
Republic of Iraq       

Ministry of Higher Education and  

Scientific Research   

University of Technology  

Control and Systems Engineering Department 

 

  

Multi Objective Decision Maker for Single and 

Multi Robot Path Planning 

 
A Thesis Submitted to the Control and Systems Engineering Department, 

University of Technology in a Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Computers Engineering. 

 

 

By 

   Esraa Adnan Hadi    

  

Supervised By 

   Assist. Prof. Dr. Muna Mohammed Jawad 

 

 

1440 A.H                                                                                                    2018 A.D 

 



 

 

 
  ◌ۖ   مهإلِاَّ  أَنفُْس   لوُّنضا  يملُّوكَ   وضي   أَن مهنفةٌَ   مطاَئ  َتمَله   تُهمحرو   كلَيع  لاَ  فَضْلُ   اللَّهلَوو ﴿

وما يضُروُنكَ   من  شيء   ۚ◌  وأنَْزلَ   اللهَّ   علَيك  الكْتَاب   والْحكمْةَ  وعلمَّك  ما 

 لَم  تكَنُ   تَعلمَ  ۚ◌   وكاَن  فضَلُْ  اللهَّ   علَيك عظيما ﴾

 

      العظيمالله صدق 

 سورة النساء أية ﴿113﴾ 

 
 

 

 

 

 



 

Acknowledgements 

        First of all, I have to express all the thanks, gratitude to Almighty 

Allah Who gives me the ability to achieve this imperfect work and all what 

has been done, and without His bless and support nothing can be done. 

      I would like to express my deep sense of gratitude and respect to my 

supervisor, Assist. Prof. Dr. Muna Mohammed Jawad, for her excellent 

guidance, encouragement and support she has provided during my time 

as her student. I consider myself fortunate to be her student. 

      Words cannot express how grateful I am to my parents, brother and 

two sisters who have been a source of encouragement and inspiration to 

me throughout my life. Their prayers for me were what sustained me. I 

thank them for being there for me throughout my entire study. I also would 

like to thank the head and all staff of the Control and Systems Engineering 

Department in University of Technology for their help. 

       Finally, I would like to thank all of my friends and my colleagues who 

have offered support and advice.   

 

Esraa Adnan Hadi 

                                                        2018 

 



 

Dedication 

To whom I proud to carry his name, My Father. 

Thank you for keeping me going even when I thought I  

could not.   

 

To the tittle of love, tenderness, and hope. 

To whom that have taught me to endure, no matter how the 

circumstances change, My Mother. 

 

To the big heart who taught me success, patience and the 
emergence of a passion for knowledge 

My Dear brother (Dr.Ahmed) 

 My Beautiful sisters (Alaa and Asmaa) 

         

To baby girl, who is the frolic and joy into my life, 

 (Zahraa)  

  

“My God bless you all “ 

                     

Esraa Adnan Hadi 









I 
 

ABSTRACT 
        Decision making (DM) includes information gathering, data mining, modeling 

and analysis. Path planning problem is one of decision-making applications in the 

robotics field; its purpose is to find a shortest path from the start position to a target 

position without hitting any obstacle cluttered in the environment. 

       This thesis presents four optimization algorithms to find the solution for the multi 

objective path planning for multi mobile robot. The first two algorithms are based on 

the standard Particle Swarm Optimization (PSO) algorithm and the developed PSO 

with chaotic map to form Chaotic Particle Swarm Optimization (CPSO) algorithm in 

order to prevent a slide into local minima. The other two algorithms are based on the 

standard Firefly (FF) algorithm strong technique but suffers from trapping into several 

local optimum problem, and the proposed algorithm, which based on the FF and CPSO 

algorithms to form a hybrid technique called Firefly Chaotic Particle Swarm 

Optimization (FFCPSO) algorithm as a global path planning. Cubic spline is used to 

generate a smooth path by interpolation of optimization algorithms, and the objective 

function is evaluated by two constraints; the first one is the path length, and the second 

one is the obstacles avoidance. Furthermore, based on a kinematic model for a wheeled 

mobile robot, the platform linear and angular velocities and linear and angular 

velocities of right and left wheel are calculated to direct a National Instrument (NI) 

mobile robot’s wheel to follow a desired path to reach a predefined target.  

