedication

To whom I proud to carry his name, My Father.

Thank you for keeping me going even when I thought I

could not.

To the tittle of love, tenderness, and hope.

To whom that have taught me to endure, no matter how the

circumstances change, My Mother.

To the big heart who taught me success, patience and the
emergence of a passion for knowledge

My Dear brother (Dr.Ahmed)

 My Beautiful sisters (Alaa and Asmaa)

To baby girl, who is the frolic and joy into my life,

 (Zahraa)

“My God bless you all “

Esraa Adnan Hadi

I

ABSTRACT
 Decision making (DM) includes information gathering, data mining, modeling

and analysis. Path planning problem is one of decision-making applications in the

robotics field; its purpose is to find a shortest path from the start position to a target

position without hitting any obstacle cluttered in the environment.

 This thesis presents four optimization algorithms to find the solution for the multi

objective path planning for multi mobile robot. The first two algorithms are based on

the standard Particle Swarm Optimization (PSO) algorithm and the developed PSO

with chaotic map to form Chaotic Particle Swarm Optimization (CPSO) algorithm in

order to prevent a slide into local minima. The other two algorithms are based on the

standard Firefly (FF) algorithm strong technique but suffers from trapping into several

local optimum problem, and the proposed algorithm, which based on the FF and CPSO

algorithms to form a hybrid technique called Firefly Chaotic Particle Swarm

Optimization (FFCPSO) algorithm as a global path planning. Cubic spline is used to

generate a smooth path by interpolation of optimization algorithms, and the objective

function is evaluated by two constraints; the first one is the path length, and the second

one is the obstacles avoidance. Furthermore, based on a kinematic model for a wheeled

mobile robot, the platform linear and angular velocities and linear and angular

velocities of right and left wheel are calculated to direct a National Instrument (NI)

mobile robot’s wheel to follow a desired path to reach a predefined target.

 The optimization algorithms were simulated using MATLAB (R2014a) program

and the simulation results showed that the CPSO algorithm is better than the PSO

algorithm with a less number of iterations and, the proposed hybrid FFCPSO algorithm

is applicable to mobile robots path planning for obtaining a perfect path in the

workspace as a compared with basic FF algorithm. This is demonstrated by minimizing

the path length and obtaining the smoothness velocities for wheeled NI-mobile robots

without exceeding the limited values (less than 0.5 m/sec). In addition, these algorithms

II

are compared with the other research papers to evaluate their performance. By

comparing the results achieved by the proposed algorithms with the results achieved

by the previous works under the same conditions, the cubic polynomial interpolation

is a good feature by generating a smooth path without sharp edges during the learning

process, so the mobile robot can moving smoothly and safety.

III

LIST OF CONTENTS

Subject Page No.

ABSTRACT I
LIST OF CONTENTS III
LIST OF SYMBOLS VI
LIST OF ABBREVIATIONS IX
LIST OF FIGURES XI
LIST OF TABLES XVI
LIST OF ALGORITHMS XVII

CHAPTER ONE: INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction 1
1.2 Mobile Robot 3
1.3 Path Planning 5
1.4 Traditional and Soft Computing Algorithms 5
1.6 Motivation 8
1.7 Thesis Objectives 9
1.5 Literature Survey 9
1.8 Thesis Organization 13

CHAPTER TWO: THEORETICAL BACKGROUND

2.1 Introduction 14
2.2 Nonholonomic Wheeled Mobile Robot Kinematic Model 14
2.3 Autonomous Mobile Robot Path Planning 17

 2.3.1 Robot Path Planning 17
 2.3.2 Path Planning Classification 18
 2.3.3 Path Planning Mapping and Environment Modeling 19

2.4 Swarm-Based Optimization Algorithms 20
 2.4.1 Particle Swarm Optimization (PSO) Algorithm 21

 2.4.1.1 The Original PSO Algorithm 21
 2.4.1.2 The PSO Algorithm Flow 24
 2.4.2 Firefly (FF) Algorithm 26
 2.4.2.1 Firefly Mainframe 26
 2.4.2.2 The Original FF Algorithm 27

IV

 2.4.2.3 The FF Algorithm Flow 28

CHAPTER THREE: MODELLING AND OPTIMIZATION BASED PATH
PLANNING

3.1 Introduction 30
3.2 Path Planning Based on Decision Making Systematic 30
3.3 Modeling of the Environment and Obstacles 32
3.4 Path Construction 32
3.5 Objective Function 33

 3.5.1 Obstacle Avoidance 34
 3.5.2 Minimum Path Length 35

3.6 Path Optimization Algorithms 38
 3.6.1 Improved Basic PSO Algorithm 39
 3.6.2 Firefly (FF) Algorithm 43
 3.6.3 Proposed Hybrid FFCPSO Algorithm 43

CHAPTER FOUR: SIMULATION RESULTS AND DISCUSSION
4.1 Introduction 49

4.2 Simulation Parameters’ Setting 50
 4.2.1 Parameters Setting for basic PSO and Chaotic PSO

Algorithm
50

 4.2.2 Parameters Setting for basic FF Algorithm 51
 4.2.3 Parameters Setting for Hybrid FFCPSO Algorithm 51
 4.2.4 Parameters Setting of Start and Target Position 52
 4.2.5 Parameters Setting of Obstacles Positions 52

4.3 Simulation Results 53
 4.3.1 Case A: Single Wheeled NI- Mobile Robot 53
 4.3.1.1 Single Optimal Path Finding 53
 4.3.1.2 Single Mobile Robot Velocities 57
 4.3.2 Case B: Three Independent Wheeled NI- Mobile Robots 62
 4.3.2.1 Multi Optimal Path Finding 62
 4.3.2.2 Multi Mobile Robot Velocities 68
 4.3.3 Case C: Three Follow Up Wheeled NI- Mobile Robots 83
 4.3.3.1 Follower Optimal Path Finding 83

 4.3.3.2 Follower Mobile Robot Velocities 90
4.4 Performance Evaluation 105

V

CHAPTER FIVE :CONCLUSIONS AND SUGGESTIONS FOR FUTURE
WORK

5.1 Conclusions 110
5.2 Suggestions for Future Work 112

REFERENCES
References 113

APPENDIX
Appendix A: Parameters Setting 118

List of Publications 123

VI

LIST OF SYMBOLS

Symbol Meaning Unit

(𝑎 𝑎𝑛𝑑 𝑎) The random numbers with between 0 and 1.

c The midpoint of the wheeled mobile robot.

𝑐 The cognitive acceleration constant.

𝑐 The social acceleration constant.
D The number of optimization parameters.

(𝐷 , 𝐷) The Cartesian distance with𝐺 .

(𝐷 , 𝐷) The Cartesian distance with𝑃 .

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖) The fitness value of each agent
F(rr) The flash intensity.

𝐹 The standard flash intensity.

𝐹 The light intensity at the source.

𝐺 The best particle among all the particles in the population.

ℋ The obstacle zone, weight factor.

𝑖 The current particle.
k The current obstacle.
L The length of wheeled NI-mobile robot. m

𝑚 The total number of obstacles in the workspace.
ML(i) The minimum path length of each agent. m

𝑛𝑝 The total number of interpolation points. cm

𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 The size of population.

𝑃 The Personal best position of each particle in the swarm.

𝑂 The obstacle position in the workspace.

𝑄 The location of the wheeled mobile robot in the global
coordinate frame.

R The radius of each driving wheel. m
rr The distance between any two fireflies.

𝑟 𝑎𝑛𝑑 𝑟 The random numbers between 0 and 1.

𝑟𝑎𝑛𝑑 The random number in [0, 1].

𝑅 The radius of any obstacle. cm

𝑆𝑎𝑓𝑒𝑡𝑦 (𝑖) The safety variable for each agent.

VII

𝑆 The reference path points.

𝑆 (𝑄) The matrix associated with the constraints

t The current iteration.

𝑇 The maximum number of iteration.

𝑇 The sampling period of the system sec

𝑇 The travelling time. sec

𝑈 The control parameter.

𝑉 The platform angular velocity. rad/sec

𝑉 The maximum angular velocity of mobile robot platform. rad/sec

𝑉 The minimum angular velocity of mobile robot platform. rad/sec

𝑉 The velocity of particle 𝑖 at (t) iteration.

𝑉 The velocity of particle 𝑖 at (t+1) iteration.

VL The velocity of left wheel. m/sec

𝑉 The maximum linear velocity of mobile robot platform. m/sec

𝑉 The minimum linear velocity of mobile robot platform. m/sec

𝑉𝐿 The maximum linear velocity of left wheel mobile robot. m/sec

𝑉𝐿 The minimum linear velocity of left wheel mobile robot. m/sec

𝑉 The maximum velocity bound of particles.

𝑉 The minimum velocity bound of particles.

𝑉 The platform linear velocity. m/sec
VR The velocity of right wheel. m/sec

𝑉𝑅 The maximum linear velocity of right wheel mobile robot. m/sec

𝑉𝑅 The minimum linear velocity of right wheel mobile robot. m/sec

𝑉 Reference linear velocity m/sec

W The distance between the two driving wheels. m
Ꞷ The inertia weight factor.

Ꞷ The maximum value of inertia weight.

Ꞷ The minimum value of inertia weight.

Ꞷ The new inertia weight factor.

𝑊 Reference angular velocity rad/sec

𝑊𝐿 The maximum angular velocity of left wheel mobile robot. rad/sec

𝑊𝐿 The minimum angular velocity of left wheel mobile robot. rad/sec

𝑊𝑅 The maximum angular velocity of right wheel mobile robot. rad/sec

VIII

𝑊𝑅 The minimum angular velocity of right wheel mobile robot. rad/sec

𝑋 The position of particle 𝑖 at (t) iteration.

𝑋 The position of particle 𝑖 at (t+1) iteration.

𝑋 The maximum position bound of particles.

𝑋 The minimum position bound of particles.

x and y The coordinates of point c in the global coordinate frame
(𝑋 ,, 𝑌) The mobile robot initial point.

(𝑋 ,, 𝑌) The mobile robot terminal point.

(𝑋 ,, 𝑌) The center of any obstacle. cm

𝑍 The chaotic initial value.
ᾶ The randomization parameter.

𝛽 The brightness of firefly.

𝛽𝑜 The brightness at 𝑟𝑟= 0.

₤ The vector of random variables.

𝛾 The fixed flash absorption coefficient.

𝜑 The number of samples.

IX

LIST OF ABBREVIATIONS

Abbreviation Meaning

2D Two-dimensional
3D Three-dimensional

ABC Artificial Bee Colony
AFA Adaptive Firefly Algorithm
AI Artificial Intelligence

AMPSO Adaptive Multi objective Particle Swarm Optimization
APF Artificial Potential Field

AUVs Autonomous Underwater Vehicles
BFO Bacterial Foraging Optimization
CSA Cat Swarm Algorithm
CD Cell Decomposition

CFA Chaotic Firefly Algorithm
CFPSO Constriction Factor Particle Swarm Optimization

CFA-OAS Chaotic Firefly Algorithm- Optimization Adjustment Strategy
CPSO Chaotic Particle Swarm Optimization
CPU Central Processing Unit

DABC Directed Artificial Bee Colony
DM Decision Making
FA Fruit fly Algorithm
FF Firefly

FFCPSO Firefly Chaotic Particle Swarm Optimization
FL Fuzzy Logic

GAs Genetic Algorithms
GPP Global Path Planning
GSA Gravitational Search Algorithm

LMRs Legged Mobile Robots
LPP Local Path Planning

MATLAB Matrix Laboratory
MRSs Multi Robot Systems

NI National Instrument
NNs Neural Networks

X

NWMR Nonholonomic Wheeled Mobile Robot
PC Personal Computer

PRM Probabilistic Road Map
PSO Particle Swarm Optimization

PSO-w Particle Swarm Optimization with adaptive inertia weight
RM Road Map
RN Robot Navigation

SGA Slice Genetic Algorithm
SI Swarm Intelligence

SOPSO Second-order Oscillating Particle Swarm Optimization
TS Tabu Search

UAVs Unmanned Aerial Vehicles
UCAV Unmanned Combat Aerial Vehicles
WMR Wheeled Mobile Robot
WPSO Inertia Weight Particle Swarm Optimization

XI

LIST OF FIGURES

Figure No. Title Page No.

1.1 The systematic of decision-making process. 2
1.2 Mobile robot types. 4
1.3 Traditional and soft computing methods. 6
2.1 The mobile robot representation. 15
2.2 Environment models. 20
2.3 Basic structure of PSO for global best approximation. 22
2.4 The flowchart of PSO algorithm. 25
2.5 The flowchart of FF algorithm. 29
3.1 Path planning based decision-making systematic. 31
3.2 Original and virtual obstacle boundaries. 32
3.3 Overall scheme of applying optimization algorithms based

path planning.
36

3.4 Overall scheme of applying optimization algorithms based
path planning for mobile robots.

37

3.5 The Flowchart of CPSO Algorithm based path planning. 42
3.6 The Flowchart of FF Algorithm based path planning. 45
3.7 The Flowchart of FFCPSO Algorithm based path planning. 48
4.1 The shortest path for case A based on optimization algorithms 54
4.2 Variation of objective function through the number of

iterations / case A.
55

4.3 Variation of objective function through number of runs for
case A.

56

4.4 Desired and actual path for case A. 58
4.5 The angular velocity of right and left wheels/ case A based

on CPSO algorithm.
58

4.6 The angular velocity of right and left wheels / case A based on
FF algorithm.

59

4.7 The angular velocity of right and left wheels / case A based on
FFCPSO algorithm.

59

4.8 The linear velocity of right and left wheels / case A based on
CPSO algorithm.

60

4.9 The linear velocity of right and left wheels / case A based on
FF algorithm.

60

4.10 The linear velocity of right and left wheels / case A based on
FFCPSO algorithm.

60

XII

4.11 The platform angular and linear velocities/ case A based on
CPSO algorithm.

61

4.12 The platform angular and linear velocities/ case A based on
FF algorithm.

61

4.13 The platform angular and linear velocities/ case A based on
FFCPSO algorithm.

62

4.14 The shortest path for each robot / case B. 63
4.15 Variation of the objective function through the number of

iterations for first path / case B.
65

4.16 Variation of the objective function through the number of
iterations for second path / case B.

65

4.17 Variation of the objective function through the number of
iterations for third path / case B.

66

4.18 Desired and actual path for case B. 70
4.19 The angular velocity of right and left wheels for 1st robot /

case B based on CPSO algorithm.
71

4.20 The angular velocity of right and left wheels for 1st robot /
case B based on FF algorithm.

71

4.21 The angular velocity of right and left wheels for 1st robot / case
B based on FFCPSO algorithm.

72

4.22 The angular velocity of right and left wheels for 2nd robot /
case B based on CPSO algorithm.

72

4.23 The angular velocity of right and left wheels for 2nd robot /
case B based on FF algorithm.

73

4.24 The angular velocity of right and left wheels for 2nd robot /
case B based on FFCPSO algorithm.

73

4.25 The angular velocity of right and left wheels for 3rd robot /
case B based on CPSO algorithm.

74

4.26 The wheel angular velocity of right and left for 3rd robot / case
B based on FF algorithm.

74

4.27 The angular velocity of right and left wheels for 3rd robot /
case B based on FFCPSO algorithm.

74

4.28 The linear velocity of right and left wheels for 1st robot / case
B based on CPSO algorithm.

75

4.29 The linear velocity of right and left wheels for 1st robot / case
B based on FF algorithm.

76

4.30 The linear velocity of right and left wheels for 1st robot / case
B based on FFCPSO algorithm.

76

XIII

4.31 The linear velocity of right and left wheels for 2nd robot / case
B based on CPSO algorithm.

77

4.32 The linear velocity of right and left wheels for 2nd robot / case
B based on FF algorithm.

77

4.33 The linear velocity of right and left wheels for 2nd robot / case
B based on FFCPSO algorithm.

77

4.34 The linear velocity of right and left wheels for 3rd robot / case
B based on CPSO algorithm.

78

4.35 The linear velocity of right and left wheels for 3rd robot / case
B based on FF algorithm.

78

4.36 The linear velocity of right and left wheels for 3rd robot / case
B based on FFCPSO algorithm.

79

4.37 The platform angular and linear velocities for 1st robot / case
B based on CPSO algorithm.

79

4.38 The platform angular and linear velocities for 1st robot / case
B based on FF algorithm.

80

4.39 The platform angular and linear velocities for 1st robot / case
B based on FFCPSO algorithm.

80

4.40 The platform angular and linear velocities for 2nd robot / case
B based on CPSO algorithm.

81

4.41 The platform angular and linear velocities for 2nd robot / case
B based on FF algorithm.

81

4.42 The platform angular and linear velocities for 2nd robot / case
B based on FFCPSO algorithm.

82

4.43 The platform angular and linear velocities for 3rd robot / case
B based on CPSO algorithm.

82

4.44 The platform angular and linear velocities for 3rd robot / case
B based on FF algorithm.

83

4.45 The platform angular and linear velocities for 3rd robot / case
B based on FFCPSO algorithm.

83

4.46 Follower Mobile Robots / case C Based on basic PSO
algorithm.

84

4.47 Follower Mobile Robots / case C Based on CPSO algorithm. 84
4.48 Follower Mobile Robots / case C Based on basic FF

algorithm.
85

4.49 Follower Mobile Robots / case C Based on hybrid FFCPSO
algorithm.

85

4.50 Variation of the objective function for first path through the
number of iterations / case C.

87

XIV

4.51 Variation of the objective function for second path through the
number of iterations / case C.

87

4.52 Variation of the objective function for third path through the
number of iterations / case C.

88

4.53 Desired and actual path for case C. 92
4.54 The angular velocity of right and left wheels for 1st robot / case

C based on CPSO algorithm.
93

4.55 The angular velocity of right and left wheels for 1st robot / case
C based on FF algorithm.

93

4.56 The angular velocity of right and left wheels for 1st robot / case
C based on FFCPSO algorithm.

94

4.57 The angular velocity of right and left wheels for 2nd robot /
case C based on CPSO algorithm.

94

4.58 The angular velocity of right and left wheels for 2nd robot /
case C based on FF algorithm.

95

4.59 The angular velocity of right and left wheels for 2nd robot /
case C based on FFCPSO algorithm.

95

4.60 The angular velocity of right and left wheels for 3rd robot /
case C based on CPSO algorithm.

96

4.61 The angular velocity of right and left wheels for 3rd robot /
case C based on CPSO algorithm.

96

4.62 The angular velocity of right and left wheels for 3rd robot /
case C based on FFCPSO algorithm.

96

4.63 The linear velocity of right and left wheels for 1st robot / case
C based on CPSO algorithm.

97

4.64 The linear velocity of right and left wheels for 1st robot / case
C based on FF algorithm.

97

4.65 The linear velocity of right and left wheels for 1st robot / case
C based on FFCPSO algorithm.

98

4.66 The linear velocity of right and left wheels for 2nd robot / case
C based on CPSO algorithm.

98

4.67 The linear velocity of right and left wheels for 2nd robot / case
C based on FF algorithm.

99

4.68 The linear velocity of right and left wheels for 2nd robot / case
C based on FFCPSO algorithm.

99

4.69 The linear velocity of right and left wheels for 3rd robot / case
C based on CPSO algorithm.

100

4.70 The linear velocity of right and left wheels for 3rd robot / case
C based on FF algorithm.

100

XV

4.71 The linear velocity of right and left wheels for 3rd robot / case
C based on FFCPSO algorithm.

101

4.72 The platform angular and linear velocities for 1st robot / case
C based on CPSO algorithm.

101

4.73 The platform angular and linear velocities for 1st robot / case
C based on FF algorithm.

102

4.74 The platform angular and linear velocities for 1st robot / case
C based on FFCPSO algorithm.

102

4.75 The platform angular and linear velocities for 2nd robot / case
C based on CPSO algorithm.

103

4.76 The platform angular and linear velocities for 2nd robot / case
C based on FF algorithm.

103

4.77 The platform angular and linear velocities for 2nd robot / case
C based on FFCPSO algorithm.

103

4.78 The platform angular and linear velocities for 3rd robot / case
C based on CPSO algorithm.

104

4.79 The platform angular and linear velocities for 3rd robot/ case
C based on FF algorithm.

104

4.80 The platform angular and linear velocities for 3rd robot / case
C based on FFCPSO algorithm.

105

4.81 The best results achieved by [8] case study 2. 106
4.82 The best results of first comparison. 106
4.83 The best results achieved by [21]. 107
4.84 The best results of second comparison / Map a and Map c. 107
4.85 The best results achieved by [24] case one. 108
4.86 The best results of third comparison. 109

XVI

LIST OF TABLES

Table No. Title Page No.