        The optimization algorithms were simulated using MATLAB (R2014a) program 

and the simulation results showed that the CPSO algorithm is better than the PSO 

algorithm with a less number of iterations and, the proposed hybrid FFCPSO algorithm 

is applicable to mobile robots path planning for obtaining a perfect path in the 

workspace as a compared with basic FF algorithm. This is demonstrated by minimizing 

the path length and obtaining the smoothness velocities for wheeled NI-mobile robots 

without exceeding the limited values (less than 0.5 m/sec). In addition, these algorithms 
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are compared with the other research papers to evaluate their performance. By 

comparing the results achieved by the proposed algorithms with the results achieved 

by the previous works under the same conditions, the cubic polynomial interpolation 

is a good feature by generating a smooth path without sharp edges during the learning 

process, so the mobile robot can moving smoothly and safety.  
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CHAPTER ONE 

INTRODUCTION AND LITERATURE SURVEY 

1.1 Introduction 

         The decision making (DM) is a process of decreasing uncertainty and doubt 

about options to allow a best choice to be made from among them. It is more 

complicated and difficult because the number of available alternatives is much larger 

today than ever before. Due to the availability of information technology and 

communication systems, especially the availability of the Internet and its search 

engines, we can find more information quickly and therefore generating more 

alternatives. Second, the cost of making errors can be very large because of the 

complexity of operations and automation. Third, there are continuous changes in the 

fluctuating environment and more uncertainties in impacting elements, including 

information sources and information itself. More importantly, the rapid change of 

the decision environment requires decisions to be made quickly. All these reasons 

cause that the decision makers need techniques to support and help making high 

quality decisions [1]. 

       The DM is a cognitive process, which leads to select a course of action among 

a number of alternatives. Generally, a process of decision starts when one needs to 

find a solution, but one does not know the solution that is accepted by the decision 

makers or not. Simon invented the systematic of decision-making process in year 

1977, which involves four phases: Intelligence, Design, Choice and Implementation 

phases [1]. 

       In intelligence phase, identify the problem that need to be solved includes good 

understanding on problem assumptions, boundaries and any related initial and 

desired conditions. Then, obtain requirements by collecting data and analyzing the 
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decision situation. The requirements are conditions in which any acceptable solution 

must meet in order to solve the problem. In design phase, construct model that 

represents the system by making assumptions and by writing down the relationships 

between all variables. Then generate potential alternative solutions and set criteria 

in order to evaluate alternatives. In choice phase, select a suitable solution to the 

model. Once the solution seems to be reasonable, we are ready for the 

implementation phase [1, 2]. 

          From these phases, it is clearly that the decision is a choice among various 

options, so decision makers will go through all these steps in the process in order to 

reach the final choice. In addition, these steps are abstracted in Figure (1.1) [2]. 

 

 

 

 

 

 

 

 

 

Figure (1.1): The systematic of decision-making process [2]. 

      There are wide applications of the decision-making process systematic in many 

areas including the items in Table (1.1) [3]: 

 

Identifying the problem 

Generating alternatives 

Evaluating alternatives 

Evaluating decision effectiveness 

Implementing the decision 

Choosing an alternative 

Recycle 

process 

 as 

necessary 
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Table (1.1): Decision Making Applications [3]. 

Field   Application 

Computers Task scheduling, memory allocation and hardware management. 

Robotics Mission planning, path planning and robot navigation. 

Medicine Health monitoring and medical diagnostic systems. 
Science Automated interpretation of experimental data. 

Traffic Systems Routing and signal switching. 
Process Industries Performance assessment, monitoring and failure diagnosis. 

Manufacturing Resource allocation routing, scheduling and planning materials 
flow and machine and equipment design. 

1.2 Mobile Robot  

         Lexically, the term “Robot” is originally derived from the Czech word 

“Robota” which is a means “to make things manually”. The Oxford dictionary 

describes “Robot” as a machine looks like a human that enables to duplicate certain 

human functions and movements in automatic way [4]. Robots can be divided into 

groups; the first group is fixed robots, while the second group is mobile robots. Fixed 

robots are mounted on a fixed land, and materials are transported to the workspace 

close to the robot. A mobile robot, from its name, is a robot that can be moved from 

one place to another place autonomously and without human interaction [5]. 

        Nowadays, mobile robots can change position safely in cluttered environments, 

recognize real objects, understand natural speech, path planning, locate themselves, 

and generally think by themselves. Intelligent mobile robots are designed to employ 

the technologies and methodologies of cognitive, intelligence, and behavior based 

control. Mobile robots should maximize the flexibility of performance subject to 

minimal computational complexity and minimal input dictionary. Ground mobile 

robots are classified into classes namely, wheeled mobile robots (WMRs) and legged 

mobile robots (LMRs). Furthermore, mobile robots also include additional classes, 
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such as autonomous underwater vehicles (AUVs) and unmanned aerial vehicles 

(UAVs) as shown in Figure (2.1). WMRs are very popular ones because they are 

suitable for typical applications with relatively low mechanical complexity and 

energy consumption. LMRs are appropriate for tasks in nonstandard environments, 

stairs, heaps of rubble and so on [5].  

                   

           

 

 

 

 

           A: Wheeled mobile robot.                                            B: Legged mobile robot.                                             
    

 

 

 

 

 

          C: Underwater mobile robot.                                       D: Aerial mobile robot. 

Figure (1.2): Mobile robot types [5]. 

        The Multi Robot Systems (MRSs) can be described as a group of robots 

working in the same environment. However, the range of robotic systems starts from 

simple sensors, processing and acquiring data, to complex humans such as machines, 

which are able to interact with environments in complex ways. Multi-robot systems 

have been widely applied in rescuing, industry, exploration of outer space areas, due 

to their characteristics of reliability, robustness, and economy [6]. 
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1.3 Path Planning 

        Path planning is one of the decision-making applications in robotics field that 

was prefaced in late 60’s. Path planning is vitally important problem in mobile robot 

navigation, which is formulated by giving the model of mobile robot and 

environment description and then planning a path between two predefined points, 

start and target in order to accomplish different tasks. In general, there are many 

paths for mobile robot to reach the goal, but actually, the superior path is adopted 

based on some optimization criteria, such as least energy consuming, shortest 

distance or shortest distance and shortest time that are most adopted criteria. Path 

planning is considered as NP-hard (non-deterministic polynomial time) problem; 

that means the computational time that is required in order to solve such a problem, 

which rises dramatically, while the size of the problem rises. According to this 

definition, path-planning problem is classified as an optimization problem [7, 8].  

1.4 Traditional and Soft Computing Algorithms 

        Path planning algorithms have been grown from one generation to another 

during the past 50 years. Since the last 60’s, many papers have been proposed in 

order to solve the problem of path planning for mobile robots. More than 1400 

research covering sufficient approaches in robot path planning for the time span of 

1973-2007 were surveyed in [9]. The path planning involves two approaches 

namely, traditional or conventional methods and soft computing methods. From 

Figure (1.3), it is clearly to say that all path-planning methods were classical solution 

until 1983. Only (3.13%) dealt with soft computing solution until 1987, but this 

percentage was increased at the end of the eighties, especially after 1992 until now.  
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      Figure (1.3): Traditional and soft computing methods [9]. 

      The traditional methods does not enforce intelligence into path planning and it 

includes Road Map (RM), Cell Decomposition (CD) and Artificial Potential Field 

(APF).  

 In Road Map (RM) approach [10], there are two phases, namely constructional 

phase, and a query phase. In the constructional phase, the path graph is built from 

the source to destination along with the obstacles. In query phase, only the source 

and the destination location are provided, and information about the obstacles or 

any interruption in the middle are not specified.  

 In Cell Decomposition (CD) approach [9], the search space is decomposed into 

a set of simple cells and the relations between these cells are calculated for 

finding the path between the start and goal configuration by identifying the start 

and the goal cell and then connecting them with a series of in between cells. 

 In Artificial Potential Field (APF) approach [10], two forces play a major role in 

achieving the optimal path plan from a particular source of the goal. A mobile 

robot moves towards the goal with the help of an attractive force, which proceeds 
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with the negative charge. If the robot moves towards the obstacle, it is pushed 

back with the help of a repulsive force by the positive charge. After that, the 

potential field is calculated from the robot position and then calculates the 

induced force from the field. This method suffers from the local minima problem 

and high complexity. 

      On the other hand, the soft computing methods are developed to overcome the 

disadvantages of traditional methods such as trapping in local minima and contain 

Neural Networks (NNs), Fuzzy Logic (FL) and Genetic Algorithms (GAs) as 

follows: 

 Artificial Neural Network (ANN) [11]: This method uses neural networks for 

pattern recognition, objects tracking and improvement of process for both 

static and dynamic environments. 