1.1 Decision Making Applications. 3
2.1 Kinematic model symbols. 15
4.1 The Hardware and Software specifications. 49
4.2 Wheeled NI- Mobile Robot parameters [48]. 50

4.3 PSO and CPSO parameters. 51
4.4 FF parameters. 51
4.5 FFCPSO parameters. 52
4.6 Start and target definition for all cases. 52
4.7 Obstacles definition for all cases 53
4.8 Waypoints coordination for case A. 54
4.9 Comparison results for case A. 55
4.10 Percentages of the objective function between algorithms

for case A
56

4.11 Waypoints coordination for case B. 64
4.12 Comparison results for case B. 67
4.13 Percentages of the objective function between algorithms

for case B.
67

4.14 The distance error for case B. 70

4.15 Waypoints coordination for case C. 86

4.16 Comparison results for case C. 89
4.17 Percentages of the objective function between algorithms

for case C.
89

4.18 The distance error for case C. 92
4.19 Results comparison with [7]. 106
4.20 Results comparison with [21]. 108
4.21 Results comparison with [24]. 109

XVII

LIST OF ALGORITHMS

Algorithm No. Title Page No.

Algorithm 1 Particle Swarm Optimization Algorithm. 21
Algorithm 2 Firefly Algorithm. 26
Algorithm 3 Chaotic Particle Swarm Optimization Algorithm. 39
Algorithm 4 Firefly Chaotic Particle Swarm Optimization

Algorithm.
43

CHAPTER ONE

INTRODUCTION AND LITERATURE
SURVEY

1

CHAPTER ONE

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

 The decision making (DM) is a process of decreasing uncertainty and doubt

about options to allow a best choice to be made from among them. It is more

complicated and difficult because the number of available alternatives is much larger

today than ever before. Due to the availability of information technology and

communication systems, especially the availability of the Internet and its search

engines, we can find more information quickly and therefore generating more

alternatives. Second, the cost of making errors can be very large because of the

complexity of operations and automation. Third, there are continuous changes in the

fluctuating environment and more uncertainties in impacting elements, including

information sources and information itself. More importantly, the rapid change of

the decision environment requires decisions to be made quickly. All these reasons

cause that the decision makers need techniques to support and help making high

quality decisions [1].

 The DM is a cognitive process, which leads to select a course of action among

a number of alternatives. Generally, a process of decision starts when one needs to

find a solution, but one does not know the solution that is accepted by the decision

makers or not. Simon invented the systematic of decision-making process in year

1977, which involves four phases: Intelligence, Design, Choice and Implementation

phases [1].

 In intelligence phase, identify the problem that need to be solved includes good

understanding on problem assumptions, boundaries and any related initial and

desired conditions. Then, obtain requirements by collecting data and analyzing the

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

2

decision situation. The requirements are conditions in which any acceptable solution

must meet in order to solve the problem. In design phase, construct model that

represents the system by making assumptions and by writing down the relationships

between all variables. Then generate potential alternative solutions and set criteria

in order to evaluate alternatives. In choice phase, select a suitable solution to the

model. Once the solution seems to be reasonable, we are ready for the

implementation phase [1, 2].

 From these phases, it is clearly that the decision is a choice among various

options, so decision makers will go through all these steps in the process in order to

reach the final choice. In addition, these steps are abstracted in Figure (1.1) [2].

Figure (1.1): The systematic of decision-making process [2].

 There are wide applications of the decision-making process systematic in many

areas including the items in Table (1.1) [3]:

Identifying the problem

Generating alternatives

Evaluating alternatives

Evaluating decision effectiveness

Implementing the decision

Choosing an alternative

Recycle

process

 as

necessary

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

3

Table (1.1): Decision Making Applications [3].

Field Application

Computers Task scheduling, memory allocation and hardware management.

Robotics Mission planning, path planning and robot navigation.

Medicine Health monitoring and medical diagnostic systems.
Science Automated interpretation of experimental data.

Traffic Systems Routing and signal switching.
Process Industries Performance assessment, monitoring and failure diagnosis.

Manufacturing Resource allocation routing, scheduling and planning materials
flow and machine and equipment design.

1.2 Mobile Robot

 Lexically, the term “Robot” is originally derived from the Czech word

“Robota” which is a means “to make things manually”. The Oxford dictionary

describes “Robot” as a machine looks like a human that enables to duplicate certain

human functions and movements in automatic way [4]. Robots can be divided into

groups; the first group is fixed robots, while the second group is mobile robots. Fixed

robots are mounted on a fixed land, and materials are transported to the workspace

close to the robot. A mobile robot, from its name, is a robot that can be moved from

one place to another place autonomously and without human interaction [5].

 Nowadays, mobile robots can change position safely in cluttered environments,

recognize real objects, understand natural speech, path planning, locate themselves,

and generally think by themselves. Intelligent mobile robots are designed to employ

the technologies and methodologies of cognitive, intelligence, and behavior based

control. Mobile robots should maximize the flexibility of performance subject to

minimal computational complexity and minimal input dictionary. Ground mobile

robots are classified into classes namely, wheeled mobile robots (WMRs) and legged

mobile robots (LMRs). Furthermore, mobile robots also include additional classes,

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

4

such as autonomous underwater vehicles (AUVs) and unmanned aerial vehicles

(UAVs) as shown in Figure (2.1). WMRs are very popular ones because they are

suitable for typical applications with relatively low mechanical complexity and

energy consumption. LMRs are appropriate for tasks in nonstandard environments,

stairs, heaps of rubble and so on [5].

 A: Wheeled mobile robot. B: Legged mobile robot.

 C: Underwater mobile robot. D: Aerial mobile robot.

Figure (1.2): Mobile robot types [5].

 The Multi Robot Systems (MRSs) can be described as a group of robots

working in the same environment. However, the range of robotic systems starts from

simple sensors, processing and acquiring data, to complex humans such as machines,

which are able to interact with environments in complex ways. Multi-robot systems

have been widely applied in rescuing, industry, exploration of outer space areas, due

to their characteristics of reliability, robustness, and economy [6].

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

5

1.3 Path Planning

 Path planning is one of the decision-making applications in robotics field that

was prefaced in late 60’s. Path planning is vitally important problem in mobile robot

navigation, which is formulated by giving the model of mobile robot and

environment description and then planning a path between two predefined points,

start and target in order to accomplish different tasks. In general, there are many

paths for mobile robot to reach the goal, but actually, the superior path is adopted

based on some optimization criteria, such as least energy consuming, shortest

distance or shortest distance and shortest time that are most adopted criteria. Path

planning is considered as NP-hard (non-deterministic polynomial time) problem;

that means the computational time that is required in order to solve such a problem,

which rises dramatically, while the size of the problem rises. According to this

definition, path-planning problem is classified as an optimization problem [7, 8].

1.4 Traditional and Soft Computing Algorithms

 Path planning algorithms have been grown from one generation to another

during the past 50 years. Since the last 60’s, many papers have been proposed in

order to solve the problem of path planning for mobile robots. More than 1400

research covering sufficient approaches in robot path planning for the time span of

1973-2007 were surveyed in [9]. The path planning involves two approaches

namely, traditional or conventional methods and soft computing methods. From

Figure (1.3), it is clearly to say that all path-planning methods were classical solution

until 1983. Only (3.13%) dealt with soft computing solution until 1987, but this

percentage was increased at the end of the eighties, especially after 1992 until now.

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

6

 Figure (1.3): Traditional and soft computing methods [9].

 The traditional methods does not enforce intelligence into path planning and it

includes Road Map (RM), Cell Decomposition (CD) and Artificial Potential Field

(APF).

 In Road Map (RM) approach [10], there are two phases, namely constructional

phase, and a query phase. In the constructional phase, the path graph is built from

the source to destination along with the obstacles. In query phase, only the source

and the destination location are provided, and information about the obstacles or

any interruption in the middle are not specified.

 In Cell Decomposition (CD) approach [9], the search space is decomposed into

a set of simple cells and the relations between these cells are calculated for

finding the path between the start and goal configuration by identifying the start

and the goal cell and then connecting them with a series of in between cells.

 In Artificial Potential Field (APF) approach [10], two forces play a major role in

achieving the optimal path plan from a particular source of the goal. A mobile

robot moves towards the goal with the help of an attractive force, which proceeds

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

7

with the negative charge. If the robot moves towards the obstacle, it is pushed

back with the help of a repulsive force by the positive charge. After that, the

potential field is calculated from the robot position and then calculates the

induced force from the field. This method suffers from the local minima problem

and high complexity.

 On the other hand, the soft computing methods are developed to overcome the

disadvantages of traditional methods such as trapping in local minima and contain

Neural Networks (NNs), Fuzzy Logic (FL) and Genetic Algorithms (GAs) as

follows:

 Artificial Neural Network (ANN) [11]: This method uses neural networks for

pattern recognition, objects tracking and improvement of process for both

static and dynamic environments.

 Fuzzy Logic (FL) [10]: is widely used in controlling mobile robots and deals

with neither completely true nor completely false, it represents a partial

solution when a perfect solution cannot be predicted and used to solve when

the pattern recognition problems arise in robotic tasks with more robust. The

FL converts the human natural language into machine understanding control

strategies. In mobile robot, FL is used to track a visual object by representing

a color in a particular destination with the help of a sensor.

 Genetic Algorithm (GA) [12]: An appropriate “chromosome” representation

of the path and representation of the environment are essential for finding out

the path.

 In the past decades, biologists and natural scientists studied the behaviors of

social insects because of the amazing efficiency of these natural swarm systems. In

the late-80s, computer scientists proposed the scientific insights of these natural

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

8

swarm systems to the field of Artificial Intelligence (AI) [13]. In 1989, the

expression "Swarm Intelligence" was first introduced by G. Beni and J. Wang in the

global optimization framework as a set of algorithms for controlling robotic

swarm [14]. More specifically, the following two population-based optimization

algorithms use the analogy of the social behavior and swarming principles in nature.

Swarm intelligence (SI) has been adopted to solve various problems of engineering

and mobile robotics including the path-planning problem.

 Particle Swarm Optimization (PSO) algorithm was introduced by Dr. James

Kennedy and Dr. Eberhart in 1995 based on an inspiration from the social

behavior of bird flocks and fish schools. PSO uses a population of particles

(individuals) that are moving in the search space. During iterations, each

particle is memorized the coordinates of position in the search space

associated with better fitness value achieved so far. PSO also stores the

position of the best value form the whole particles [15, 16].

 Firefly (FF) algorithm is now one of the most greatly used. Xin-She Yang

developed FF algorithm in 2009 based on an inspiration from the natural

behavior of tropical fireflies. The FF algorithm tries to simulate the attraction

behavior of fireflies and lighting pattern [17].

1.5 Motivation

 In the last years, mobile robot path planning has been an evolving area, so that,

many techniques have been proposed to challenge this problem. The main

motivation behind this thesis is that the mobile robots could be used in hazardous

industrial applications. These applications could be safer if the mobile robots were

to replace the human operator aspect, and at the same time, they achieve better

results with high precision. This work is facing on path planning problem because it

is considered a critical part in the field of robotics. This problem needs to find an

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

9

appropriate path for some mobile robots in order to move from start point to terminal

point in static or dynamic environments that has obstacles, such as disasters places,

planetary exploration, battlefield and so on. In path planning, there is a number of

optimization criteria that must be adopted, such as distance, smoothness, energy and

time in order to get a feasible or near to a feasible path.

1.6 Thesis Objectives

 The general objective of this thesis is to study the single and multi-robot path-

planning problem and to propose two perfect nature inspired algorithms (PSO and

FF algorithms) that may solve it. Finally, the research work will be achieved as

follows:

1. Applying path-planning problem based on decision-making strategy.

2. Enhancement of the original PSO algorithm to find the optimal path. Then, a

hybridization of the enhanced PSO algorithm with FF algorithm to find the

optimal path for single and multiple mobile robot in static known

environment.

3. Verification of the collected results by making a comparison with previous

research’s works.

1.7 Literature Survey

 Different kinds of path planning approaches and Natures-Inspired algorithms

have been proposed and much has been written on solving the problem of trajectory

planning for wheeled mobile robot. This survey gives a sight into some available

researches that are recently discussing the path-planning issue.

 C. Liu et al. (2012) [18] suggested a new firefly algorithm that has been used

gradually in solving planning problems. This algorithm was designed by adaptive

both random and absorption parameters after the analysis of the details of standard

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

10

firefly algorithm in order to improve the convergence speed and solution of quality.

The simulation results verified the effectiveness of the proposed algorithm and path

planning feasibility based on firefly technique.

 C. Purcaru et al. (2013) [19] proposed a new optimal path planning algorithm

based on hybridization between a PSO and GSA algorithms. The hybrid PSO-GSA

generates optimal paths by maximizing the distance between the generated paths and

the dangerous zones that exist in the environment and by minimizing the length of

the path that is needed by the mobile robot to reach the target. The adopted algorithm

was validated by the running of several experiments with robots in different

environments with the presence of multi obstacles and multi dangerous zones.

 E. Masehian and D. Sedighizadeh (2013) [20] presented a heuristic methods

for solving a multi-robot problem. Here, the method is based on the new improved

variant of the PSO algorithm, which serves as a global planner. Alternatively, for

locale planning and for avoiding obstacles in narrow passages, the Probabilistic

Roadmap Method (PRM) was employed. The local and global planners act

sequentially until all robots reach their goals. The algorithm iteratively and

simultaneously finds the minimum of two objectives, smoothness and shortness of

the robot’s path.

 N. H. Abbas and F. M. Ali (2014) [7] presented a comparative study between

standard version of Artificial Bee Colony (ABC) and Directed Artificial Bee Colony

(DABC) algorithms for the problem of offline autonomous mobile robot path

planning. The simulation results showed that the proposed (DABC) algorithm was

more effective and got satisfactory results than (ABC) algorithm. Additionally, the

obstacles are irregular shape, the radius be one-half of the longest side of the

obstacle, and this may cause wasted space.

 B. Li et al. (2014) [21] presented a novel planning algorithm based on Firefly

(FF) algorithm and Bezier curve in order to locate the collision free path. FF

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

11

algorithm was employed to optimize the control points of Bezier curve and this

proposed a method which was tested in benchmark functions on different static

environments. Then, it was compared with two population-based algorithms namely,

GA and PSO with adaptive inertia weight factor (PSO-w). The simulation results

revealed that FF outperformed the GA and PSO-w in success rate, while PSO-w

offered a feasible path with acceptable length.

 M. S. Alam et al. (2015) [8] proposed a path planning approach based on Particle

Swarm Optimization (PSO) algorithm to compute a minimum distance with

obstacles avoidance for a mobile robot in static, known environment. The proposed

path planner performed random sampling on grid lines that were generated between

start and target locations and found the feasible waypoints on these grid lines without

exhaustive search and high computations. The simulation results depicted the

efficiency of the proposed algorithm in different static environments.

 N. H. Abbas and J. A. Abdulsaheb (2016) [6] proposed an adaptive multi

objective particle swarm optimization (AMOPSO) algorithm based on a path

tracking problem for two tests. In the first test, a single mobile robot was needed to

move from its start point to its target point in static, known environment, which

contains two dangerous sources and two obstacles. In the second test, the AMOPSO

was used to improve the performance of the mobile robots to move from different

start points to different target points with a minimum distance and without any

collision between them. Furthermore, test functions are applied in order to make a

comparison between standard version of PSO and the proposed AMOPSO

algorithms. The simulation results showed that the AMOPSO was better than

MOPSO and standard PSO algorithms to get from local minima and with quickest

convergence.

 M. R. Panda et al. (2016) [22] suggested a new hybridization between Particle

Swarm Optimization (PSO) and Tabu Search (TS) algorithms in order to improve

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

12

the performance of a multi mobile robot path planning in workspace where the start

and target location for each mobile robot is predefined. The simulation results

showed that the new hybrid PSO-TS algorithm overcomes the original PSO and TS

in terms of computation times and quality of solution when the obstacles are static

relative to the mobile robots, while each mobile robot is dynamic relative to other

mobile robots.

 E. Cholodowicz and D. Figurowski (2017) [23] introduced a mobile robot path

planning with obstacle avoidance based on PSO algorithm which was analyzed in

both static and dynamic environments. Cubic splines were used in order to generate

a smooth path by the interpolation of optimization solution and the objective

function was evaluated by two constrains; the first one is the path length, and the

second one is the obstacle avoidance. The simulation results proved that the PSO

algorithm is applicable to robotics field for obtaining reasonable route in 2-D

workspace.

 D. Pang et al. (2017) [24] presented an adaptive firefly algorithm (AFA) in

order to solve the local minima problem. Then, a chaotic firefly algorithm (CFA)

that utilizes chaotic sequence to tune the control parameters was developed. The

CFA was enhanced to take the advantage of the optimization adjustment strategy

(OAS) with the Gauss disturbance to maintain the search capability. The simulation

results were compared with AFA and CFA-OAS algorithms, and demonstrated that

the proposed CFA-OAS outperforms AFA in terms of path length and convergence

speed.

 A. Tharwat et al. (2018) [25] proposed a Chaotic Particle Swarm Optimization

(CPSO) algorithm to optimize the control points of Bezier curve based on two

variants namely, CPSO-I and CPSO-II, by modifying the random parameters

(𝑟 & 𝑟) with chaotic maps during iterations. To evaluate the performance of CPSO

algorithm, the results of the CPSO-I and CPSO-II techniques were compared with

CHAPTER ONE INTRODUCTION AND LITERATURE SURVEY

13

the basic form of PSO algorithm. Furthermore, the CPSO was tested against different

numbers of objects and control points, and the CPSO achieved competitive results.

1.8 Thesis Organization

In addition to this chapter, this thesis is includes the following chapters:

 Chapter Two: It introduces an overview of the kinematic mathematical

model of the differential drive wheeled mobile robot, path planning concept,

classification and mapping types. Moreover, it presents in details the standard

Particle Swarm Optimization (PSO) and Firefly (FF) Algorithms.

 Chapter Three: It describes the path planning systematic based on decision-

making process. Then, the developed PSO and proposed hybrid FFCPSO

algorithms are illustrated.

 Chapter Four: It presents the simulation results that obtained by applying

four optimization algorithms including, PSO, CPSO, FF and FFCPSO

algorithms on mobile robot path planning with different cases. In addition,

calculations of the mobile robots velocities on the optimum path are

explained. Furthermore, this chapter also provides the discussion of the

simulation results by comparing them with other previous research’s works.

 Chapter Five: It concerns with the overall results of this work, reports

conclusions and gives suggestions for the future work.

CHAPTER TWO

THEORTICAL BACKGROUND

14

CHAPTER TWO

THEORETICAL BACKGROUND

2.1 Introduction

 This chapter describes, in details, the mathematical model of the kinematic

wheeled mobile robot under pure rolling and without slipping nonholonomic

constraints. Thereafter, it gives a theoretical background of the path planning

problem, map construction and different types of workspace that planning issues

may implement are discussed. Moreover, two metaheuristic optimization

algorithms, such as standard PSO and FF algorithms are introduced, in details, to

explain the way for applying the proposed algorithms.

2.2 Nonholonomic Wheeled Mobile Robot Kinematic Model

 Kinematics, as a field of study, is the science of motion that refers to the

behavior of mechanical systems, which deals with the geometric relationships that

govern the system and studies of the mathematics of motion without considering the

affecting forces. In mobile robotics, the mechanical behavior of the robot must be

known, both into design proper mobile robots for tasks and to understand how to

generate control software, for instance, mobile robot hardware. Design,

development, modification and control of a mechatronic system require an

understanding and a suitable representation of a system; specifically, a “model” of

the system is required. Any model is an idealization of the actual system. The goal

of the robot kinematic modeling is to find the robot speed in the inertial frame as a

function of the wheels speeds and the geometric parameters of the robot [26].

 In this study, the model of the non-holonomic wheeled mobile robot (WMR) is

used, as shown in Figure (2.1). This model consists of right and left wheel for motion

on the same axis and an omni-directional castor in face of cart in order to make

CHAPTER TWO THEORTICAL BACKGROUND

15

mobile robot more stable. Each wheel has a radius indicated by (R), and (W)

indicates the distance between the left and right wheels (mobile robot width), while

the midpoint between the wheels is indicated by (c) [27].