 Fuzzy Logic (FL) [10]: is widely used in controlling mobile robots and deals 

with neither completely true nor completely false, it represents a partial 

solution when a perfect solution cannot be predicted and used to solve when 

the pattern recognition problems arise in robotic tasks with more robust. The 

FL converts the human natural language into machine understanding control 

strategies. In mobile robot, FL is used to track a visual object by representing 

a color in a particular destination with the help of a sensor.  

 Genetic Algorithm (GA) [12]: An appropriate “chromosome” representation 

of the path and representation of the environment are essential for finding out 

the path. 

       In the past decades, biologists and natural scientists studied the behaviors of 

social insects because of the amazing efficiency of these natural swarm systems.  In 

the late-80s, computer scientists proposed the scientific insights of these natural 
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swarm systems to the field of Artificial Intelligence (AI) [13]. In 1989, the 

expression "Swarm Intelligence" was first introduced by G. Beni and J. Wang in the 

global optimization framework as a set of algorithms for controlling robotic 

swarm [14]. More specifically, the following two population-based optimization 

algorithms use the analogy of the social behavior and swarming principles in nature. 

Swarm intelligence (SI) has been adopted to solve various problems of engineering 

and mobile robotics including the path-planning problem. 

 Particle Swarm Optimization (PSO) algorithm was introduced by Dr. James 

Kennedy and Dr. Eberhart in 1995 based on an inspiration from the social 

behavior of bird flocks and fish schools. PSO uses a population of particles 

(individuals) that are moving in the search space. During iterations, each 

particle is memorized the coordinates of position in the search space 

associated with better fitness value achieved so far. PSO also stores the 

position of the best value form the whole particles [15, 16]. 

 Firefly (FF) algorithm is now one of the most greatly used. Xin-She Yang 

developed FF algorithm in 2009 based on an inspiration from the natural 

behavior of tropical fireflies. The FF algorithm tries to simulate the attraction 

behavior of fireflies and lighting pattern [17]. 

1.5 Motivation 

       In the last years, mobile robot path planning has been an evolving area, so that, 

many techniques have been proposed to challenge this problem. The main 

motivation behind this thesis is that the mobile robots could be used in hazardous 

industrial applications. These applications could be safer if the mobile robots were 

to replace the human operator aspect, and at the same time, they achieve better 

results with high precision. This work is facing on path planning problem because it 

is considered a critical part in the field of robotics. This problem needs to find an 
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appropriate path for some mobile robots in order to move from start point to terminal 

point in static or dynamic environments that has obstacles, such as disasters places, 

planetary exploration, battlefield and so on. In path planning, there is a number of 

optimization criteria that must be adopted, such as distance, smoothness, energy and 

time in order to get a feasible or near to a feasible path. 

1.6 Thesis Objectives 

       The general objective of this thesis is to study the single and multi-robot path-

planning problem and to propose two perfect nature inspired algorithms (PSO and 

FF algorithms) that may solve it. Finally, the research work will be achieved as 

follows: 

1. Applying path-planning problem based on decision-making strategy. 

2. Enhancement of the original PSO algorithm to find the optimal path. Then, a 

hybridization of the enhanced PSO algorithm with FF algorithm to find the 

optimal path for single and multiple mobile robot in static known 

environment. 

3. Verification of the collected results by making a comparison with previous 

research’s works.  

1.7 Literature Survey 

        Different kinds of path planning approaches and Natures-Inspired algorithms 

have been proposed and much has been written on solving the problem of trajectory 

planning for wheeled mobile robot. This survey gives a sight into some available 

researches that are recently discussing the path-planning issue.  

      C. Liu et al. (2012) [18] suggested a new firefly algorithm that has been used 

gradually in solving planning problems. This algorithm was designed by adaptive 

both random and absorption parameters after the analysis of the details of standard 
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firefly algorithm in order to improve the convergence speed and solution of quality. 

The simulation results verified the effectiveness of the proposed algorithm and path 

planning feasibility based on firefly technique.  

     C. Purcaru et al. (2013) [19] proposed a new optimal path planning algorithm 

based on hybridization between a PSO and GSA algorithms. The hybrid PSO-GSA 

generates optimal paths by maximizing the distance between the generated paths and 

the dangerous zones that exist in the environment and by minimizing the length of 

the path that is needed by the mobile robot to reach the target. The adopted algorithm 

was validated by the running of several experiments with robots in different 

environments with the presence of multi obstacles and multi dangerous zones.  

       E. Masehian and D. Sedighizadeh (2013) [20] presented a heuristic methods 

for solving a multi-robot problem. Here, the method is based on the new improved 

variant of the PSO algorithm, which serves as a global planner. Alternatively, for 

locale planning and for avoiding obstacles in narrow passages, the Probabilistic 

Roadmap Method (PRM) was employed. The local and global planners act 

sequentially until all robots reach their goals. The algorithm iteratively and 

simultaneously finds the minimum of two objectives, smoothness and shortness of 

the robot’s path. 

       N. H. Abbas and F. M. Ali (2014) [7] presented a comparative study between 

standard version of Artificial Bee Colony (ABC) and Directed Artificial Bee Colony 

(DABC) algorithms for the problem of offline autonomous mobile robot path 

planning. The simulation results showed that the proposed (DABC) algorithm was 

more effective and got satisfactory results than (ABC) algorithm. Additionally, the 

obstacles are irregular shape, the radius be one-half of the longest side of the 

obstacle, and this may cause wasted space.  

       B. Li et al. (2014) [21] presented a novel planning algorithm based on Firefly 

(FF) algorithm and Bezier curve in order to locate the collision free path. FF 
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algorithm was employed to optimize the control points of Bezier curve and this 

proposed a method which was tested in benchmark functions on different static 

environments. Then, it was compared with two population-based algorithms namely, 

GA and PSO with adaptive inertia weight factor (PSO-w). The simulation results 

revealed that FF outperformed the GA and PSO-w in success rate, while PSO-w 

offered a feasible path with acceptable length. 

      M. S. Alam et al. (2015) [8] proposed a path planning approach based on Particle 

Swarm Optimization (PSO) algorithm to compute a minimum distance with 

obstacles avoidance for a mobile robot in static, known environment. The proposed 

path planner performed random sampling on grid lines that were generated between 

start and target locations and found the feasible waypoints on these grid lines without 

exhaustive search and high computations. The simulation results depicted the 

efficiency of the proposed algorithm in different static environments.  

      N. H. Abbas and J. A. Abdulsaheb (2016) [6] proposed an adaptive multi 

objective particle swarm optimization (AMOPSO) algorithm based on a path 

tracking problem for two tests. In the first test, a single mobile robot was needed to 

move from its start point to its target point in static, known environment, which 

contains two dangerous sources and two obstacles. In the second test, the AMOPSO 

was used to improve the performance of the mobile robots to move from different 

start points to different target points with a minimum distance and without any 

collision between them. Furthermore, test functions are applied in order to make a 

comparison between standard version of PSO and the proposed AMOPSO 

algorithms. The simulation results showed that the AMOPSO was better than 

MOPSO and standard PSO algorithms to get from local minima and with quickest 

convergence.  

       M. R. Panda et al. (2016) [22] suggested a new hybridization between Particle 

Swarm Optimization (PSO) and Tabu Search (TS) algorithms in order to improve 
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the performance of a multi mobile robot path planning in workspace where the start 

and target location for each mobile robot is predefined. The simulation results 

showed that the new hybrid PSO-TS algorithm overcomes the original PSO and TS 

in terms of computation times and quality of solution when the obstacles are static 

relative to the mobile robots, while each mobile robot is dynamic relative to other 

mobile robots.  

       E. Cholodowicz and D. Figurowski (2017) [23] introduced a mobile robot path 

planning with obstacle avoidance based on PSO algorithm which was analyzed in 

both static and dynamic environments. Cubic splines were used in order to generate 

a smooth path by the interpolation of optimization solution and the objective 

function was evaluated by two constrains; the first one is the path length, and the 

second one is the obstacle avoidance. The simulation results proved that the PSO 

algorithm is applicable to robotics field for obtaining reasonable route in 2-D 

workspace.  

       D. Pang et al. (2017) [24] presented an adaptive firefly algorithm (AFA) in 

order to solve the local minima problem. Then, a chaotic firefly algorithm (CFA) 

that utilizes chaotic sequence to tune the control parameters was developed. The 

CFA was enhanced to take the advantage of the optimization adjustment strategy 

(OAS) with the Gauss disturbance to maintain the search capability. The simulation 

results were compared with AFA and CFA-OAS algorithms, and demonstrated that 

the proposed CFA-OAS outperforms AFA in terms of path length and convergence 

speed. 