Figure (2.1): The mobile robot representation [27].

The WMR symbols that will be used in this thesis are illustrated in Table (2.1) [27]:

Table (2.1): Kinematic model symbols [27].

Symbol Description Unit
W The distance between right and left wheel. m
R The radius of each wheel. m

VR The velocity of right wheel. m/sec
VL The velocity of left wheel. m/sec
c The midpoint of axis between right and left wheel.

𝑉 The platform angular velocity. rad/sec

𝑉 The platform linear velocity. m/sec

[X,O,Y] The global coordinate frame.

(X, Y, θ) The current position and orientation of the WMR

 Generally speaking, the pose (position / orientation) vector for NWMR as in

equation (2.1) [27] and the location in the global coordinate frame are defined as [X,

O, Y].

CHAPTER TWO THEORTICAL BACKGROUND

16

𝑄 = [𝑋, 𝑌, 𝜃] (2.1)

Where, 𝑋 and 𝑌 are specified in the middle axis of wheels that act as the real position

of the NWMR, while θ is acting the orientation of NWMR. Based on nonholonomic

constraints as in equation (2.5), the kinematic equations for mobile robot in global

coordinate frame can be written as in equations (2.2), (2.3) and (2.4) after satisfied

two conditions; the first one is a pure rolling wheel, while the second one is without

skidding wheel [27] as follows:

�̇� (𝑡) = 𝑉𝑛(𝑡) 𝑐𝑜𝑠 𝜃 (𝑡) (2.2)

�̇� (𝑡) = 𝑉𝑛 (𝑡) 𝑠𝑖𝑛 𝜃 (𝑡) (2.3)

�̇�(𝑡) = 𝑉𝑎 (𝑡) (2.4)

−�̇�(𝑡) 𝑠𝚤𝑛 𝜃 (𝑡) + 𝑌 (𝑡) 𝑐𝑜𝑠 𝜃 (𝑡) = 0̇ (2.5)

 The reference linear velocity and the angular velocity for the desired path are

given by equations (2.13) and (2.14) [27], respectively.

𝑉𝑟𝑒𝑓 = (�̇�𝑟𝑟) + (�̇�𝑟𝑟) (2.13)

𝑊𝑟𝑒𝑓 =
̈ ̇ ̈ ̇

(̇) (̇)
 (2.14)

 Hence, the wheel linear velocity of right and left based on reference linear and

angular velocities on last equations are given by equation (2.15) [27] as follows:

𝑉𝑅
𝑉𝐿

=
𝑉𝑟𝑒𝑓 + 𝑊𝑟𝑒𝑓

𝑉𝑟𝑒𝑓 − 𝑊𝑟𝑒𝑓
 (2.15)

 The wheel angular velocity of right and left based on right and left linear

velocity on equation (2.15) are given by equation (2.16) and (2.17) [28],

respectively.

CHAPTER TWO THEORTICAL BACKGROUND

17

𝑊𝑅 = 𝑉𝑅 × 𝑅 (2.16)

𝑊𝐿 = 𝑉𝐿 × 𝑅 (2.17)

 Finally, the linear and angular velocities in terms of right and left wheels linear

velocities can be written as in equations (2.18) and (2.19) [27], respectively.

𝑉 (𝑡) = 0.5 [𝑉𝑅 (𝑡) + 𝑉𝐿 (𝑡)] (2.18)

𝑉 (𝑡) = [𝑉𝑅 (𝑡) − 𝑉𝐿 (𝑡)] (2.19)

2.3 Autonomous Mobile Robot Path Planning

 An autonomous robot is programmed to do a job without human intervention,

and with the help of embodied Artificial Intelligence (AI), it can perform and live

inside its surroundings [5].

2.3.1 Robot Path Planning

 Path planning enables the identification and selection of appropriate path for

the robot to traverse in the working arena and, in addition, the main scope of this

problem involves both the efficiency and safety points. The efficiency means that

the algorithm must find the minimum path in length with acceptable time by not

letting the robot take unnecessary steps or stop and turn several times, which may

result in a waste of time and energy consumption. While, the safety is another critical

point of this problem. Therefore, the determination of an obstacle-free path between

two pre-defined points through obstacles cluttered in a working area is central to the

design of an autonomous robot path planning. Path planning application covers a

wide area of robotics researches because it enhances robotic navigation systems in

both static and dynamic environments. With the perfect path planning system,

mobile robots can navigate by itself without human intervention to reach the targeted

destination [29].

CHAPTER TWO THEORTICAL BACKGROUND

18

 From an engineering point of view, the main fundamental requirement for a

mobile robot would be to reach its assigned destination safety. In order to do that,

any obstacle collisions must be avoided and prevented. After obstacle collision is

identified as the primary requirement, secondary requirements could be identified.

The path length should be taken into consideration. This would imply that the shorter

the path, the more plausible the algorithm will be. Another secondary requirement

for the algorithm is its efficiency. In this case, efficiency refers to the computational

cost, which the algorithm needs in order to perform its assigned task. While taking

obstacle collision and path length into consideration, the computational cost of the

algorithm has to be taken into account. If the algorithm is computationally

expensive, but generates a path, which is not significantly better than its competition,

then it loses its advantage. A plausible algorithm should be balanced in terms of the

time it takes to execute and the quality of the results that it produces [30].

2.3.2 Path Planning Classification

Path planning problem is organized based on two factors, as follows:

 Environment type, such as static or dynamic [31]:

1. Robot path planning in static environment that has fixed obstacles and does not

contain any moving obstacles, other than a navigating robot.

2. Robot path planning in dynamic environment that has both fixed and dynamic

moving obstacles such as moving machines, human beings and moving robots.

 Planning type, such as global or local:

1. Global path planning (GPP) is a Map-based system in which the robot has a

complete knowledge about the search environment (known the positions and

sizes of the objects) before starting to move. In other words, the global path

planning can be planned offline. The GPP limitation is the cost of changing

CHAPTER TWO THEORTICAL BACKGROUND

19

environment in global navigation, especially in dynamic environments is very

expensive because the setting up of a new map is difficult [32, 33].

2. Local path planning (LPP) is a Sensor-based system in which means that the

path planning is implemented during the robot navigating because of a

complete information about the search environment which is not available in

advance. In other word, the LPP has the ability of producing a new route

corresponding to environmental changes [32, 33]. There are several limitations

of LPP such as error in sensor readings, error in location estimation, changing

environment and robot dynamics. Therefore, the LPP may fail in finding the

route to the target location in complex environments. Mostly, this happens

because the sensors will not provide the sufficient information that is required

by the mobile robot to drive it out to the wanted location [12].

2.3.3 Path Planning Mapping and Environment Modeling

 Mapping is a process of building a form of the environment, the suitable

representation of the terrain is needed to generate a sufficiently complete map of the

given surroundings that the robot will encounter along its route. There are several

designs of environment forming, including the Grid-based model and the

Continuous-based model where each model has its features and limitations, as shown

in Figure (2.2) [34].

 Some of researchers use Grid-based model, which is a grid with cells. These

cells may be occupied to represent an obstacle or empty to represent a free space

when the robot can travel freely. The features of this model are the simple

representation, suitable for dynamic environment and local changes (only local

effects). Limitation of Grid-based model requires a large memory size when

increases the complexity. Others may use a Continuous-based model with the objects

being either polygons or any other shape. The features of this model are the simple

CHAPTER TWO THEORTICAL BACKGROUND

20

shape, efficient memory and represent obstacles with a virtual circle. While, the

limitations are the complex code and wasted space [34, 35].

 A: Grid-based model B: Continuous-based model

 Figure (2.2): Environment models [34].

2.4 Swarm-Based Optimization Algorithms

 Essentially, optimization is important to any problem including decision

making, whether in engineering or economic. The decision-making task entails

choosing between various options. The present study is governed by this choice in

order to make the optimum decision. The goodness measure of the alternatives is

described by the fitness function or performance index [36]. Optimization

approaches can be classified into Deterministic and Nondeterministic (stochastic)

algorithms. The deterministic algorithms depend on the mathematical nature of the

problem, while the nondeterministic algorithms do not depend on the mathematical

properties of a given function and are hence more appropriate for finding the global

optimal solutions for any type of objective function [37].

 Swarm-based algorithms have recently emerged as a family of metaheuristic

(population-based) algorithms that are capable of producing low cost, fast, and

CHAPTER TWO THEORTICAL BACKGROUND

21

robust solutions to several optimization problems. The Swarm- based algorithms,

which are used as multiple solutions in order to move through the search space

during the optimization process, are known as optimization algorithms. Some of the

effective algorithms that simulate the social behavior of animals, such as birds, fish,

bees, ants, flies and even germs are called Nature-Inspired Algorithms [13].

 In this thesis, two types of Natural-Inspired Algorithms are applied; the first is

Particle Swarm Optimization (PSO) algorithm, and the second is Firefly (FF)

algorithm.

2.4.1 Particle Swarm Optimization (PSO) Algorithm

 Particle swarm optimization (PSO) algorithm is an optimization algorithm that

was invented by Dr. James Kennedy, a social psychologist, and Dr. Russell

Eberhart, an electrical engineer, in 1995 [15, 16]. The PSO simulates the social

behavior of schools of fish and flocks of birds. When a fish or bird looking for food

finds a good path to the food. Immediately, it transfers the information to the whole

individuals. Then, the rest of the swarm becomes slow and takes a fancy to the food

in gradual way [8]. Similarity to other evolutionary computation techniques such as

genetic algorithms (GAs), PSO is a population-based algorithm, where each

individual is called (particle) and each particle is a possible solution to the optimized

problem. However, unlike GAs the PSO does not have cross over and mutation

operators. PSO implements the simulation of a social behavior instead of

implementing the survival of the fittest individuals [38].

2.4.1.1 The Original PSO Algorithm

 The space of solution is searched with multiple particles (individuals) where by

every particle is directed based on its own experience and the experience of the

whole swarm. The basic variables of this algorithm are as follows: position of

CHAPTER TWO THEORTICAL BACKGROUND

22

particle that represents the potential solution, velocity of the particle that represents

the change of position in the current iteration and the objective function that is the

measure of success of the particle [38].

 In the PSO work, a random position and velocity of each particle are existed,

and the particles start to fly around the search space with uniform numbers of

[𝑉 , 𝑉] and [𝑋 , 𝑋] respectively as in equations (2.20) and (2.21) [8].

𝑉 = 𝑉 + 𝑎 (𝑉 − 𝑉) (2.20)

𝑋 = 𝑋 + 𝑎 (𝑋 − 𝑋) (2.21)

Where, 𝑎 and 𝑎 are random numbers between [0-1].

 Now, particles mutually shared their experience and they will approximate to

one global best position ever visited by all particles, as shown in Figure (2.3) [39].

Figure (2.3): Basic structure of PSO for global best approximation [39].

 Mathematically, equation (2.22) is used to update the speed of each particle,

while equation (2.23) represents the update of position according to its previous

velocity and position. In a gradual way, particles reach the global best positions by

CHAPTER TWO THEORTICAL BACKGROUND

23

communicating the personal best (𝑋) and global best (𝑋) to each other [8,

38].

𝑉 = Ꞷ 𝑉 + 𝑐 𝑟 𝑋 − 𝑋 + 𝑐 𝑟 [𝑋 − 𝑋] (2.22)

𝑋 = 𝑋 + 𝑉 (2.23)

Where:

𝑉 represents the rate of the position change (velocity) of the 𝑖 particle.

𝑋 represents the position of the 𝑖 particle.

t and t+1 are denoted by the actual and next iteration respectively.

𝑋 represents the best weight of the particle.

𝑋 represents the best particle among all the particles in the swarm.

𝑐 indicates the individual-learning rate, while 𝑐 indicates the group-learning rate.

These parameters reveal the relative importance of the particle’s own best position

to its neighbor’s best position. In other words, they are responsible for varying the

speed of individual towards 𝑋 𝑎𝑛𝑑 𝑋 . In spite of constants 𝑐 𝑎𝑛𝑑 𝑐 are

not critical parameters for determining the convergence of PSO algorithm, a correct

setting may increase the algorithm convergence.

𝑟 & 𝑟 are uniform distributed random numbers in the range between [0-1].

 Additionally, Shi and Eberhart proposed inertia weight (Ꞷ) in 1998 [40]. This

symbol is responsible for dynamically adjusting the speed of particles in order to

allow the individuals to converge more efficiently and accurately. Therefore, it is

responsible for balancing between global and local search, then needing less number

of iterations for PSO algorithm to converge. A high value of inertia weight leads to

a global search, on another hand, a small value implies in a local search. A balance

CHAPTER TWO THEORTICAL BACKGROUND

24

between local and global search can be achieved by using linearly decreasing inertia

weight strategy as in equation (2.24) [8, 38].

Ꞷ =Ꞷ −
Ꞷ Ꞷ

∗ 𝑡 (2.24)

Where, Ꞷ 𝑎𝑛𝑑 Ꞷ are maximum and minimum values of inertia weight

factor (Ꞷ), respectively, while 𝑇 is the maximum number of iterations.

2.4.1.2 The PSO Algorithm Flow

In summary, the PSO process is as follows [6]:

Step 1: Initialize the position and velocity randomly for each particle in the swarm.

Step 2: Evaluate the objective function for each particle in the swarm.

Step 3: Check, if the objective value is better than the personal best (𝑋)

objective value in history, the current objective value set as a new (𝑋).

Step 4: From all the individuals or neighborhood, choose the particle with the best

objective value and set it as (𝑋).

Step 5: For each particle in the swarm:

- Update the particle velocity as in equation (2, 22).

- Update the particle position as in equation (2, 23).

Step 6: Repeat to step two until stopping criteria is satisfied.

CHAPTER TWO THEORTICAL BACKGROUND

25

Figure (2.4) shows the general PSO process [41].

Figure (2.4): The flowchart of PSO algorithm [41].

Start

Initialize input data

Calculate the objective function

Determine 𝑋

Determine 𝑋

Check stop

condition

Update velocity and position

Output = 𝑋

End

Increasing iteration

number

No

Yes

CHAPTER TWO THEORTICAL BACKGROUND

26

2.4.2 Firefly (FF) Algorithm

 The Firefly (FF) algorithm is an optimization algorithm that was invented by Dr.

Xin – She Yang in 2009, which was based on an inspiration from the natural

behavior of tropical fireflies. The FF algorithm tries to simulate the attraction

behavior of fireflies and lighting pattern [17].

 The sky is filled with the light of fireflies is a marvelous sight in summer in the

moderately temperature regions. There are almost two thousands firefly species, and

most of them produce short and rhythmic flashes. The pattern observed for these

flashes is unique for most of times for a specific species. The rhythm of the flashes,

rate of flashing and the amount of time for which the flashes are observed are

together forming a kind of a pattern that attracts both the males and females to each

other [17]. The primary purpose for a firefly’s flash is to act as a signal system to

attract other fireflies. It has been successfully employed to find the optimal values

of various test functions [42].

2.4.2.1 Firefly Mainframe

 However, because an adaptation of the natural behavior of the fireflies in an

algorithm is too complex, the following idealized rules are considering by firefly

developing [18]:

1) The firefly is no gender-specific. Therefore, it will fly to more attractive and

large brightness companion regardless of its gender.

2) Firefly attractive size is proportional to its brightness. Moreover, its brightness

decreases with the distance between individuals. If there is no brighter or more

attractive one, then it will fly randomly.

3) The brightness or attractiveness of a firefly is determined by the specified value

of the objective function.

CHAPTER TWO THEORTICAL BACKGROUND

27

2.4.2.2 The Original FF Algorithm

 There are two important points in the FF algorithm: the first point is the variation

of the flash intensity and the second point is the attractiveness formulation. For

simplicity, one can always assume that the attractiveness of a firefly is determined

by its brightness that in turn is associated with the encoded objective function.

1. Flash Intensity or Brightness

For simplicity, the light intensity 𝐹(𝑟𝑟) varies according to the inverse square law

as in equation (2.25) [43].

𝐹(𝑟𝑟) = (2.25)

Where, 𝐹 is the light intensity at the source. For stated medium with a fixed flash

absorption factor (𝛾), the flash intensity (F) varies with the distance (𝑟𝑟) as in

equation (2.26) [43].

𝐹 = 𝐹 𝑒 (2.26)

Where, 𝐹 is the original flash intensity.

2. Attractiveness towards Brightness

The form of the attractiveness function of a firefly since its proportional to the flash

intensity seen by adjacent fireflies is as in equation (2.27) [43].

𝛽 = 𝛽 𝑒 (2.27)

Where, 𝑟𝑟 is the distance between any two fireflies, and 𝛽𝑜 is the attractiveness

at 𝑟𝑟 = 0.

3. Distance between Fireflies

The distance between firefly 𝑖 and firefly 𝑗 at (𝑋 , 𝑌) and (𝑋 , 𝑌) is Cartesian

distance as in equation (2.28) [43].

CHAPTER TWO THEORTICAL BACKGROUND

28

𝑟𝑟 = (𝑋 − 𝑋) − (𝑌 − 𝑌) (2.28)

4. Movement of Fireflies

Finally, the movement of firefly (𝑖) that attracted to more attractive firefly (𝑗) is

calculated by equation (2.29) [43].

𝑋 = 𝑋 + 𝛽 𝑒 𝑋 − 𝑋 + ᾶ ₤ (2.29)

Where, the first part in equation above gives the current position of the firefly,

whereas the second part is responsible for attractiveness, while (ᾶ) is a

randomization parameter and (₤) is the vector of random variables, which make the

investigation of the search distance more effective. A firefly will be directed towards

the brighter one, and if there is no brighter one surrounding to it, then it will move

randomly as in equation (2.30) [43].

𝑋 = 𝑋 + ᾶ (𝑟𝑎𝑛𝑑 − 0.5) (2.30)

2.4.2.3 The FF Algorithm Flow

In summary, the FF optimization process is as follows [44]:

Step 1: Basic initialization of algorithm parameters.

Step 2: Initializing the position randomly for each firefly in the swarm. Then, the

objective function value is calculated as the respective maximum fluorescence

fireflies’ brightness.

 Step 3: By the equations (2.26) and (2.27), calculating the relative brightness of the

firefly population 𝐹 and attractiveness 𝛽, according to the relative brightness of the

decision to move the direction of fireflies.

 Step 4: According to equation (2.28) updating the spatial location of the firefly.

Step 5: Repeating to step two until the stopping criterion is satisfied.

Step 6: Taking the output of the global extreme point and the best individual values.

CHAPTER TWO THEORTICAL BACKGROUND

29

Finally, Figure (2.5) shows the procedure of the FF process [45].

 Yes

Figure (2.5): The flowchart of FF algorithm [45].

Start

Evaluate fitness f(x)

Rank fireflies according to fitness and

find the best fitness

For 𝑖= 1: pop
for 𝑗= 1: pop

 if f(𝑋)> f(𝑋)

Move firefly 𝑖 towards 𝑗

according to equation

(2.29)

Evaluate new solution and update

fitness and ranking

 t < 𝑇

t= t+1

Generate Initial population

of fireflies 𝑋 = (i=1, 2 ...pop)

Best solution

Stop

No

Yes

No

CHAPTER THREE

MODELING AND OPTIMIZATION

BASED PATH PLANNING

30

CHAPTER THREE

MODELING AND OPTIMIZATION BASED PATH
PLANNING

3.1 Introduction

 In this chapter, path planning based decision making systematic is presented

and three optimization algorithms are implemented for solving this problem. The

first algorithm represents the enhanced Particle Swarm Optimization (PSO)

algorithm, the second algorithm represents the original firefly (FF) algorithm and

the third algorithm represents the proposed hybrid firefly with enhanced Particle

Swarm Optimization algorithm for global path planning. This chapter also describes

how the various optimization algorithms are used for solving multiple mobile robot

problem.