        A. Tharwat et al. (2018) [25] proposed a Chaotic Particle Swarm Optimization 

(CPSO) algorithm to optimize the control points of Bezier curve based on two 

variants namely, CPSO-I and CPSO-II, by modifying the random parameters 

(𝑟 & 𝑟 ) with chaotic maps during iterations. To evaluate the performance of CPSO 

algorithm, the results of the CPSO-I and CPSO-II techniques were compared with 
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the basic form of PSO algorithm. Furthermore, the CPSO was tested against different 

numbers of objects and control points, and the CPSO achieved competitive results.  

1.8 Thesis Organization 

In addition to this chapter, this thesis is includes the following chapters: 

 Chapter Two: It introduces an overview of the kinematic mathematical 

model of the differential drive wheeled mobile robot, path planning concept, 

classification and mapping types. Moreover, it presents in details the standard 

Particle Swarm Optimization (PSO) and Firefly (FF) Algorithms. 

 Chapter Three: It describes the path planning systematic based on decision-

making process. Then, the developed PSO and proposed hybrid FFCPSO 

algorithms are illustrated. 

 Chapter Four: It presents the simulation results that obtained by applying 

four optimization algorithms including, PSO, CPSO, FF and FFCPSO 

algorithms on mobile robot path planning with different cases. In addition, 

calculations of the mobile robots velocities on the optimum path are 

explained. Furthermore, this chapter also provides the discussion of the 

simulation results by comparing them with other previous research’s works. 

 Chapter Five: It concerns with the overall results of this work, reports 

conclusions and gives suggestions for the future work.  
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CHAPTER TWO 

THEORETICAL BACKGROUND 

2.1 Introduction 

        This chapter describes, in details, the mathematical model of the kinematic 

wheeled mobile robot under pure rolling and without slipping nonholonomic 

constraints. Thereafter, it gives a theoretical background of the path planning 

problem, map construction and different types of workspace that planning issues 

may implement are discussed. Moreover, two metaheuristic optimization 

algorithms, such as standard PSO and FF algorithms are introduced, in details, to 

explain the way for applying the proposed algorithms. 

2.2 Nonholonomic Wheeled Mobile Robot Kinematic Model 

        Kinematics, as a field of study, is the science of motion that refers to the 

behavior of mechanical systems, which deals with the geometric relationships that 

govern the system and studies of the mathematics of motion without considering the 

affecting forces.  In mobile robotics, the mechanical behavior of the robot must be 

known, both into design proper mobile robots for tasks and to understand how to 

generate control software, for instance, mobile robot hardware. Design, 

development, modification and control of a mechatronic system require an 

understanding and a suitable representation of a system; specifically, a “model” of 

the system is required. Any model is an idealization of the actual system. The goal 

of the robot kinematic modeling is to find the robot speed in the inertial frame as a 

function of the wheels speeds and the geometric parameters of the robot [26]. 

        In this study, the model of the non-holonomic wheeled mobile robot (WMR) is 

used, as shown in Figure (2.1). This model consists of right and left wheel for motion 

on the same axis and an omni-directional castor in face of cart in order to make 
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mobile robot more stable. Each wheel has a radius indicated by (R), and (W) 

indicates the distance between the left and right wheels (mobile robot width), while 

the midpoint between the wheels is indicated by (c) [27]. 

 

Figure (2.1): The mobile robot representation [27].  

The WMR symbols that will be used in this thesis are illustrated in Table (2.1) [27]: 

Table (2.1): Kinematic model symbols [27]. 

Symbol Description Unit 
W The distance between right and left wheel. m 
R The radius of each wheel. m 

VR The velocity of right wheel. m/sec 
VL The velocity of left wheel. m/sec 
c The midpoint of axis between right and left wheel.  

𝑉  The platform angular velocity. rad/sec 

𝑉  The platform linear velocity. m/sec 

[X,O,Y] The global coordinate frame.  