3.2 Path Planning Based on Decision Making Systematic

 Based on the systematic of decision making that was described in Chapter One

(section (1.1)), path-planning problem can be applied, as shown in Figure (3.1). As

stated before, there are four phases in DM process namely, intelligence, design,

choice and implementation. In intelligence phase, the first step needs to identify a

good understanding of path planning problem and environment boundaries, the

second step requires to collect information about this problem, such as type of robot

(arm or mobile), environment (static or dynamic) and planning type (offline or

online) while the third step needs to analyze the requirements (constraints) that

describe a set of the feasible solutions of path planning problem. The design phase

(core of the systematic) includes three steps, formulating the kinematic model of

differential drive wheeled mobile robot and its environment modeling, applying an

optimization algorithm to obtain a set of feasible solutions, and then obtaining the

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

31

optimization criteria, such as energy, safety, distance and time. In choice phase, it

includes the solution (path) evaluation based on optimization criteria and finally

having a solution (path for the mobile robot). In implementation phase, the path-

planning problem on a real environment is implemented.

Figure (3.1): Path planning based on decision-making systematic.

Intelligence Phase
- Path planning problem identification
- Data collection such as type of (robot, environment

and path planning)
- Constraints (distance, collision avoidance) analysis.

Design Phase
- WMR formulation and environment modeling.
- Apply suitable algorithm on MATLAB program and

analysis the results.
- Alternatives (set of feasible solutions) generation.
- Criteria determination.

Choice Phase
- Alternatives evaluation based on optimization

criteria.
- Solution to the problem (we have an optimum or

near to optimum path)

Implementation Phase

Outcome

Reality of
Situation

Problem statement

Alternatives

Solution

Assumption

Failure Success

Model
Validation

Solution
testing

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

32

3.3 Modeling of the Environment and Obstacles

 In this thesis, the wheeled mobile robot environment, which is occupied by a

number of static obstacles, is represented by a free-space model, consider a two-

dimensional (X, Y) square map. This model makes the representation of obstacles

and calculation of distance easier. In the real world, obstacles maintain all kinds of

shape and size that make it is hard to model them, therefore, in order to simplify the

task of modeling of the obstacles, only circles are used. Then, each obstacle must be

inflated by the size of the mobile robot’s radius (depending on the mobile robot type)

in order to assure the safety of robot while trying in the environment, as shown in

Figure (3.2).

Figure (3.2): Original and virtual obstacle boundaries.

 As displayed in the figure above, boundaries for obstacles area are formed by

their actual boundaries plus a safety distance that is defined with consideration to

the mobile robot size that is treated as a point in the workspace.

3.4 Path Construction

 This process can be implemented as follows: The optimization algorithm will

generate search waypoints randomly. Then, these points will be connected by

polynomial interpolation. So, the cubic polynomial interpolation has been used in

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

33

this thesis to achieve this purpose. Therefore, the path has smoothness and the and

as a result, velocity is not changed abruptly in this path when the mobile robot

follows the smooth path. Thus, the mobile robot can be moved with a continuous

velocity and acceleration without stop motion. This movement is efficient with

energy and time because of the energy loss of a mobile robot is related to the smooth

of the path—the smoother the path, the smaller the loss of energy. The basic form

of cubic polynomial interpolation is as in equation (3.1) [46].

𝑌 = 𝑎 𝑋 + 𝑏 𝑋 + 𝑐𝑋 + 𝑑 (3.1)

 The primary and second-order differential functions are in equations (3.2) and

(3.3), respectively [46].

= 3𝑎𝑋 + 2𝑏𝑋 + 𝑐 (3.2)

= 6𝑎𝑋 + 2𝑏 (3.3)

3.5 Objective Function

 In this study, to obtain precise and effective solutions, two objectives are

optimized: path length and path safety. The energy loss of a mobile robot is related

to the length of the path—the longer the path, the greater the loss of energy. When

the robot moves forward at a constant speed and only changes in velocity direction,

the walking time of the robot is also related to the length. In addition, the most

important factor that one needs to consider is the safety of the path. The safe path

distance reflects the distance from the surrounding obstacles—the greater the safety

distance, the safer the path. Therefore, this work describes the energy loss, walking

time, and safety distance through the length and safety. The shortest and safest path

is to be found. This is known as the multi-objective optimization problem. The

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

34

mathematical definitions of these objectives are described in the following

subsections.

3.5.1 Obstacles avoidance

 The first goal is to find the obstacle-free path, which is essential to path planning

to make the wheeled mobile robot travel in the workspace safely. This objective

function must penalize trajectories with respect to their distance to obstacles

considering the obstacles’ density. To obtain a collision-free robot, the safe distance

between the mobile robot and the obstacle should be larger than (𝑊/2), where 𝑊

represents the distance between right and left wheel.

 The most important property of metaheuristic (population-based) algorithms,

including the PSO and FF algorithms, is that they are designed for the unconstrained

optimization problems; they can also be adapted to the constrained optimization

problems by using penalty. If a solution does not satisfy the constraints, this solution

is not acceptable, even if the value of the objective function is minimum. So, a

penalty function is added to the objective function.

 The distance between a path point and the center of obstacle (𝐷) is calculated

as in equations (3.4) and (3.5) in order to check the feasibility condition, where the

path is touching or passing the obstacle.

𝑑𝑖𝑠𝑡 𝑂 (𝑘), 𝑆 (𝑖) = (𝑆 (𝑖) − 𝑂 (𝑘)) + (𝑆 (𝑖) − 𝑂 (𝑘)) (3.4)

𝐷 (𝑆 , 𝑂) = ∑ ∑ 𝑑𝑖𝑠𝑡 [𝑂 (𝑘), 𝑆 (𝑖)] (3.5)

Where, k is the current obstacle, 𝑚 is the total number of obstacles in the workspace,

𝑛𝑝 is the total number of interpolation points that used to connect the waypoints, 𝑂

is the obstacles positions and 𝑆 represents the reference path points.

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

35

 Along the learning process for the actual (optimal) path, the approach of

obstacle avoidance must be called contentiously in order to prevent the interpolation

points from entering the obstacle regions. This can be done by defining the safety

variable for each individual (path) as an indicator of whether there is a collision

between path interpolation point (𝑆) and the obstacles (𝑂) or not. The quantitative

description of checking the collision is as explained in equation (3.6).

𝑆𝑎𝑓𝑒𝑡𝑦 (𝑖) = 𝑀𝑎𝑥
1 −

,

 .
 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

0 𝑓𝑟𝑒𝑒
 (3.6)

3.5.3 Minimum path length

 The second and main goal is to minimize the distance between the starting point

(𝑋 , 𝑌) and the target point (𝑋 , 𝑌). This makes the wheeled mobile robot travel in

the workspace with minimum travelling time and distance. As mentioned before, the

search waypoints that give the path lineaments is proposed by the optimization

algorithms. The cubic polynomial will connect the start point (𝑆) with end point

(𝑇) through the waypoints that are used to calculate the objective function that will

be minimized by the optimization algorithms. Based on the Euclidean distance, the

distance between two consecutive points can be calculated, as shown in equation

(3.7).

𝑑𝑖𝑠𝑡 (𝑃 , 𝑃) = (𝑋 − 𝑋) + (𝑌 − 𝑌) (3.7)

Where 𝑝 = (𝑋 , 𝑌) and 𝑝 = (𝑋 , 𝑌) denotes two consecutive points.

 A path consists of some interpolation points (𝑛𝑝), and the total distance (𝑀𝐿) of

the path (𝑖) can be calculated as in equation (3.8). By summing all the points of this

path, the length of the entire path can be obtained.

𝑀𝐿 (𝑖) = ∑ 𝑑𝑖𝑠𝑡 (𝑃 , 𝑃) (3.8)

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

36

 The metaheuristic algorithms are designed to find the minimum value of the

objective function (Euclidian distance) within the bounds of the constraint

(avoidance of obstacles). The total function is called fitness function. Namely, if

constraints are in a feasible region, then the penalty function is equal to zero else,

the fitness function is penalized as in equation (3.9), since the fitness value, measures

the fitness of the solution to the objective function and because of path planning is

the minimization problem, which is due it is looking for shortest path length.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖) =
 () ℋ∗ ()

 (3.9)

Where, ℋ is the obstacle zone weight factor, which is used to balance the proportion

of the path length and 𝑆𝑎𝑓𝑒𝑡𝑦 (𝑖) is penalty added to reduce the fitness of 𝑝𝑎𝑡ℎ 𝑖

that passes through an obstacle and yields in preventing taking it.

 Finally, the overall systematic provides the shortest, smooth and safe path on

the workspace for static known environment that can be abstracted, as shown in

Figure (3.3).

Figure (3.3): Overall scheme of applying optimization algorithms based path planning.

Workspace

construction

Optimal path for

mobile robot

Generate waypoints randomly

Condition of collision avoidance

Determine the objective function

Path construction based on cubic

polynomial interpolation

Optimization Algorithms

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

37

 Following that, the Nature-Inspired algorithms are used in order to create paths

for three mobile robots in the same map with the same distention point, but different

source points are for each respective robot. With the implementation of multiple

mobile robot, the effect on the various optimization techniques has to be considered.

With more robots in play, it is decided to run the optimization methods for each

robot at the same time because these methods need to be reconfigured in order to

find all paths for each mobile robots that means three times of computational cost.

That computational cost would scale even higher with the addition of more mobile

robots.

 The overall systematic of the multiple mobile robot implementation can be

abstracted, as shown in Figure (3.4).

Figure (3.4): Overall scheme of applying optimization algorithms based path planning for
mobile robots.

Workspace
construction

Generate waypoints for path1, path 2 and
path 3 randomly.

Path construction based on cubic

polynomial interpolation to connect the

waypoints of path 1, path 2 and path 3
independently

Condition of collision avoidance for path1,
path 2 and path3.

Determine the objective function of each
path.

Optimization Algorithms

Optimal path 2

Optimal path 3

Optimal path 1

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

38

 Based on previous idea, the problem of multi robot path planning can be

described as follows:

1. Plan a shortest path for each robot from its start point to the end separately. This

step ensures the lower complexity and completeness for each robot.

2. Use the kinematic equations to get the velocity arrangements so that the all robots

can move on their paths designed before without collisions. This step ensures the

optimality and will not influence the completeness for each mobile robot.

 Moreover, equation (3.10) [28] investigates whether the new desired trajectory

is optimal travelling time (𝑇) for the wheeled mobile robot.

 𝑇 = 𝜑 × 𝑇 (3.10)

Where, 𝑇 is the sampling time and 𝜑 is denoted as the number of samples.

3.6 Path Optimization Algorithms

 There are three principles used to organize the mobile robot movement in order

to reach the goal position without collision with the obstacles or other mobile robot

in the workspace. These principles are:

1- Firstly, the mobile robot is the next position in order to align itself to a goal.

2- Check if there is a collision with the static obstacle. This may happen with an

obstacle found in the next position. To avoid such collision, the mobile robot path

changes its position with a penalty. In addition, it may be there is a collision with

another mobile robot in the case of more than one mobile robot trying to take the

same position. To avoid such a collision, time and velocity are needed to be

calculated to know which mobile robot has a high velocity or minimum time and

can reach the target firstly based on the desired path length.

3- Finally, if the mobile robot can align itself to the goal without any collision with

the obstacle or other mobile robot, it will move to the next position safely.

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

39

 In the next subsections, Chaotic PSO, original FF and the proposed hybrid

FFCPSO algorithms are used to locate the optimal control points (waypoints) within

the interpolation points to find the optimum path from start to target points.

3.6.1 Improved Basic PSO Algorithm

 Although the PSO algorithm has the advantages of simple structure, easy to be

described and implemented, uses a relatively small size of population, adjusts the

few parameters, takes on fast convergence, good robustness and higher

computational efficiency than the traditional methods, it is easy to fall into a local

extreme value and cannot obtain the global optimal solution. There are two essential

reasons for this problem namely, firstly the character of the optimization function

and secondly the inappropriate parameters design and population size of algorithm

in the operation process. These two reasons will rapidly vanish the diversity of

particles in the calculation process and cause the premature problem. In order to

improve the ability of global searching and prevent a slide into the premature

convergence to local minima, PSO and chaotic map technique are combined to form

a Chaotic Particle Swarm Optimization (CPSO) algorithm, which practically

combines the behavior of the chaotic searching with the population-based

evolutionary searching ability. Chaos is random and unpredictable, which can be

described as a bounded non-linear system with deterministic dynamic behavior that

has stochastic features. Logistic map as one of the simplest chaotic maps which has

been paid much attention by the researchers over the last few decades is employed

in this thesis for constructing the hybrid PSO as described in equation (3.11) [47].

𝑍 = 𝑈 𝑍 (1 − 𝑍) 0 ≤ Z ≤ 1 (3.11)

Where, 𝑈 is a control parameter with a real number from [0 to 4]. Although (3.11)

is deterministic, it exhibits the chaotic dynamic when 𝑈 = 4 and 0 ≤ Z ≤ 1. It

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

40

exhibits the sensitive dependence on the initial conditions, which is the basic feature

of chaos. The new inertia weight factor (Ꞷ) is defined by multiplying the inertia

weight in equation (2.24) by the logistic map in equation (3.11) as shown in equation

(3.12) [47].

Ꞷ = Ꞷ × 𝑍 (3.12)

 Finally, in order to improve the global search capability of basic PSO algorithm,

one has to introduce a new velocity update as in equations (3.13) and (3.14) [47].

𝑉 = Ꞷ 𝑉 + 𝑐 𝑟 (𝑃 − 𝑋) + 𝑐 𝑟 (𝐺 − 𝑋) (3.13)

𝑉 = Ꞷ 𝑉 + 𝑐 𝑟 (𝑃 − 𝑌) + 𝑐 𝑟 (𝐺 − 𝑌) (3.14)

 In the next iteration, these particles are then moved to the next position

according to equations (3.15) and (3.16).

𝑋 = 𝑋 + 𝑉 (3.15)

𝑌 = 𝑌 + 𝑉 (3.16)

 The flowchart of Chaotic PSO algorithm based on path planning application is

illustrated in Figure (3.5).

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

41

Start

Initialize the environment with static obstacles, identify the
start, and target points.

Let 𝑻𝒎𝒂𝒙 = maximum number of iterations, pop= maximum number of particles, 𝒊= the current
particle, t= the current iteration.

Initialize particles (pop) with random waypoints and zero velocity.

𝒊=1

For particle (𝒊)

Apply cubic polynomial interpolation.

Checking collision as in equations (3.5) and (3.6).

Calculate the path length as in equation (3.8).

For particle (𝒊) set personal best cost = current cost function

𝑷𝒃𝒆𝒔𝒕 = current position.

If 𝒊 <= pop

Set global best cost function = min (for all local best cost function).

t=1

Calculate the inertia weight (Ꞷ) as in equation (2.22)

Calculate the new inertia weight based on logistic map as in equation (3.12).

A

𝒊 = 𝒊 + 𝟏

B

𝒊=1

Yes

No

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

42

Figure (3.5): The Flowchart of CPSO Algorithm based path planning.

If current cost <
local cost function

For this particle set personal best = current cost function.

If 𝒊 <= pop

Set global best cost function = min (for all local best cost function).

If 𝒊 <= 𝑻𝒎𝒂𝒙

The best solution = global particle.

End

For particle (𝒊) update the velocity and position according to equations (3.13), (3.14), (3.15) and (3.16).

A

For particle (𝒊)

Apply cubic polynomial interpolation.

Checking collision as in equations (3.5) and (3.6).

Calculate the path length as in equation (3.8).

𝒊 = 𝒊 + 𝟏

𝒕 = 𝒕 + 𝟏

B

If current cost <
local cost function

Yes

No

Yes

No

No

Yes

No

Yes

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

43

3.6.2 Firefly (FF) Algorithm

 Firefly (FF) algorithm is vastly used for solving optimization and engineering

problems, because of including features such as high error tolerance, automatic

segmentation of the population into subgroups and non-sensitive to initial values,

which can produce acceptable results. The flowchart of FF algorithm based path

planning application is illustrated in Figure (3.6).

3.6.3 Proposed Hybrid FFCPSO Algorithm

 Despite that the FF algorithm is widely used for solving optimization problems,

the conventional FF algorithm also has some coming in term of trapping into local

optima and the process of updating of the movement (position) of Fireflies is not

faster. The FF algorithm does not have a velocity characteristic, and there are no

parameters to use the previous best position of each firefly. Therefore, fireflies will

move regardless of their previous best positions. As a result, it is advantageous for

the fireflies to find a new optimum search space with a definite velocity to arrive at

global optimum point very quickly. On the other hand, PSO has a faster convergence

ability rather than some other population-based algorithms. Balance between

exploration and exploitation in PSO can be efficiently controlled by using three

control factors namely, (Ꞷ, 𝑐 and 𝑐). Thus, some modification and hybridization

are proposed to overcome this problem.

 In this thesis, an optimization algorithm that combines the search ability of

firefly and chaotic PSO algorithms has been proposed. By using this combination, a

balance between exploration and exploitation is aimed to establish and it benefits the

strengths of both algorithms.

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

44

Start

Initialize the environment with static obstacles, identify the
start, and target points.

Let 𝑻𝒎𝒂𝒙 = maximum number of iterations, pop= maximum number of fireflies, 𝒊= the current
firefly and t= the current iteration.

Initialize fireflies with random positions (waypoints).

𝒊=1

If 𝒊 <= pop

Set best solution cost function = min (for all local best cost function).

t=1

For 𝒊= 1: pop
for j= 1: pop

 if cost j> cost 𝒊 Move firefly 𝒊 towards j
according to equation (2.27)

Calculate the distance between
two fireflies according to

equation (2.26)

A

For firefly (𝒊)

Apply cubic polynomial interpolation.

Checking collision as in equations (3.5) and (3.6).

Calculate the path length as in equation (3.8).

B

𝒊=1

C

D

Yes

No

Yes

No

𝒊 = 𝒊 + 𝟏

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

45

Figure (3.6): The Flowchart of FF Algorithm based path planning.

A

If 𝒊 <= pop

Set best solution cost function = min (for all local best cost function).

If 𝒕<= 𝑻𝒎𝒂𝒙

Optimal Path

End

Firefly 𝒊 is move randomly toward firefly j according to
equation (2.28).

B

For firefly (𝒊)

Apply cubic polynomial interpolation.

Checking collision as in equations (3.5) and (3.6).

Calculate the path length as in equation (3.8).

C D

Yes

No

Yes

No

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

46

 As mentioned before, fireflies have no velocity and personal best position (𝑃)

memories in comparison to particles. Previous works show that PSO is one of the

popular methods for a global search. Therefore, the combination of FF and PSO will

find a better solution to explore the search space by applying the capability of PSO

in memorizing its previous best in determining the next possible solution.

 In the suggested algorithm, the flash (light) intensity attraction step of each

firefly is mutated by a PSO operator. At this step, each firefly is attracted randomly

towards the global best position in the entire population. Hence, the velocity term

with modification for faster convergence is appended in order to improve exploration

and exploitation capability. So, the FFCPSO algorithm is modified as follows:

 Firstly, the Cartesian distance between (𝑋 and 𝑃) and (𝑌 and 𝑃) is in

equations (3.17) and (3.18), respectively.

𝐷 = ∑ (𝑃 , − 𝑋 ,) (3.17)

𝐷 = ∑ (𝑃 , − 𝑌 ,) (3.18)

 Secondly, the Cartesian distance between (𝑋 and 𝐺) and (𝑌 and 𝐺) is in

equations (3.19) and (3.20), respectively.

𝐷 = ∑ (𝐺 − 𝑋 ,) (3.19)

𝐷 = ∑ (𝐺 − 𝑌 ,) (3.20)

 Finally, the position vector is mutated by equations (3.21) and (3.22).

𝑋 = Ꞷ 𝑋 + 𝑐 ∗ 𝑒 (𝑃 − 𝑋) + 𝑐 ∗ 𝑒 (𝐺 − 𝑋) + ᾶ ₤ (3.21)

𝑌 = Ꞷ 𝑌 + 𝑐 ∗ 𝑒 (𝑃 − 𝑌) + 𝑐 ∗ 𝑒 (𝐺 − 𝑌) + ᾶ ₤ (3.22)

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

47

The flowchart of FFCPSO algorithm is illustrated in Figure (3.7).

Start

Initialize the environment with static obstacles, identify the start point
(𝑿𝒔, 𝒀𝒔), and target point (𝑿𝒕, 𝒀𝒕).

Let 𝐓𝐦𝐚𝐱 = maximum number of iterations, pop= maximum number of fireflies, 𝒊= the current
firefly and t= the current iteration.

Initialize fireflies (pop) with random positions.

𝒊=1

If 𝒊 <= pop

Set best solution cost function = min (for all local best cost function).

t=1

Calculate Cartesian distance between 𝑷𝒃𝒆𝒔𝒕 − 𝑿𝒊
and 𝑷𝒃𝒆𝒔𝒕 − 𝒀𝒊 according to equation (3.17) and

(3.18), respectively.

Calculate Cartesian distance between 𝑮𝒃𝒆𝒔𝒕 − 𝑿𝒊
and 𝑮𝒃𝒆𝒔𝒕 − 𝒀𝒊 according to equation (3.19) and

(3.20), respectively.

For firefly (𝒊)

Apply cubic polynomial interpolation.

Checking collision as in equations (3.5) and (3.6).

Calculate the path length as in equation (3.8).

𝒊=1

𝒊 = 𝒊 + 𝟏

A

B C

Yes

No

CHAPTER THREE MODELING AND OPTIMIZATION BASED PATH PLANNING

48

Figure (3.7): The Flowchart of FFCPSO Algorithm based path planning.

Movement of fireflies according to equation (3.21)
and (3.22), respectively.

If current cost <
local cost function

For this firefly set personal best = current cost function.

If 𝒊<= pop

Set global best cost function = min (for all local best cost function).

If 𝒊<= 𝐓𝐦𝐚𝐱

The best solution (optimal path).

End

Calculate the distance between
two fireflies according to

equation (2.26)

Move firefly i towards j
according to equation (2.27)

For 𝒊= 1: pop
for 𝒋= 1: pop

 if cost 𝒋> cost 𝒊

For firefly (𝒊)

Apply cubic polynomial interpolation.

Checking collision as in equations (3.5) and (3.6).

Calculate the path length as in equation (3.8).

A

𝑖 = 𝑖 + 1

B

𝑡 = 𝑡 + 1

C

Yes

No

Yes

No

Yes

No

Yes

No

CHAPTER FOUR

SIMULATION RESULTS AND

DISCUSSION

49

CHAPTER FOUR

SIMULATION RESULTS AND DISCUSSION

4.1 Introduction

 In this chapter, the simulation results that evaluate the performance of various

optimization algorithms, namely PSO, CPSO, FF and proposed hybrid FFCPSO for

solving the path-planning problem of wheeled mobile robots are presented. The

simulation was conducted with static known environment based on different cases.

Furthermore, the collected results based on different optimization algorithms are

verified through comparison with each other and also with other researcher’s works.

The simulation code was implemented by using the same personal computer (PC)

with the Hardware and Software specifications shown in Table (4.1) in order to get

an unbiased comparison of CPU times.

Table (4.1): The Hardware and Software specifications.

Name Setting

H
. W

CPU Core ™ i7-7500U
Frequency 2.90 GHz

RAM 8.00 GHz
Hard drive 953869 MB

S
. W

 Operating system Windows 10
Language MATLAB R2014a

 The kinematic model of the Non-holonomic Wheeled Mobile Robot (WMR),

which has been presented in Chapter Two (section (2.2)), used in the simulation in

order to calculate the robot velocities on the desired path. The simulation was

executed (off line) by planning a feasible path from start position to the target

position in static known environment. The National Instrument (NI) wheeled mobile

robot was used in this simulation and its specifications taken from [48] are listed in

Table (4.2) as follows:

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

50

Table (4.2): Wheeled NI- Mobile Robot parameters [48].

NI-Mobile Robot Parameter Acronym Value Unit

Distance between two wheels W 0.36 m

Wheel Radius R 0.075 m

Period Time T 0.1 sec

Mobile Robot Length L 0.40 m

Max. Linear Velocity of Right and Left wheel 𝑉𝑅 & 𝑉𝐿 0.5 m /sec

Min. Linear Velocity of Right and Left wheel 𝑉𝑅 & 𝑉𝐿 -0.5 m /sec

Max. Angular Velocity of Right and Left wheel 𝑊𝑅 & 𝑊𝐿 6.67 rad /sec

Min. Angular Velocity of Right and Left wheel 𝑊𝑅 & 𝑊𝐿 -6.67 rad /sec

Max. Linear Velocity of Platform 𝑉 0.5 m /sec

Min. Linear Velocity of Platform 𝑉 0 m /sec

 Max. Angular Velocity of platform 𝑉 2.77 rad /sec

Min. Angular Velocity of platform 𝑉 -2.77 rad /sec

4.2 Simulation Parameters’ Setting

 Different cases have been done with the various intelligent algorithms. In all

cases, the map dimensions are (1000×1000) cm. The obstacles can be located at any

place on the map except at starting and target points. The possible parameters’ values

of each optimization algorithm and the locations of obstacles are explained in the

following subsections.

4.2.1 Parameters Setting for basic PSO and CPSO Algorithms

 The flowchart of CPSO algorithm, which has been established in Chapter Three

(Figure (3.5)), is used to locate the optimal waypoints (control points) to find the

best path for wheeled NI- mobile robot. Table (4.3) shows the set of PSO and CPSO

parameters that have been used in the simulation. For more details, see Appendix A.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

51

Table (4.3): PSO and CPSO parameters.

PSO and CPSO parameter Acronym value
Max. Number of Iterations 𝑇 80

Number of particles 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 20
Acceleration Constant 𝑐 & 𝑐 1.5

Min. Inertia Weight Factor Ꞷ 0.4

Max. Inertia Weight Factor Ꞷ 0.9
Random Values 𝑟 & 𝑟 0-1

Control parameter 𝑈 4
 Chaotic Initial value 𝑍 0.3

4.2.2 Parameters’ Setting for basic FF Algorithm

 The flowchart of FF algorithm, which has been demonstrated in Chapter Three

(Figure (3.6)), is used to optimize the waypoints (control points) to find the best path

for wheeled NI- mobile robot. The wrong selection of (ᾶ) can cause a small or big

step increment and take away the solution in some other side far away from the

global best. Table (4.4) shows the set of FF parameters that have been used in the

simulation. For more details, see Appendix A.

Table (4.4): FF parameters.

FF parameter Acronym value
Max. Number of Iterations 𝑇 80

Number of fireflies 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 20

Flash absorption coefficient 𝛾 1
Initial attractiveness parameter 𝛽 2

Randomness parameter ᾶ 0.2

4.2.3 Parameters’ Setting for Hybrid FFCPSO Algorithm

 The flowchart of FFCPSO algorithm, which has been demonstrated in Chapter

Three (Figure (3.7)), is used to optimize the waypoints (control points) to find the

best path for wheeled NI- mobile robot. Table (4.5) shows the set of FFCPSO

parameters that have been used in the simulation.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

52

Table (4.5): FFCPSO parameters.

FFCPSO parameter Acronym value
Max. Number of Iterations 𝑇 80

Number of fireflies 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 20
Acceleration Constant 𝑐 & 𝑐 1.5

Flash absorption coefficient 𝛾 1

Initial attractiveness parameter 𝛽 2
Randomness parameter ᾶ 0.2

Min. Inertia Weight Factor Ꞷ 0.4
Max. Inertia Weight Factor Ꞷ 0.9

Control parameter 𝑈 4
Initial value 𝑍 0.3

4.2.4. Parameter Setting of Start and Target Position

 In case A, single wheeled NI-mobile robot was used on a static environment. In

case B, three wheeled NI- mobile robots were used, these robots have different start

positions and same target position. While in case C, three follow up-wheeled NI-

mobile robots were used, each robot has its start position and then follows up other

robot to the same target. These locations are ordered in Table (4.6) as follows:

Table (4.6): Start and target definition for all cases.

Case No. Robot No. (𝑿𝒔, 𝒀𝒔) (𝑿𝒕, 𝒀𝒕)
A 1 (100,100)

(900,900)

B

1 (500,100)
2 (100,200)
3 (700,0)

C

1 (100,150)
2 (100,100)
3 (100,50)

4.2.5. Parameter Setting of Obstacles Positions

The locations of all static obstacles in all cases are ordered in Table (4.7) as follows:

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

53

Table (4.7): Obstacles definition for all cases.

Obstacle No. 𝑹𝒐𝒃𝒔 (cm) Center (𝑿𝒐𝒃𝒔,𝒀𝒐𝒃𝒔)
1 34 (100,820)
2 64 (150,450)
3 40 (300,700)
4 34 (400,300)
5 54 (600,600)
6 40 (610,210)
7 34 (800,800)
8 60 (900,400)
9 64 (900,100)

4.3 Simulation Results

 The four metaheuristic (population-based) optimization algorithms are

implemented based on a path-planning application in order to find optimal or near

to optimal actual paths for WMRs with three different cases. The paths are found in

order to show the effectiveness of each algorithms and how can achieve three

objectives (distance, smoothness and safety) as a first step, and then the distances of

these paths between the mobile robot initial position and terminal position are

determined based on equation (3.8). The second step can be achieved by obtaining

the desired paths equations for the actual paths by using the basic fitting function.

Therefore, in the third step the WMR velocities on the desired path are calculated.

4.3.1 Case A: Single Wheeled NI- Mobile Robot

 In the case of empty map, the total path length from start to target point is equal

to (1131.37) cm. In this case, the number of waypoints that needs to be optimized

(D) is equal to 4.

4.3.1.1 Single Optimal Path Finding

 Figure (4.1) reveals the simulation results of the optimum route for the wheeled

NI- mobile robot based on PSO, CPSO, FF and hybrid FFCPSO algorithms. Based

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

54

on the number of samples between (𝑋 , 𝑌) and (𝑋 , 𝑌), the WMR has travel time

(𝑇) equal to 80 sec on the desired path.

Figure (4.1): The shortest path for the case A based on optimization algorithms.

 After ten runs, the outputted waypoints based on various algorithms are ordered

in Table (4.8).

Table (4.8): Waypoints coordination for case A.

Waypoints
(D)

Coordinate
(𝑿, 𝒀)

Type of Intelligent Algorithm
PSO CPSO FF FFCPSO

D X (cm) 328.729 397.724 121.796 347.563
Y (cm) 372.737 469.780 132.757 414.511

D X (cm) 469.155 513.662 189.289 560.296
Y (cm) 547.543 614.743 218.320 665.378

D X (cm) 496.680 612.248 421.841 708.256
Y (cm) 582.702 717.285 532.636 794.053

D X (cm) 619.992 738.988 732.089 619.992
Y (cm) 732.612 824.693 818.865 732.612

 Figure (4.2) explains the variation of the objective function through the number

of iterations based on presented methods until reaching the best values.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

55

 Figure (4.2): Variation of objective function through number of iterations / case A.

 From the figure above, the optimal path with shortest distance using standard

PSO is equal to (1148.81) with in iteration (53) and is equal to (1148.52) with in

iteration (36). The optimal path with shortest distance using standard FF is equal to

(1158.4) with in iteration (79) and is equal to (1148.01) with in iteration (39).

 The simulation results for case A are summarized in Table (4.9). Standard

deviation is a measure of how “spread out” a set of data is. If it is large, data has a

large range of numbers. If it is small, most of data points are close to the average.

While, the percentages of the objective function between techniques are explained

in Table (4.10).

Table (4.9): Comparison results for case A.

Type of
intelligent
Algorithm

Min.
Distance
 in (cm)

Fitness

Iteration
of best
value

Max.
Distance
in (cm)

Average
in (cm)

Standard
Deviation

PSO 1148.81 0.087 53 1156.77 1151.2 0.0254
CPSO 1148.52 0.087 36 1149.78 1148.77 5.638E-3

FF 1158.4 0.0863 79 1164.41 1160.73 0.0165
FFCPSO 1148.01 0.0871 39 1149.91 1148.75 8.067E-3

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

56

Table (4.10): Percentages of objective function between algorithms for case A.

Algorithm
Type

PSO-
CPSO

PSO-
FF

PSO-
FFCPSO

CPSO-
FF

CPSO-
FFCPSO

FF-
FFCPSO

Percentage,% 0.0252 0.8278 0.0696 0.8529 0.0444 0.8969

 One can conclude that the objective function values varied sharply within several

runs since the particles or fireflies’ best positions (candidate solutions) varied

intensively, as shown in Figure (4.3).

Figure (4.3): Variation of objective function through number of runs for case A.

 From the above figure, PSO algorithm can achieve the best path with the shortest

distance in run no. 7. While, the best path with the shortest distance by using CPSO

algorithm is achieved in run no. 9. FF algorithm can achieve it in run no. 8 and

FFCPSO algorithm in run no. 5.

 The presented algorithms generate an optimal obstacle free trajectory for single

robot in static environment that can contain known multiple obstacles. From the case

A results, it is plainly to say that both PSO and CPSO algorithms always lead to an

optimum or near to optimum path, but there is a difference in the number of iteration

between the two algorithms, where the basic PSO algorithm requires more number

of iterations than CPSO algorithm. Hybrid FFCPSO algorithm can enhance the

performance of FF algorithm by providing more smoothness and optimal path value

1 2 3 4 5 6 7 8 9 10
1148

1150

1152

1154

1156

1158

1160

1162

1164

1166

Number of Run

P
at

h
 L

en
gt

h
in

 (
cm

)

PSO CPSO FF FFCPSO

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

57

with less number of iterations and minimum execution time. Hybrid FFCPSO

technique is perfect in providing excellent path tracking equals to (1148.01) cm at

39 iteration. On the other hand, CPSO is better than FFCPSO in iteration number

equal to 36 and time consuming. Additionally, the small percentage between both

methods equals (0.0444 %).

4.3.1.2 Single Mobile Robot Velocities

 After finding the actual robot’s path for each optimization algorithm, the desired

path fitting function for the CPSO, FF and FFCPSO algorithms are given in

equations (4.1), (4.2) and (4.3), respectively.

𝑦(𝑥) = 4.2 × 10 𝑥 − 1.9 × 10 𝑥 + 0.0016𝑥 + 0.81𝑥 + 9.9 (4.1)

𝑦(𝑥) = − 4.1 × 10 𝑥 − 7.7 × 10 𝑥 + 1.5 𝑥 − 45 (4.2)

𝑦(𝑥) = −7.6 × 10 𝑥 + 0.00053𝑥 + 1.2𝑥 − 23 (4.3)

 Figure (4.4) shows the both actual and desired path based on CPSO, FF and

FFCPSO algorithms, respectively.

Continued

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

1000

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path

CPSO

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

1000

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path

FF

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

58

Figure (4.4): Desired and actual path for case A.

 From the above figure, the distance error between actual and desired paths is

equal to (0.95%) for CPSO, (1.67%) for FF and (1.44%) for FFCPSO algorithms.

Then, based on kinematic equations of the differential drive mobile robot, one can

calculate the robot velocity on the desired path as follows:

1. Wheels Angular Velocity

 The right and left wheels angular velocity of the robot system is described in

Figures (4.5), (4.6) and (4.7) based on the CPSO, FF and FFCPSO algorithms,

respectively.

Figure (4.5): The angular velocity of the right and left wheels / case A based on CPSO
algorithm.

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

ra
d

/s
ec

)

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

1000

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path

FFCPSO

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

59

Figure (4.6): The angular velocity of right and left wheels / case A based on FF algorithm.

Figure (4.7): The angular velocity of right and left wheels / case A based on FFCPSO
algorithm.

 From Figure (4.5), (4.6) and (4.7), the angular velocity of the left and right

wheels (𝑊𝐿& 𝑊𝑅) based on the CPSO, FF and FFCPSO approaches are equal to

(1.9) rad/sec, (2.18) rad/sec and (2.09) rad/sec, respectively and should range

between (-6.67, +6.67) rad/sec.

2. Wheels Linear Velocities

 The linear velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms is illustrated in Figures (4.8), (4.9) and (4.10), respectively.

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

ra
d/

se
c)

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

ng
u

la
r

V
el

oc
it

y
of

 R
ig

ht
 a

n
d

 L
ef

t
in

 (
ra

d/
se

c)

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

60

Figure (4.8): The linear velocity of right and left wheels / case A based on CPSO algorithm.

Figure (4.9): The linear velocity of right and left wheels / case A based on FF algorithm.

Figure (4.10): The linear velocity of the right and left wheels / case A based on FFCPSO
algorithm.

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
nd

 L
ef

t
in

 (
m

/s
ec

)

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time in (sec)

W
h

ee
l

L
in

ea
r

V
el

oc
it

y
of

 R
ig

ht
 a

nd
 L

ef
t

in
 (

m
/s

ec
)

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
n

d
L

ef
t

in
 (

m
/s

ec
)

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

61

 The linear velocity of the left and right wheels (𝑉𝐿& 𝑉𝑅) based on the CPSO,

FF and FFCPSO approaches are equal to (0.14) m/sec, (0.16) m/sec and (0.15)

m/sec, respectively and should range between (-0.5, +0.5) m/sec.

3. Platform Linear and Angular Velocities

 The angular and linear velocities of the platform (𝑉 & 𝑉) based on the CPSO,

FF and FFCPSO algorithms are manifested in Figures (4.11), (4.12) and (4.13),

respectively.

Figure (4.11): The platform angular and linear velocities/ case A based on CPSO

algorithm.

Figure (4.12): The platform angular and linear velocities/ case A based on FF algorithm.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

&

A
n

gu
la

r
V

el
oc

it
y

in
 (

ra
d

/s
ec

)

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

A

ng
u

la
r

V
el

oc
it

y
in

 (
ra

d/
se

c)

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

62

Figure (4.13): The platform angular and linear velocities/ case A based on FFCPSO
algorithm.

4.3.2 Case B: Three Independent Wheeled NI- Mobile Robots

 In the case of empty map, the total path length for the first, second and third

wheeled NI- mobile robot from start to target point is equal to (894.427) cm,

(1063.014) cm and (921.954) cm, respectively. In this case, the number of waypoints

that needs to be optimized (D) is equal to 3 for each path. In tacit way, the

optimization algorithms work as a dynamic path planning because every mobile

robot must avoid collision with another mobile robot during its movement to the

same target. So, each mobile robot is considered as a dynamic obstacle to other

mobile robots.

4.3.2.1 Multi Optimal Path Finding

 Figure (4.14) displays the resulted paths for the three wheeled NI- mobile robots

based on PSO, CPSO, FF and hybrid FFCPSO algorithms.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

63

Figure (4.14): The shortest path for each robot / case B.

 After ten runs, the outputted waypoints based on various algorithm are

abstracted in Table (4.11).

 Since the candidate solutions varied intensively, the PSO algorithm can achieve

best path with shortest distance in run no.7. While the best path with the shortest

distance by using CPSO algorithm is achieved in run no. 5. FF algorithm can achieve

it in run no. 7 and FFCPSO algorithm in run no. 6. Depends on the number of

samples between (𝑋 , 𝑌) and (𝑋 , 𝑌), the WMR has travel time (𝑇) equal to 40

sec, the WMR has travel time (𝑇) equal to 80 sec and the WMR has travel time

(𝑇) equal to 90 sec. Thereafter, based on the kinematic equations of differential

drive mobile robot, one can calculate the robot velocity on its specific path. In this

case, all mobile robots start to move to the target at (𝑇 =0) sec.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

64

Table (4.11): Waypoints coordination for case B.

Path
No.

Waypoints
(D)

Coordinate
(𝐗, 𝐘)

Types of Intelligent Algorithm
PSO CPSO FF FFCPSO

P
at

h
1

D X (cm) 574.649 577.006 595.198 562.162
Y (cm) 276.490 279.072 312.357 248.874

D X (cm) 634.478 656.897 770.467 648.581
Y (cm) 378.611 417.631 616.499 407.635

D X (cm) 703.852 793.283 838.292 778.190
Y (cm) 474.164 665.875 718.212 636.921

P
at

h
2

D X (cm) 412.551 223.359 287.493 493.487
Y (cm) 532.630 321.973 377.432 600.880

D X (cm) 445.648 342.890 419.634 716.700
Y (cm) 569.036 443.390 556.245 802.813

D X (cm) 627.777 606.640 598.260 790.809
Y (cm) 741.597 714.316 743.441 855.571

P
at

h
3

D X (cm) 329.119 168.254 485.423 391.060
Y (cm) 798.859 752.526 839.609 813.245

D X (cm) 491.968 263.544 552.923 600.653
Y (cm) 828.929 781.950 846.302 850.045

D X (cm) 571.733 426.158 689.632 717.287
Y (cm) 843.544 819.375 905.631 869.566

 Figures (4.15), (4.16) and (4.17) explain the changing of the objective function

through the number of iterations until reaching the optimal value for the first, second

and third paths, respectively.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

65

Figure (4.15): Variation of objective function through the number of iterations for first
path / case B.

 From the figure above, the optimal path with shortest distance using standard

PSO is equal to (897.75) with in iteration (75) and is equal to (895.82) with in

iteration (29) in CPSO algorithm. The optimal path with shortest distance using

standard FF is equal to (900.25) with in iteration (73) and is equal to (895.78) with

in iteration (33) in the hybrid FFCPSO algorithm.

Figure (4.16): Variation of objective function through the number of iterations for second
path / case B.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

66

 From the figure (4.16), the optimal path with shortest distance using standard

PSO is equal to (1074.43) with in iteration (66) and is equal to (1073.74) with in

iteration (47) in the CPSO algorithm. The optimal path with shortest distance using

standard FF is equal to (1082.54) with in iteration (44) and is equal to (1072.34) with

in iteration (59) in the proposed FFCPSO algorithm.

Figure (4.17): Variation of objective function through the number of iterations for third
path/ case B.

 While from the figure (4.17), the optimal path with shortest distance using

standard PSO is equal to (923.7) with in iteration (58) and is equal to (923.59) with

in iteration (38) in the CPSO algorithm. The optimal path with shortest distance

using standard FF is equal to (938.66) with in iteration (77) and is equal to (923.77)

with in iteration (44) in the proposed hybrid FFCPSO algorithm.

 Table (4.12) summarizes the results of case B, which can be achieved by the

various intelligent algorithms after ten runs. Posteriorly, the percentages of the

objective function between algorithms for each path are explained in Table (4.13).

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

67

Table (4.12): Comparison results for case B.

Robot
No.

Type of
Intelligent
Algorithm

Min.
Distance
in (cm)

Fitness

Iteration
of best
value

Max.
Distance
in (cm)

Average
Distance
in (cm)

Standard
Deviation

1

PSO 897.75 0.1113 73 899.7 897.85 7.473E-3
CPSO 895.82 0.1116 29 897.3 896.42 5.546E-3

FF 900.25 0.1110 73 907.44 903.4 0.0253
FFCPSO 895.78 0.1116 33 898.19 896.24 4.509E-3

2

PSO 1074.43 0.0930 66 1079.9 1075.1 7.313E-3
CPSO 1073.74 0.0931 47 1076.1 1074.43 9.154E-3

FF 1082.54 0.0923 44 1107.39 1096.64 0.1429
FFCPSO 1072.34 0.0932 59 1076.6 1073.99 0.0111

3

PSO 923.7 0.1082 58 924.5 923.82 3.096E-3
CPSO 923.59 0.1082 38 923.78 923.63 1.476E-3

FF 938.66 0.1065 77 949.4 944.4 3.1644
FFCPSO 923.77 0.1082 44 924.5 923.73 2.915E-3

Table (4.13): Percentages of the objective function between algorithms for case B.

Robot
No.

Algorithm
Type

PSO-
CPSO

PSO-
FF

PSO-
FFCPSO

CPSO-
FF

CPSO-
FFCPSO

FF-
FFCPSO

1
Percentage,%

0.2149 0.2777 0.2194 0.492 4.465E-3 0.4965
2 0.0642 0.7491 0.1945 0.8129 0.1303 0.9422
3 0.0119 1.5937 7.577E-3 1.6054 0.0194 1.5863

 The discussed algorithms generate short, safe and smooth paths for three

independent two-wheeled mobile robots. Firstly, the first mobile robot arrived to the

target. Then, the second and third mobile robots depend on their velocities and travel

time. From the case B results, it is clearly to say as follows:

1. For path1, it is clearly from Figures (4.14) and (4.15) that CPSO and FFCPSO

can get the same path length difference in few cm so there is a small percentage

between them equal to (4.465E-3%), but CPSO can get it just with (29) iterations

and has a good convergence curve than FFCPSO.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

68

2. For path 2, Figures (4.14) and (4.16) show that FFCPSO is better than other

algorithms in the minimum path length equal to (1072.34) cm with a high fitness

value equal to (0.0932) however, FF became stable at (44) epoch.

3. For path 3, Figures (4.14) and (4.17) depict that FFPSO is better than PSO to get

the same third path length with (44) epoch, but CPSO is better in the iteration

number and the shortest distance.

4.3.2.2 Multi Mobile Robot Velocities

 After finding the actual paths of mobile robots based on each presented

approach, the desired path equations for WMR based on CPSO, FF and FFCPSO

by using basic fitting function are given in equations (4.4), (4.5) and (4.5),

respectively.

𝑦(𝑥) = −1.6 × 10 𝑥 + 5.2 × 10 𝑥 − 0.016𝑥 + 33𝑥 − 6.5 × 10 (4.4)

𝑦(𝑥) = 9.7 × 10 𝑥 − 0.02𝑥 + 16𝑥 − 3.9 × 10 (4.5)

𝑦(𝑥) = −9.8 × 10 𝑥 + 3.4 × 10 𝑥 − 0.043𝑥 + 25𝑥 − 5.2 × 10 (4.6)

 The desired path equations for WMR based on CPSO, FF and FFCPSO are

given in equations (4.7), (4.8) and (4.9), respectively.

𝑦(𝑥) = −4.8 × 10 𝑥 − 1.6 × 10 𝑥 + 0.00047𝑥 + 0.80𝑥 + 1.2 × 10 (4.7)

𝑦(𝑥) = − 1.6 × 10−6𝑥 + 0.0017 𝑥 + 0.62𝑥 + 1.1 × 10 (4.8)

𝑦(𝑥) = −1.9 × 10 𝑥 + 3.1 × 10 𝑥 − 0.0019𝑥 + 1.5𝑥 + 62 (4.9)

 While, the desired path equations for WMR based on CPSO, FF and FFCPSO

are obtained in equations (4.10), (4.11) and (4.12), respectively.

𝑦(𝑥) = −5.6 × 10 𝑥 + 2.9 × 10 𝑥 − 0.00043𝑥 + 0.41𝑥 + 7 × 10 (4.10)

𝑦(𝑥) = −2.6 × 10 𝑥 + 4.5 × 10 𝑥 − 0.0025𝑥 + 0.77𝑥 + 6.9 × 10 (4.11)

𝑦(𝑥) = 2 × 10 𝑥 − 2.1 × 10 𝑥 − 0.00012𝑥 + 0.36𝑥 + 7 × 10 (4.12)

 Figure (4.18) shows the both actual and desired paths based on CPSO, FF and

FFCPSO algorithms, respectively.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

69

Continued

500 550 600 650 700 750 800 850 900
0

100

200

300

400

500

600

700

800

900

1000

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path

CPSO / PATH 1

500 550 600 650 700 750 800 850 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path

FF / PATH 1

500 550 600 650 700 750 800 850 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path

FFCPSO / PATH 1

100 200 300 400 500 600 700 800 900
200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
CPSO / PATH 2

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
FFCPSO / PATH 2

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
FF / PATH 2

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

70

Figure (4.18): Desired and actual path for case B.

 The distance error between actual and desired path for each NI-mobile robot

based on three approaches are explained in Table (4.14).

Table (4.14): Distance error for case B.

Path No. Type of Intelligent Algorithm
CPSO FF FFCPSO

1 Distance
Error 100%

6.25 14.55 4.27
2 0.72 0.86 0.24
3 0.17 0.62 5.41E-3

0 100 200 300 400 500 600 700 800 900
700

720

740

760

780

800

820

840

860

880

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
CPSO / PATH 3

0 100 200 300 400 500 600 700 800 900
650

700

750

800

850

900

950

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path
FF / PATH 3

0 100 200 300 400 500 600 700 800 900
700

750

800

850

900

950

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
FFCPSO / PATH 3

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

71

 Then, based on kinematic equations of the differential drive mobile robot, one

can calculate the robot velocity on the desired path as follows:

1. Wheels Angular Velocity

 The angular velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is revealed in Figures (4.19), (4.20) and

(4.21), respectively.

Figure (4.19): The angular velocity of right and left wheels for 1st robot / case B based on

CPSO algorithm.

Figure (4.20): The angular velocity of right and left wheels for 1st robot / case B based on
FF algorithm.

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

4

5

6

7

8

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
ht

 a
nd

 L
ef

t
in

 (
ra

d/
se

c) Robot 1 / CPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

4

5

6

7

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

ra
d

/s
ec

) Robot 1 / FF algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

72

Figure (4.21): The angular velocity of right and left wheels for 1st robot / case B based on
FFCPSO algorithm.

 From the figure (4.19), (4.20) and (4.21), the angular velocity of the right and

left wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal to

(4.2) rad/sec, (4.8) rad/sec and (3.7) rad/sec, respectively.

 The angular velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the specific path of WMR is illustrated in Figures (4.22),

(4.23) and (4.24), respectively.

Figure (4.22): The wheel angular velocity of right and left for 2nd robot / case B based on

CPSO algorithm.

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

4

5

6

7

Time in (sec)

W
h

ee
l A

ng
u

la
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

 L
ef

t
in

 (
ra

d
/s

ec
) Robot 1 / FFCPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
ht

 a
n

d
 L

ef
t

in
 (

ra
d/

se
c) Mobile Robot 2 / CPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

73

Figure (4.23): The angular velocity of right and left wheels for 2nd robot / case B based on
FF algorithm.

Figure (4.24): The angular velocity of right and left wheels for 2nd robot / case B based on
FFCPSO algorithm.

 From figure (2.22), (2.23) and (2.24), the angular velocity of the right and left

wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal to

(1.8) rad/sec, (1.81) rad/sec and (1.79) rad/sec, respectively.

 The angular velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is manifested in Figures (4.25), (4.26)

and (4.27), respectively.

0 10 20 30 40 50 60 70 80
-6

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

ng
ul

ar
 V

el
oc

it
y

of
 R

ig
ht

 a
n

d
L

ef
t

in
 (

ra
d

/s
ec

) Mobile Robot 2 /FF algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80
-6

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

ng
ul

ar
 V

el
oc

it
y

of
 R

ig
h

t
an

d
 L

ef
t

in
 (

ra
d

/s
ec

) Mobile Robot 2 / FFCPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

74

Figure (4.25): The angular velocity of right and left wheels for 3rd robot / case B based on

CPSO algorithm.

Figure (4.26): The angular velocity of right and left wheels for 3rd robot / case B based on
FF algorithm.

Figure (4.27): The angular velocity of right and left wheels for 3rd robot / case B based on

FFCPSO algorithm.

0 10 20 30 40 50 60 70 80 90
-6

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l A

n
gu

la
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

 L
ef

t
in

 (
ra

d/
se

c) Mobile Robot 3 / CPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80 90
-6

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

ra
d

/s
ec

) Mobile Robot 3 / FF algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80 90
-6

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

n
gu

la
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

 L
ef

t
in

 (
ra

d/
se

c) Mobile Robot 3 / FFCPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

75

 From the figure (4.25), (4.26) and (4.27), the angular velocity of the right and

left wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal to

(1.44) rad/sec, (1.66) rad/sec and (1.41) rad/sec, respectively.

2. Wheels Linear Velocity

 The linear velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR system is displayed in Figures (4.28),

(4.29) and (4.30), respectively.

Figure (4.28): The linear velocity of right and left wheels for 1st robot / case B based on
CPSO algorithm.

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l

L
in

ea
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

 L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 1 / CPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

76

Figure (4.29): The linear velocity of right and left wheels for 1st robot / case B based on FF

algorithm.

Figure (4.30): The wheel linear velocity of right and left for 1st robot / case B based on

FFCPSO algorithm.

 From figure (4.28), (4.29) and (4.30), the linear velocity of the right and left

wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal to

(0.31) m/sec, (0.34) m/sec and (0.28) m/sec, respectively.

 The linear velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is clarified in Figures (4.31), (4.32) and

(4.33), respectively.

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
nd

 L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 1 / FF algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 5 10 15 20 25 30 35 40
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l

L
in

ea
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 1 / FFCPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

77

Figure (4.31): The linear velocity of right and left wheels for 2nd robot / case B based on

CPSO algorithm.

Figure (4.32): The linear velocity of right and left wheels for 2nd robot / case B based on FF

algorithm.

Figure (4.33): The linear velocity of right and left wheels for 2nd robot / case B based on
FFCPSO algorithm.

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l

L
in

ea
r

V
el

oc
it

y
of

 R
ig

ht
 a

n
d

 L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 2 / CPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
nd

 L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 2 / FF algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
n

d
L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 2 / FFCPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

78

 From the figures (4.31), (4.32) and (4.33), the linear velocity of the right and

left wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal to

(0.134) m/sec, (0.136) m/sec and (0.135) m/sec, respectively.

 The linear velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the specific path of WMR is exhibited in Figures (4.34),

(4.35) and (4.36), respectively.

Figure (4.34): The linear velocity of right and left wheels for 3rd robot / case B based on

CPSO algorithm.

Figure (4.35): The linear velocity of right and left wheels for 3rd robot / case B based on FF

algorithm.

0 10 20 30 40 50 60 70 80 90
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l L

in
ea

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
 L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 3 / CPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80 90
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
n

d
 L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 3 / FF algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

79

Figure (4.36): The linear velocity of right and left wheels for 3rd robot / case B based on
FFCPSO algorithm.

 From the figures (4.34), (4.35) and (4.36), the linear velocity of the right and

left wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal

to (0.108) m/sec, (0.125) m/sec and (0.108) m/sec, respectively.

3. Platform Linear and Angular Velocities

 The linear and angular velocities of the platform based on CPSO, FF and

FFCPSO algorithms for the path of WMR is demonstrated in Figures (4.37), (4.38)

and (4.39), respectively.

Figure (4.37): The platform angular and linear velocities for 1st robot / case B based on
CPSO algorithm.

0 10 20 30 40 50 60 70 80 90

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l

L
in

ea
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 3 / FFCPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

ng
ul

ar
 V

el
oc

it
y

in
 (

ra
d/

se
c)

Mobile Robot 1 / CPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

80

Figure (4.38): The platform angular and linear velocities for 1st robot / case B based on FF
algorithm.

Figure (4.39): The platform angular and linear velocities for 1st robot / case B based on
FFCPSO algorithm.

 The linear and angular velocities of the platform based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is exhibited in Figures (4.40), (4.41) and

(4.42), respectively.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 1 / FF algorithm

Linear Velocity Angluar Velocity

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 1 / FFCPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

81

Figure (4.40): The platform angular and linear velocities for 2nd robot / case B based on

CPSO algorithm.

Figure (4.41): The platform angular and linear velocities for 2nd robot / case B based on FF

algorithm.

0 10 20 30 40 50 60 70 80

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 2 / CPSO algorithm

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

ng
ul

ar
 V

el
oc

it
y

in
 (

ra
d

/s
ec

)

Mobile Robot 2 / FF algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

82

Figure (4.42): The platform angular and linear velocities for 2nd robot / case B based on

FFCPSO algorithm.
 The linear and angular velocities of the platform based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is clarified in Figures (4.43), (4.44) and

(4.45), respectively.

Figure (4.43): The platform angular and linear velocities for 3rd robot / case B based on

CPSO algorithm.

0 10 20 30 40 50 60 70 80
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 2 / FFCPSO algorithm

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80 90
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

ng
ul

ar
 V

el
oc

it
y

in
 (

ra
d/

se
c)

Mobile Robot 3 / CPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

83

Figure (4.44): The platform angular and linear velocities for 3rd robot / case B based on FF
algorithm.

Figure (4.45): The platform angular and linear velocities for 3rd robot / case B based on
FFCPSO algorithm.

4.3.3 Case C: Three Follow Up Wheeled NI- Mobile Robots

 In the case of empty map, the total path length for the first, second and third

wheeled NI- mobile robot from start to target point is equal to (1096.585) cm,

(1131.37) cm and (1167.261) cm, respectively.

4.3.3.1 Follower Optimal Path Finding

 Figures (4.46), (4.47), (4.48) and (4.49) reveal the simulation results of the

optimum route for each wheeled NI- mobile robot based on the PSO, CPSO, FF and

FFCPSO algorithms, respectively.

0 10 20 30 40 50 60 70 80 90
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d/
se

c)

Mobile Robot 3 / FF algorithm

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80 90
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

ng
u

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 3 / FFCPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

84

Figure (4.46): Follower Mobile Robots / case C Based on basic PSO algorithm.

Figure (4.47): Follower Mobile Robots / case C Based on CPSO algorithm.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

85

Figure (4.48): Follower Mobile Robots / case C Based on basic FF algorithm.

Figure (4.49): Follower Mobile Robots / case C Based on hybrid FFCPSO algorithm.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

86

 Based on the number of samples between start locations (𝑋 , 𝑌) and target

location (𝑋 , 𝑌), all the wheeled NI- mobile robots have the same travel time (𝑇 =

80) sec. Therefore, to avoid the collision that may occur between them, the WMR

has less velocity than the WMR and the WMR has less velocity than theWMR .

After ten runs, the outputted waypoints based on various algorithm are abstracted in

Table (4.15).

Table (4.15): Waypoints coordination for case C.

Path
No.

Waypoints
(D)

Coordinate
(𝐗, 𝐘)

Type of Intelligent Algorithm
PSO CPSO FF FFCPSO

P
at

h
1

D X (cm) 370.366 376.315 262.277 505.389
Y (cm) 467.166 112.841 362.895 609.776

D X (cm) 539.111 506.144 508.853 713.274
Y (cm) 646.807 125.203 621.166 801.019

D X (cm) 608.755 619.456 677.588 787.644
Y (cm) 787.195 726.561 788.128 854.462

P
at

h
2

D X (cm) 373.953 439.438 280.369 132.986
Y (cm) 450.269 522.830 388.581 141.205

D X (cm) 479.229 538.403 544.960 176.969
Y (cm) 577.363 642.184 677.696 195.978

D X (cm) 664.174 684.755 705.875 365.075
Y (cm) 765.556 784.528 818.550 430.423

P
at

h
3

D X (cm) 298.845 254.816 421.596 383.230
Y (cm) 331.062 261.703 437.264 439.346

D X (cm) 410.864 321.636 514.929 532.083
Y (cm) 481.889 357.383 615.450 636.074

D X (cm) 607.865 549.014 669.483 677.026
Y (cm) 718.221 653.913 780.972 769.369

 Figures (4.50), (4.51) and (4.52) explain the changing of the objective function

through the number of iteration until reaching the optimal value for the first, second

and third paths, respectively.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

87

Figure (4.50): Variation of objective function for first path through the number of
iterations / case C.

 From the figure (4.50), the optimal path with shortest distance using standard

PSO is equal to (1110.71) with in iteration (74) and is equal to (1109.89) with in

iteration (24) in the CPSO algorithm. The optimal path with shortest distance using

standard FF is equal to (1113.74) with in iteration (64) and is equal to (1108.98) with

in iteration (48) in the proposed hybrid FFCPSO algorithm.

Figure (4.51): Variation of objective function for second path through the number of
iterations / case C.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

88

 From the figure (4.51), the optimal path with shortest distance using standard

PSO is equal to (1148.48) with in iteration (74) and is equal to (1148.04) with in

iteration (45) in the CPSO algorithm. The optimal path with shortest distance using

standard FF is equal to (1159.98) with in iteration (65) and is equal to (1147.96) with

in iteration (46) in the proposed hybrid FFCPSO algorithm.

Figure (4.52): Variation of objective function for third path through iterations / case C.

 From the figure (4.52), the optimal path with shortest distance using standard

PSO is equal to (1188.24) with in iteration (57) and is equal to (1187.68) with in

iteration (43) in the CPSO algorithm. The optimal path with shortest distance using

standard FF is equal to (1194.27) with in iteration (53) and is equal to (1187.17) with

in iteration (45) in the FFCPSO algorithm.

 Since the candidate solutions varied intensively, the PSO algorithm can achieve

best path with shortest distance in run no.7. While the best path with the shortest

distance by using CPSO algorithm is achieved in run no. 6. FF algorithm can achieve

it in run no. 10 and FFCPSO algorithm in run no. 8.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

89

 After executing the programs of various intelligent optimization algorithms ten

times, the results for the case C are summarized in Table (4.16). Moreover, the

percentages of the objective function between algorithms are given in Table (4.17).

Table (4.16): Comparison Results for case C.

Robot
No.

Type of
Intelligent
Algorithm

Min.
Distance
in (cm)

Fitness

Iteration
of best
value

Max.
Distance
in (cm)

Average
in (cm)

Standard
Deviation

1

PSO 1110.71 0.09 74 1114.2 1111.49 0.0323
CPSO 1109.89 0.09 24 1112.28 1110.15 7.023E-3

FF 1113.74 0.0897 64 1119.04 1115.34 0.0227
FFCPSO 1108.98 0.0901 48 1110.2 1109.58 4.481E-3

2

PSO 1148.48 0.087 74 1148.83 11.48.6 1.506E-3
CPSO 1148.04 0.0871 45 1148.79 1148.18 2.191E-3

FF 1159.98 0.0862 65 1162.77 1160.83 8.737E-3
FFCPSO 1147.96 0.0871 46 1148.35 1148.05 1.468E-3

3

PSO 1188.24 0.0841 57 1190.45 1188.81 5.637E-3
CPSO 1187.68 0.0841 43 1188.92 1188.13 4.883E-3

FF 1194.27 0.0837 53 1199.39 1197.49 0.015

FFCPSO 1187.17 0.0842 45 1188.15 1187.77 2.610E-3

Table (4.17): Percentages of objective function between algorithms for case C.

Robot
No.

Algorithm
Type

PSO-
CPSO

PSO-
FF

PSO-
FFCPSO

CPSO-
FF

CPSO-
FFCPSO

FF-
FFCPSO

1
Percentage,

%

0.0738 0.272 0.1557 0.3456 0.0819 0.4273
2 0.0383 0.9913 0.0452 1.0293 6.968E-3 1.0362
3 0.0681 0.4839 0.111 0.5518 0.0429 0.5945

 The presented algorithms tries to achieve the best path for the three follower

mobile robots. These mobile robots have the same travel time on the desired path

because they have the same number of samples between starting and target positions

but difference in robot’s start time in order to avoid the collision that may occur

between these robots and based on national instrument robot length, there are

difference in robot’s start time. Where, the WMR is start to move at (𝑇 = 0) sec,

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

90

the WMR is start to move at (𝑇 = 5) sec and the WMR is start to move at (𝑇 =

10) sec. From the case C results, it is clearly to say that CPSO approach can provide

a wonderful following for three wheeled NI- mobile robots.

4.3.3.2 Follower Mobile Robots Velocities

 After finding the shortest paths of WMRs based on each swarm-based

optimization technique, the desired path equations for WMR based on CPSO, FF

and FFCPSO are given in fitting equations (4.13), (4.14) and (4.15), respectively.

𝑦(𝑥) = −8.9 × 10 𝑥 + 4.9 × 10 𝑥 + 0.00028𝑥 + 0.91𝑥 + 61 (4.13)

𝑦(𝑥) = −2.5 × 10 𝑥 + 4.2 × 10 𝑥 − 0.0028𝑥 + 1.9𝑥 − 5.3 (4.14)

𝑦(𝑥) = −1.4 × 10 𝑥 + 2.2 × 10 𝑥 − 0.0015𝑥 + 1.6𝑥 + 3.2 (4.15)

 The desired path equations for WMR based on CPSO, FF and FFCPSO are

given in equations (4.16), (4.17) and (4.18), respectively.

𝑦(𝑥) = 2 × 10 𝑥 − 1.5 × 10 𝑥 + 0.0013𝑥 + 0.89𝑥 + 3.9 (4.16)

𝑦(𝑥) = −2.7 × 10 𝑥 + 5.1 × 10 𝑥 − 0.004𝑥 + 2.5𝑥 − 1 × 10 (4.17)

𝑦(𝑥) = −1 × 10 𝑥 + 0.00095𝑥 + 0.99𝑥 − 4.8 (4.18)

 While, the desired path equations for WMR based on CPSO, FF and FFCPSO

are given in equations (4.19), (4.20) and (4.21), respectively.

𝑦(𝑥) = 1.2 × 10 𝑥 − 3.3 × 10 𝑥 + 0.0023𝑥 + 0.84𝑥 − 49 (4.19)

𝑦(𝑥) = −2.8 × 10 𝑥 + 0.0035𝑥 + 0.061𝑥 + 16 (4.20)

𝑦(𝑥) = 1.5 × 10 𝑥 − 3.9 × 10 𝑥 + 0.0026𝑥 + 0.74𝑥 − 45 (4.21)

 Figure (4.53) shows the both actual and desired paths forWMR , WMR and

WMR based on CPSO, FF and FFCPSO algorithms, respectively.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

91

Continued

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
CPSO / PATH 1

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path
FF / PATH 2

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

1000

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path
FFCPSO / PATH 2

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

1000

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
FFCPSO / PATH 1

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path
CPSO / PATH 2

100 200 300 400 500 600 700 800 900
100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actaul path
FF / PATH 1

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

92

Figure (4.53): Desired and actual path for case C.

 The distance error between actual and desired path for each NI-mobile robot

based on three approaches are explained in Table (4.18).

Table (4.18): Distance error for case C.

Path No. Type of Intelligent Algorithm
CPSO FF FFCPSO

1 Distance
Error 100%

1.12 2.05 0.98
2 0.39 2.92 1.19
3 2.28 8.43 2.03

 Subsequently, based on the kinematic equations of differential drive mobile

robot, one can calculate the robot velocity on its special path as follows:

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

1000

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path
CPSO / PATH 3

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path
FF / PATH 3

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

X-Axis (cm)

Y
-A

xi
s

(c
m

)

Desired path Actual path
FFCPSO / PATH 3

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

93

1. Wheels Angular Velocity

 The angular velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is shown in Figures (4.54), (4.55) and

(4.56), respectively.

Figure (4.54): The angular velocity of right and left wheels for 1st robot / case C based on

CPSO algorithm.

Figure (4.55): The angular velocity of right and left wheels for 1st robot / case C based on
FF algorithm.

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l A

n
gu

la
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

 L
ef

t
in

 (
ra

d
/s

ec
) Mobile Robot 1 / CPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
 L

ef
t

in
 (

ra
d

/s
ec

) Mobile Robot 1 /FF algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

94

Figure (4.56): The angular velocity of right and left wheels for 1st robot / case C based on
FFCPSO algorithm.

 From the figure (4.54), (4.55) and (4.56), the angular velocity of right and left

wheels for WMR based on CPSO, FF and FFCPSO approaches are equal to (1.86)

rad/sec, (2.34) rad/sec and (1.85) rad/sec, respectively.

 The angular velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is illustrated in Figures (4.57), (4.58) and

(4.59), respectively.

Figure (4.57): The angular velocity of right and left wheels for 2nd robot/ case C based on CPSO

algorithm.

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

n
gu

la
r

V
el

oc
it

y
of

 R
ig

ht
 a

n
d

 L
ef

t
in

 (
ra

d
/s

ec
) Mobile Robot 1 / FFCPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l

A
ng

u
la

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
 L

ef
t

in
 (

ra
d

/s
ec

) Mobile Robot 2 / CPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

95

Figure (4.58): The angular velocity of right and left wheels for 2nd robot / case C based on FF

algorithm.

Figure (4.59): The angular velocity of right and left wheels for 2nd robot / case C based on

FFCPSO algorithm.

 From the figure (4.57), (4.58) and (4.59), the angular velocity of right and left

wheels For WMR based on CPSO, FF and FFCPSO approaches are equal to (1.99)

rad/sec, (2.75) rad/sec and (2.01) rad/sec, respectively.

 The angular velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is displayed in Figures (4.60), (4.61) and

(4.62), respectively.

0 10 20 30 40 50 60 70 80

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Time in (sec)

W
he

el
 A

ng
ul

ar
 V

el
oc

it
y

of
 R

ig
ht

 a
nd

 L
ef

t
in

 (
ra

d/
se

c) Mobile Robot 2 / FF algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l

A
n

gu
la

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

ra
d/

se
c) Mobile Robot 2 / FFCPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

96

Figure (4.60): The angular velocity of right and left wheels for 3rd robot/ case C based on

CPSO algorithm.

Figure (4.61): The angular velocity of right and left wheels for 3rd robot/ case C based on
FF algorithm.

Figure (4.62): The angular velocity of right and left wheels for 3rd robot / case C based on
FFCPSO algorithm.

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

n
gu

la
r

V
el

oc
it

y
of

 R
ig

h
t

an
d

 L
ef

t
in

 (
ra

d/
se

c) Mobile Robot 3 / CPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

ng
ul

ar
 V

el
oc

it
y

of
 R

ig
h
t

an
d
 L

ef
t

in
 (

ra
d/

se
c) Mobile Robot 3 / FF algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

ng
ul

ar
 V

el
oc

it
y

of
 R

ig
ht

 a
nd

 L
ef

t
in

 (
ra

d/
se

c) Mobile Robot 3 / FFCPSO algorithm

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

97

While from the figure (4.60), (4.61) and (4.62), the angular velocity of right and left

wheels for WMR based on CPSO, FF and FFCPSO approaches are equal to (2.08)

rad/sec, (2.15) rad/sec and (2.04) rad/sec, respectively.

2. Wheels Linear Velocity

 Figures (4.63), (4.64) and (4.65) clarify the left and right wheels linear velocity

for the path of WMR based on the CPSO, FF and FFCPSO algorithms, respectively

Figure (4.63): The linear velocity of right and left wheels for 1st robot / case C based on CPSO

algorithm.

Figure (4.64): The linear velocity of right and left wheels for 1st robot / case C based on FF
algorithm.

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
n

d
L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 1 / CPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
 L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 1 / FF algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

98

Figure (4.65): The linear velocity of right and left wheels 1st robot/ case C based on FFCPSO
algorithm.

 From the figures (4. 63), (4.64) and (4.65), the linear velocity of the right and

left wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal to

(0.139) m/sec, (0.165) m/sec and (0.138) m/sec, respectively.

 The linear velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is revealed in Figures (4.66), (4.67) and

(4.68), respectively.

Figure (4.66): The linear velocity of right and left wheels for 2nd robot / case C based on

CPSO algorithm.

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 1 / FFCPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 2 / CPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

99

Figure (4.67): The linear velocity of right and left wheels for 2nd robot / case C based on FF
algorithm.

Figure (4.68): The linear velocity of right and left wheels for 2nd robot/ case C based on
FFCPSO algorithm.

 For WMR , the linear velocity of the right and left wheels based on the CPSO,

FF and FFCPSO approaches are equal to (0.149) m/sec, (0.177) m/sec and (0.15)

m/sec, respectively.

 The linear velocity of the left and right wheels based on the CPSO, FF and

FFCPSO algorithms for the path of WMR is manifested in Figures (4.69), (4.70)

and (4.71), respectively.

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
 L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 2 / FF algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
he

el
 L

in
ea

r
V

el
oc

it
y

of
 R

ig
ht

 a
n

d
L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 2 / FFCPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

100

Figure (4.69): The linear velocity of right and left wheels for 3rd robot / case C based on

CPSO algorithm.

Figure (4.70): The linear velocity of right and left wheels for 3rd robot / case C based on FF
algorithm.

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l L

in
ea

r
V

el
oc

it
y

of
 R

ig
h

t
an

d
L

ef
t

in
 (

m
/s

ec
)

Mobile Robot 3 / CPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l

L
in

ea
r

V
el

oc
it

y
of

 R
ig

ht
 a

n
d

 L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 3 / FF algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

101

Figure (4.71): The linear velocity of right and left wheels for 3rd robot / case C based on
FFCPSO algorithm.

 While for WMR , the linear velocity of the right and left wheels based on the

CPSO, FF and FFCPSO approaches are equal to (0.157) m/sec, (0.21) m/sec and

(0.154) m/sec, respectively.

3. Platform Linear and Angular Velocity

 The angular and linear velocities of the platform based on the CPSO, FF and

FFCPSO algorithms for WMR is demonstrated in Figures (4.72), (4.73) and (4.74),

respectively.

Figure (4.72): The platform angular and linear velocities for 1st robot / case C based on
CPSO algorithm.

0 10 20 30 40 50 60 70 80

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time in (sec)

W
h

ee
l

L
in

ea
r

V
el

oc
it

y
of

 R
ig

ht
 a

n
d

 L
ef

t
in

 (
m

/s
ec

)

Mobile Robot 3 / FFCPSO algorithm

The Linear Velocity of Right Wheel The Linear Velocity of Left Wheel

0 10 20 30 40 50 60 70 80
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

A

ng
u

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 1 / CPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

102

Figure (4.73): The platform angular and linear velocities for 1st robot / case C based on FF
algorithm.

Figure (4.74): The platform angular and linear velocities for 1st robot / case C based on
FFCPSO algorithm.

 The angular and linear velocities of the platform based on the CPSO, FF and

FFCPSO algorithms for WMR is viewed in Figures (4.75), (4.76) and (4.77),

respectively.

0 10 20 30 40 50 60 70 80
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 1 / FF algorithm

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

A
ng

u
la

r
V

el
oc

it
y

in
 (

ra
d/

se
c)

Mobile Robot 1 / FFCPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

103

Figure (4.75): The platform angular and linear velocities for 2nd robot/ case C based on

CPSO algorithm.

Figure (4.76): The platform angular and linear velocities for 2nd robot/ case C based on FF

algorithm.

Figure (4.77): The platform angular and linear velocities for 2nd robot/ case C based on

FFCPSO algorithm.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 2 / CPSO algorithm

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d/
se

c)

Mobile Robot 2 / FF algorithm

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A
n

gu
la

r
V

el
oc

it
y

in
 (

ra
d

/s
ec

)

Mobile Robot 2 / FFCPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

104

 The angular and linear velocities of the platform based on the CPSO, FF and

FFCPSO algorithms for WMR is explained in Figures (4.78), (4.79) and (4.80),

respectively.

Figure (4.78): The platform angular and linear velocities for 3rd robot / case C based on
CPSO algorithm.

Figure (4.79): The platform angular and linear velocities for 3rd robot/ case C based on FF
algorithm.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

ng
ul

ar
 V

el
oc

it
y

in
 (

ra
d/

se
c)

Mobile Robot 3 / CPSO algorithm

Linear Velocity Angluar Velocity

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

A
ng

ul
ar

 V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 3 / FF algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

105

Figure (4.80): The platform angular and linear velocities for 3rd robot / case B based on

FFCPSO algorithm.

 From the all velocities figures, the angular velocity of the left and right wheels

(𝑊𝐿& 𝑊𝑅) should range between (-6.67, +6.67) rad/sec. The linear velocity

constrain of the left and right wheel (𝑉𝐿& 𝑉𝑅) should range between (-0.5, +0.5)

m/sec. While, the angular velocity of platform (𝑉) should range between (-2.77,

+2.77) rad/sec, and the linear velocity constrain of platform (𝑉) should not exceed

(0.5) m/sec. Clearly, these figures demonstrate the effectiveness of the optimization

algorithms by showing its ability to produce smooth and small values of the angular

and linear velocities of left and right wheels, this leads to a small power that is

wanted by the mobile robot to move on its path.

4.4 Performance Evaluation

 In this section, three research papers are utilized in order to evaluate the

performance of the metaheuristic (population-based) algorithms and cubic splines

interpolation with the same research’s parameters setting.

 In the first evaluation phase, a comparison is done between four optimization

algorithms with the basic Artificial Bee Colony (ABC) and Directed Artificial Bee

Colony (DABC), which were already presented in [7]. The four optimization

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Time in (sec)

L
in

ea
r

V
el

oc
it

y
in

 (
m

/s
)

an
d

 A

n
gu

la
r

V
el

oc
it

y
in

 (
ra

d
/s

ec
)

Mobile Robot 3 / FFCPSO algorithm

Linear Velocity Angluar Velocity

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

106

algorithms are applied on (10×10) m two-dimensional workspace with start point

(0, 0) and target point (10, 10). Figures (4.81) offers the results of ABC and DABC

algorithms. While, Figure (4.82) shows the results of optimization algorithms.

Figure (4.81 a-b): The best results achieved by [7] case study 2.

Figure (4.82): The best results of first comparison.

 Table (4.19) summarizes the best path length, which can be achieved by various

intelligent algorithms.

Table (4.19): Results Comparison with [7].

 [7] The proposed Algorithms
Algorithm ABC DABC PSO CPSO FF FFCPSO

Distance (m) 15.073 14.798 14.684 14.653 14.758 14.618

0 2 4 6 8 10

0

2

4

6

8

10

X- Axis (m)

Y
 -

 A
xi

s
(m

)

PSO CPSO FF FFCPSO

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

107

 In the second evaluation phase, a comparison is done between the cubic

polynomial interpolation and Bezier curve based on PSO-w, GA and FA algorithms,

which were already presented in [21]. The algorithms are applied on (15×15) m 2D

arena with start point (5, 5) and target point (15, 15). Figure (4.83) reveals the

simulation results of [21], and Figure (4.84) show the results of the cubic polynomial

interpolation for the two maps.

Figure (4.83 a-b): The best results achieved by [21].

Figure (4.84 a-b): The best results of second comparison / Map a and Map c.

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

X

Y

PSO CPSO FF FFCPSO

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

X

Y

PSO CPSO FF FFCPSO

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

108

 Table (4.20) summarizes the best path length for two maps, which can be

achieved by the various intelligent algorithms.

Table (4.20): Results Comparison with [21].

[21] The Proposed Algorithms
Algorithm GA PSO-w FA PSO CPSO FF FFCPSO

Map a 17.3 17.13 17.44 14.795 14.698 16.377 14.714
Map c 18.23 17.76 18.31 16.385 16.353 16.744 16.349

 While, in the third evaluation phase, a comparison is done between the cubic

polynomial interpolation and Bezier curve based on AFA and CFA-OAS algorithms,

which were already presented in [24]. The algorithms are applied on (10×10) m two-

dimensional arena with the start point (1, 1) and target point (11, 17). Figure (4.85)

shows the results of [25], and Figure (4.86) shows the results of cubic polynomial

interpolation based on PSO and FF algorithms.

Figure (4.85a-b): The best results achieved by [24] case one.

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION

109

Figure (4.86): The best results of third comparison.

 Table (4.21) summarizes the best path length that can be achieved by various

intelligent algorithms.

Table (4.21): Results Comparison with [24].

[24] The proposed Algorithms
Algorithm AFA CFA-OAS PSO CPSO FF FFCPSO

Distance (m) 12.41 11.85 11.82 11.814 11.85 11.813
Iteration No. 68 72 42 28 32 30

 The above Comparisons analysis with previous papers between various

intelligent algorithms are concluded as follows:

1. Compared with other previous techniques with the same research’s parameter

setting, the features of presented algorithms stands out on path planning problems

where cubic polynomial interpolation is used to generate the smooth path.

2. The results also tells that cubic polynomial interpolation is suitable on path

planning problems for its stable feature when we employed population-based

techniques in order to optimize its waypoints.

2 4 6 8 10
0

1

2

3

4

5

6

7

8

X

Y

PSO CPSO FF FFCPSO

CHAPTER FIVE

CONCLUSIONS AND SUGGESTIONS

FOR FUTURE WORK

110

CHAPTER FIVE

CONCLUSIONS AND SUGGESTIONS FOR FUTURE
WORK

5.1 Conclusions

 This thesis presents in details, a comparative study of various types of

optimization algorithms including Chaotic Particle Swarm Optimization (CPSO)

and proposed Hybrid Firefly Chaotic Particle Swarm Optimization (FFCPSO)

algorithms with standard version of Particle Swarm Optimization (PSO) and Firefly

(FF) algorithms that applied to single and multi-mobile robot path planning problem.

The effectiveness of these algorithms was tested on different cases; the results

achieved were verified through comparison of adaptive algorithms with each other

and with the previous works. From the collected results and the comparison, the

following can be concluded:

1. The simulation results showed the validity of the kinematic model of the non-

holonomic wheeled mobile robot (NWMR).

2. Both PSO and FF algorithms are powerful methods for their efficiency. PSO is

simple to implement as compared to FF due to its less number of variables. FF

has more variables and most of them are random. In addition, these parameters

have been changed to obtain an optimal, safe, smooth and guaranteed path.

3. The effective minimization capability of specific paths for NI-mobile robots

model before (80) iterations for presented techniques is based on three cases

according to three objectives: shortest path to target, safety and smoothness to

follow a desired continuous path.

CHAPTER FIVE CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

112

4. Development of the standard version of PSO with Chaotic optimization in order

to form Chaotic PSO algorithm has a better ability in order to get away from local

minima with shortest path and less number of iteration than basic PSO algorithm.

5. PSO keeps a memory of its earlier iteration by storing the values of personal and

global best, so it can be concluded that there is a balance between the local and

global minima. FF does not memorize or remember any history of better situation

for each firefly and this makes them to move regardless of its previous better

situation, and they may end up missing their situations. Therefore, the hybrid

FFCPSO is proposed firstly for this purpose and then to reduce the FF

randomization.

6. The four intelligent algorithms have an effectiveness and good performance by

finding feasible, shortest and smoothness without colliding any obstacles in the

environment in order to solve the problem of robot path planning. Therefore,

these algorithms could be suitable for multi robot systems to find the shorted path

length and avoid the collision between them.

7. From Tables (4.9), (4.12) and (4.16) show, Chaotic PSO algorithm is a perfect

optimization algorithm due to its effectiveness to provide best path with

minimum time and less number of iteration.

8. Figure (4.47) offers that CPSO algorithm is a very good method in the case of

follow up mobile robot than other presented methods.

9. The simulation results explained the effectiveness of the cubic polynomial

interpolation based on suggested techniques by displaying its ability to produce

very good smooth values of the velocities for left and right wheels and mobile

robots velocities without exceeding the limited values (less than 0.5 m/sec for

linear velocity).

CHAPTER FIVE CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

112

 5.2 Suggestions for Future Work

 Many issues interested in solving the mobile robot path planning problems.

Some of them, which might entice a researcher to work with and can be

recommended as future works, are indicated as follows:

1. Using other types of intelligent algorithms to find the optimal desired path,

such as Cat Swarm algorithm (CSA), Fruit fly algorithm (FA), etc.

2. Applying the enhanced algorithms to real wheeled NI- mobile robot can be a

good challenge because of nonlinear factors such as noise, which the

optimization algorithm has to be able to deal with these factors. Then, making

a comparison between theoretical part and practical part.

3. Future research can investigate the performance of the suggested algorithms in

dynamic unknown environments and use fuzzy rules as a decision maker in

order to prevent a collision with dynamic obstacles or other mobile robot.

4. Workout other types of environment like maze-type, and enhancements in

terms of obstacles like including the different shapes of obstacles. The different

shapes, like square, upward U, inverted U, upward V, and inverted V can be

included in the environment.

5. Another future direction is to examine the effectiveness of the suggested

approaches by solving the obstacle collisions limited to three dimensions (3D)

environment.

REFERENCES

113

REFERENCES

1. J. Lu, G. Zhang, D. Ruan and F. Wu, “Multi-Objective Group Decision Making,” World

Scientific Publishing Co. Pte. Ltd., 2007.

2. F. C. Lunenburg, “Decision Making Process,” National Forum of Educational Administration

and Supervision Journal, Vol. 27, No. 4, 2010

3. K. M. Passino and S. Yourkovich, “Fuzzy Control,” Addison Wesley Longman, 1998.

4. M. Xie, “Fundamentals of Robotics,” Linking Perception to Action, Singapore: World

Scientific Publishing Co. Pte. Ltd., 2003.

5. S. G. Tzafestas, “Introduction to Mobile Robot Control,”1st Edition, Elsevier, 2014.

6. N. H. Abbas and J. A. Abdulsaheb, “An Adaptive Multi- Objective Particle Swarm

Optimization Algorithm for Multi – Robot Path Planning ,” Journal of Engineering, Vol.

22, No. 7, pp.164-180, 2016.

7. N. H. Abbas and F. M. Ali, “Path Planning of an Autonomous Mobile Robot using Directed

Artificial Bee Colony Algorithm,” International Journal of Computer Applications, Vol. 96,

No. 11, pp.11-16, 2014.

8. M. S. Alam, M. U. Rafique and M. U. Khan, “Mobile Robot Path Planning in Static

Environments using Particle Swarm Optimization,” International Journal of Computer

Science and Electronics Engineering, Vol. 3, pp. 253-257, 2015.

9. E. Masehian, and D. Sedighizadeh, “Classic and Heuristic Approaches in Robot Motion

Planning – A Chronological Review,” World Academy of Science, Engineering and

Technology, Vol. 5, No. 29, pp. 101-106, 2007.

10. S. Sedhumadhavan and E. Niranjana, “An Analysis of Path Planning for Autonomous

Motorized Robots,” International Journal of Advance Research, Ideas and Innovations in

Technology, Vol. 3, pp. 1234-1257, 2017.

11. P. Benavidez and M. Jamshidi, ‟ Mobile Robot Navigation and Target Tracking System,”

International Conference on system of systems Engineering, New Mexico, USA, 2011.

12. M. W. Abbas, ‟Path Planning of Mobile Robots using Genetic Algorithms and Modified

Artificial Potential Field,” Master Thesis, Control and Systems Engineering Dept.,

University of Technology, Baghdad, Iraq, 2012.

REFERENCES

114

13. H. Ahmed and J. Glasgow, “Swarm Intelligence: Concepts, Models and Applications,”

Technical Report, School of Computing, University of Queen, Ontario, Canada, 2012.

14. G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” In NATO Advanced

Workshop on Robots and Biological Systems, IL Ciocco, Tuscany, Italy, 1989.

15. J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE

International Conference on Neural Networks, NJ, USA, pp. 1942–1948, 1995.

16. R. C. Eberhart and J. Kennedy, ” A new optimizer using particle swarm theory,” In

Proceedings of the Sixth International Symposium on Micro Machine and Human Science,

Nagoya, Japan, pp. 39–43, 1995.

17. X. Yang, “Firefly algorithms for multimodal optimization,” in: Stochastic Algorithms:

Foundations and Applications, Lecture Notes in Computer Sciences, Vol. 5792, pp. 169-178,

2009.

18. C. Liu, Z. Gao and W. Zhao, “A New Path Planning Method Based on Firefly Algorithm,”

In Proceedings of the IEEE International Conference on Computational Science and

Optimization, pp. 775-778, 2012.

19. C. Purcaru, R .-E. Precup, D. Iercan, L.O. Fedorovici, and R.C. David ,“Hybrid PSO-GSA

Robot Path Planning Algorithm in Static Environments with Danger Zones”, In

Proceedings of the IEEE International Conference on System Theory, Control and Computing,

Sinaia, Romania, pp. 434-439, 2013.

20. E. Masehian and D. Sedighizadeh, “An Improved Particle Swarm Optimization Method

for Motion Planning of Multiple Robots,” Springer Tracts in Advanced Robotics, Vol. 83,

pp. 175-188, 2013.

21. B. Li, L. Liu, Q. Zhang, D. Lv, Y. Zhang, J. Zhang and X. Shi, “ Path Planning Based on

Firefly algorithm and Bezier curve,” In Proceedings of the IEEE International Conference

on Information and Automation, pp. 630-633, 2014.

22. M. R. Panda, R. Priyadarshini and S. K. Pradhan, “Autonomous Mobile Robot Path

Planning Using Hybridization of Particle Swarm Optimization and Tabu search,” In

Proceedings of the IEEE International Conference on Computational Intelligence and

Computing Research, 2016.

REFERENCES

115

23. E. Cholodowicz and D. Figurowski, “Mobile Robot Path Planning with Obstacle

Avoidance using Particle Swarm Optimization,” Pomiary Automatyka Robotyka, Vol. 21,

No. 3, pp. 59-68, 2017.

24. D. Pang, G. Guan and J. Li, “Chaotic Firefly Algorithm with the Optimization Adjustment

Strategy for Mobile Robot Path Planning,” International Journal of Science, Vol. 4, No. 3,

2017.

25. A. Tharwart, M. Elhoseny, A. E. Hassanien, T. Gabel and A. Kumar, “Intelligent Bezier

curve-based Path Planning model using Chaotic Particle Swarm Optimization

Algorithm,” Springer, Journal of Cluster Computing, pp. 1-22, 2018.

26. O. Mohareri, “Mobile Robot Trajectory Tracking using Neural Networks,” Master Thesis,

Dep. of Electrical Engineering ,University of Sharjah, Sharjah, American, 2009.

27. A. S. Al-Araji, “Development of Kinematic Path-Tracking Controller Design for Real

Mobile Robot via Back-Stepping Slice Genetic Robust Algorithm Technique,” Arabian

Journal for Science and Engineering, Vol. 39, No.12, pp. 8825–8835, 2014.

28. D. Hanafi, Y. M. Abueejela and M. F. Zakaria, “Wall Follower Autonomous Robot

Development Applying Fuzzy Incremental Controller,” Intelligent Control and

Automation, Vol. 4, pp. 18-25, 2013.

29. K. M. Han, “Collision Free Path Planning Algorithms for Robot Navigation Problem,”

Master Thesis, University of Missouri, Columbia, 2007.

30. A. M. Eliwa, “Mobile Robot Path Planning Using Genetic Algorithm Global Path

Planning And Potential Field Path Adjusting,” Master Thesis, University of Dalhousie,

Halifax, Nova Scotia, 2017.

31. H. Miao, “ Robot Path Planning in Dynamic Environments using Simulated Annealing

Based Approach,” Master Thesis, University of Technology, Queensland, Australia, 2009.

32. S. A. Mnubi, “Motion Planning and Trajectory for Wheeled Mobile Robot,” International

Journal of Science and Research, Vol. 5, pp. 1064-1068, 2016.

33. F. M. Ali, “Improvement of Path Planning for Autonomous Mobile Robots Using

Population-Based Optimization Algorithms,” Master Thesis, University of Baghdad,

Baghdad, Iraq, 2014.

REFERENCES

116

34. L. Sudraba, A. Nikitenko, “Application of Mapping methods for Solving Navigation Tasks

of Autonomous Intelligent System,” International Standard Serial Number of Computer

Science, pp. 67-79, 2008.

35. A. Astolfi, “Optimization: An Introduction,” 2006.

36. A. Pandey, “Mobile Robot Navigation and Obstacle Avoidance Techniques: A Review,”

International Robotics and Automation Journal, Vol. 2, pp. 1-12, 2017.

37. R. Islam, Tajmiruzzaman, M. H. Muftee and S. Hossain, “ Autonomous Robot Path Planning

Using Particle Swarm Optimization in Dynamic Environment with Mobile Obstacles &

Multiple Target,” International Conference on Mechanical, Industrial and Energy

Engineering, 2014.

38. A. Cosic, M. Susic and D. Katic, “Advanced Algorithms for Mobile Robot Motion

Planning and Tracking in structured Static Environments Using Particle Swarm

Optimization,” Serbian Journal of Electrical Engineering, Vol. 9, No. 1, 2012.

39. D. Wang, D. Tan and L. Liu, “Particle Swarm Optimization Algorithm: an overview,”

Springer-Verlag Berlin Heidelberg, Vol. 22, pp. 387–408, 2018.

40. Y. Shi and R. C. Eberhart, “A Modified Particle Swarm Optimizer,” Proceedings of the

IEEE International Conference on Evolutionary Computation, Piscataway, NJ, IEEE Press, pp.

69-73, 1998.

41. M. Shamshiri, C. K. Gan, K. Jusoff, I. J. Hasan, M. R. Abghani and M. Yusoff, “Using

Particle Swarm Optimization Algorithm in the Distribution Systems Planning,”

Australian Journal of Basic and Applied Sciences, Vol. 7, pp. 85-92, 2013.

42. A. Kundur, “Evolution of Firefly Algorithm using Benchmark Functions,” Master Thesis,

North Dakota State University of Agriclture and Applied Science, Fargo, North Dakota, 2013.

43. X. S. Yang, “Nature-Inspired Metaheuristic Algorithms,” 2nd Edition, Luniver Press, 2010.

44. T. Hu, “The Comparative Analysis and Prospect of Two Heuristic Algorithms: The

Firefly Algorithm and the Basic Ant Colony Algorithm,” International Journal of Business

and Social Science, Vol. 5, No. 7, pp. 257-260, 2014.

45. K. R. Subhashini and A. T. PraveenKumar,” Comparative Analysis of Linear and

Nonlinear Pattern Synthesis of Hemispherical Antenna Array Using Adaptive

Evolutionary Techniques,” Hindawi Publishing Corporation, International Journal of

Antennas and Propagation, Article ID 987140, pp. 1-10, 2014.

REFERENCES

117

46. S. R. Chang and U. Y. Huh, “Continuity Smooth Path Planning Using Cubic Polynomial

Interpolation with Membership Function,” International Journal of Electrical Engineering,

Vol. 10, No. 2, pp. 742-753, 2015.

47. A. N. Hussain , F. Melk , M. A. Rashid , L. Moamed , and N. A. Mohd Affendi, ” Optimal

Coordinated Design of Multiple Damping Controllers Based on PSS and UPFC Device

to Improve Dynamic Stability in the Power System,” Hindawi Publishing Corporation

Mathematical Problem in Engineering, Article ID 96528, pp1-15, 2013.

48. Text manual from NI Company. http://sine.ni.com/nips/cds/view/p/lang/en/ (2015). Accessed

March 2015.

APPENDIX

118

Appendix A
Parameters Setting

 Parameters setting for any evolutionary algorithm is important as designing the
algorithm itself. In the following sections, the effect of the control points
(waypoints), number of individuals and the number of iterations on the results were
investigated as illustrated below.

 Control Points Setting

 In this simulation, the number of control points (waypoints) are randomly
selected from 1 to 16 control points based on basic PSO and basic FF algorithms.
The size of population is 20, and the maximum number of iteration is 80. Figures
(A.1), (A.2) and (A.3) show the results of this testing.

 (A) (B)

APPENDIX A

119

 (C) (D)

 (E) (F)

Figure (A.1): Simulation of one run for the basic PSO algorithm with different numbers of
waypoints.

APPENDIX A

120

 Figure (A.2): The performance of the basic PSO algorithm with different numbers
of waypoints.

 Figure (A.3): The performance of the basic FF algorithm with different numbers of
waypoints.

 From the above figures, the best results achieved when the number of control
points (waypoints) was small such as (3 or 4). Obviously, the distance increased
when the value of (D) was more than eight, and the worst results achieved when
(D=16) because of making the path lose its smoothness.

APPENDIX A

121

 Population Size Setting

 Population size is an important parameter for the quality of solution and the
convergence of the population-based algorithms. In this test, the effect of the
population size on the results was investigated when the number of particles ranged
from 2 to 30 particles. The cost value of PSO and FF techniques after ten runs are
shown in Figure (A.4).

Figure (A.4): Comparison in the distance through population numbers based on PSO & FF
algorithms.

 From this figure, the population size makes the path go toward the optimal value
if it increases. That is because the PSO and FF algorithms will take better chance to
find more odds of feasible path. On the other hand, increasing the number of
population leads to increase the execution time.

 Number of Iteration Setting

 The number of iterations also has a great impact on the performance of two
Nature-Inspired algorithms based path planning problem. In this test, the effect of
the number of iterations on the cost function was tested when the number of
iterations was ranged from 10 to 100. The cost value of the PSO and FF algorithms
shown in Figure (A.5).

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

2 5 8 10 15 20 25 30

Population Size vs. Distance

PSO FF

APPENDIX A

122

Figure (A.5): Effect of the number of iterations on the performance of PSO and FF
algorithms.

 The above trials and comparison analysis between the PSO and FF techniques
are concluded as follows:

1. The control points significantly influence the length and smoothness of the path.
2. In PSO and FF, a population and variables is generated randomly. However, FF

is very much random in nature, while PSO is not random in nature.
3. In PSO and FF, the large size of population is not considered. If the large size is

considered, it does not improve the quality of solution but increases the
computational time. Therefore, the pop size is kept small around 15-20.
Therefore, it can be concluded that both algorithms do not require a large size of
population.

4. In FF, the wrong selection of (ᾶ) can cause a small or big step increment and
take away the solution in some other side far away from the global best. In
addition, FF parameters are set fixed and they do not change with the time. In
PSO, most of parameters are updated during the iteration process.

5. Regardless of the number of obstacles, increasing the number of iterations does
not lead to increase the chance to find the optimal path that has the minimum
distance. On the contrary, the maximum number of iterations that range from 60
to 80 was enough to reach the optimal path.

123

LIST OF PUBLICATIONS

[1] Muna M. Jawad, Khulood E. Dagher and Esraa A. Hadi, “A Comparative Study

for Wheeled Mobile Robot Path Planning Based on Modified Intelligent

Algorithms,” Accepted in Iraqi Journal for Mechanical and Material Engineering,

University of Babylon, Iraq - Babylon.

[2] Muna M. Jawad and Esraa A. Hadi, “A Comparative Study of Various

Intelligent Algorithms based Path Planning for Mobile Robots,” Accepted in

Journal of Engineering, University of Baghdad, Iraq - Baghdad.

 الملخص
القرارات الغير وقد تؤدي .والتصميم والتحليل واستخراج البياناتالقرار يشمل جمع المعلومات اتخاذ

مشكلة تخطيط المسار الأمثل هي . لذلك فأن العملية المتبعة يجب أن تكون صحيحة الى فشل المنظمة الصحيحة

مسار من نقطة أقصر الروبوتات، والغرض منه هو العثور علىواحدة من تطبيقات اتخاذ القرار في مجال

 لغاية نقطة الهدف. البدء و

الروبوتات المتنقلة. لروبوت واحد و عدد مسار متعدد الاهداف ديجالا ا البحث أربع خوارزمياتيقدم هذ

اسراب اسراب الطيور الاساسية وعلى هي خوارزمية تعتمد الخوارزميتان الاولى والثانية على خوارزمية

الى نزلاقمنع الامن اجل مع خريطة الفوضى لتشكيل خوارزمية اسراب الطيور المشوشة ةالطيور المطور

ن على النسخة الأساسية من خوارزميات اليراعات المضيئة الاخريتا نالخوارزميتيتعتمد الحدود الدنيا المحلية.

التي تعتمد على النسخة والخوارزمية المقترحةمن المشكلة المثلى المحلية وقوية ولكنها تعانيحديثة وهي تقينه

اسراب الطيور المحسنة لتشكيل تقنية هجينة تسمى يةخوارزمالأساسية لخوارزمية اليراعات المضيئة مع

يستخدم المنحى المكعب .لتخطيط المسار العالمي اسراب الطيور المشوشة –خوارزمية اليراعات المضيئة

ويتم تقييم دالة الهدف من خلال قيدين من اجل انشاء مسار سلس عن طريق الاستيفاء من خوارزميات التحسين

متنقلة ذات عجلات أساس نموذج حركي لروبوتات ، علىعلاوة على ذلك تجنب العوائق.وهما طول المسار و

يتم حساب السرع الخطية والدورانية للعربة والسرع الخطية والدورانية للعجلتين اليمنى واليسرى تفاضلية

لتوجيه عجلات اليه متنقلة لمتابعة المسار المطلوب للوصول الى الهدف المحدد

 سبقا.م

نتائج المحاكاة أظهرت ان خوارزمية وانلغة البرمجة (الماتلاب) تم محاكاتها باستخدام تالخوارزميا

 أقصرمن خوارزمية اسراب الطيور الاصلية من حيث حصولها على أفضلاسراب الطيور المشوشة هي

اليراعات المضيئة الهجينة مع اسراب الطيور المشوشة هي وان خوارزميةمسافة بعدد اقل من التكرارات

لى حصول الموبايل روبوت ذات في النهاية ا وهذا أدىالاصلية من خوارزمية اليراعات المضيئة أفضل

 متر/ثانية. 50.ال بحيث لا تتجاوز والعجلة اليسرىة للعجلة اليمنى على سرعة خطية سلس جلات المتنقلةالع

تم مقارنة هذه الخوارزميات مع أوراق بحثية أخرى لتقييم أدائها. من خلال مقارنة النتائج بالأضافة الى ذلك

حت نفس الظروف نستنتج ان التي حققتها الخوارزميات المقترحة مع النتائج التي حققتها الأعمال السابقة ت

الأستيفاء متعدد الحدود التكعيبي هو ميزة جيدة عن طريق توليد مسار سلس دون حواف حادة خلال عملية

 التعلم لذلك يمكن للروبوت المحمول التحرك بسلاسة و سلامة.

 جمهورية العراق

 وزارة التعليم العالي والبحث العلمي

 الجامعة التكنولوجية

 قسم هندسة السيطرة والنظم

لروبوت واحد و مساراللتخطيط أتخاذ قرار متعدد الأهداف
 روبوتات متعددة

رسالة مقدمة الى قسم هندسة السيطرة والنظم الجامعة التكنولوجية كأحد المتطلبات لنيل

 شهادة الماجستير في علوم هندسة الحاسبات.

 من قبل

 أسراء عدنان هادي

 بأشراف

 الدكتورة منى محمد جواد

م 2018 ه 1440