( X, Y, θ)  The current position and orientation of the WMR  

       Generally speaking, the pose (position / orientation) vector for NWMR as in 

equation (2.1) [27] and the location in the global coordinate frame are defined as [X, 

O, Y]. 
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𝑄 = [𝑋, 𝑌, 𝜃]                                                                                                           (2.1) 

Where, 𝑋 and 𝑌 are specified in the middle axis of wheels that act as the real position 

of the NWMR, while θ is acting the orientation of NWMR. Based on nonholonomic 

constraints as in equation (2.5), the kinematic equations for mobile robot in global 

coordinate frame can be written as in equations (2.2), (2.3) and (2.4) after satisfied 

two conditions; the first one is a pure rolling wheel, while the second one is without 

skidding wheel [27] as follows: 

�̇� (𝑡) =  𝑉𝑛(𝑡) 𝑐𝑜𝑠 𝜃 (𝑡)                                                                                           (2.2) 

�̇� (𝑡) = 𝑉𝑛 (𝑡) 𝑠𝑖𝑛 𝜃 (𝑡)                                                                                          (2.3) 

�̇�(𝑡) = 𝑉𝑎 (𝑡)                                                                                                         (2.4) 

−�̇�(𝑡) 𝑠𝚤𝑛 𝜃 (𝑡) + 𝑌 (𝑡) 𝑐𝑜𝑠 𝜃 (𝑡) = 0̇                                                                     (2.5) 

      The reference linear velocity and the angular velocity for the desired path are 

given by equations (2.13) and (2.14) [27], respectively. 

𝑉𝑟𝑒𝑓 =  (�̇�𝑟𝑟) +  (�̇�𝑟𝑟)                                                                                    (2.13) 

𝑊𝑟𝑒𝑓 =
̈  ̇ ̈ ̇

( ̇ )  ( ̇ )
                                                                                      (2.14) 

      Hence, the wheel linear velocity of right and left based on reference linear and 

angular velocities on last equations are given by equation (2.15) [27] as follows: 

𝑉𝑅
𝑉𝐿

=
𝑉𝑟𝑒𝑓 +   𝑊𝑟𝑒𝑓

𝑉𝑟𝑒𝑓 −   𝑊𝑟𝑒𝑓
                                                                                       (2.15) 

       The wheel angular velocity of right and left based on right and left linear  

velocity on equation (2.15) are given by equation (2.16) and (2.17) [28], 

respectively.  
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𝑊𝑅 = 𝑉𝑅 × 𝑅                                                                                                     (2.16) 

𝑊𝐿 = 𝑉𝐿 × 𝑅                                                                                                    (2.17) 

       Finally, the linear and angular velocities in terms of right and left wheels linear 

velocities can be written as in equations (2.18) and (2.19) [27], respectively. 

𝑉  (𝑡) = 0.5 [ 𝑉𝑅 (𝑡) + 𝑉𝐿 (𝑡)]                                                                          (2.18) 

𝑉  (𝑡) =   [ 𝑉𝑅 (𝑡) − 𝑉𝐿 (𝑡)]                                                                            (2.19) 

2.3 Autonomous Mobile Robot Path Planning 

        An autonomous robot is programmed to do a job without human intervention, 

and with the help of embodied Artificial Intelligence (AI), it can perform and live 

inside its surroundings [5].  

2.3.1 Robot Path Planning 

        Path planning enables the identification and selection of appropriate path for 

the robot to traverse in the working arena and, in addition, the main scope of this 

problem involves both the efficiency and safety points. The efficiency means that 

the algorithm must find the minimum path in length with acceptable time by not 

letting the robot take unnecessary steps or stop and turn several times, which may 

result in a waste of time and energy consumption. While, the safety is another critical 

point of this problem. Therefore, the determination of an obstacle-free path between 

two pre-defined points through obstacles cluttered in a working area is central to the 

design of an autonomous robot path planning. Path planning application covers a 

wide area of robotics researches because it enhances robotic navigation systems in 

both static and dynamic environments. With the perfect path planning system, 

mobile robots can navigate by itself without human intervention to reach the targeted 

destination [29]. 
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       From an engineering point of view, the main fundamental requirement for a 

mobile robot would be to reach its assigned destination safety. In order to do that, 

any obstacle collisions must be avoided and prevented. After obstacle collision is 

identified as the primary requirement, secondary requirements could be identified. 

The path length should be taken into consideration. This would imply that the shorter 

the path, the more plausible the algorithm will be. Another secondary requirement 

for the algorithm is its efficiency. In this case, efficiency refers to the computational 

cost, which the algorithm needs in order to perform its assigned task. While taking 

obstacle collision and path length into consideration, the computational cost of the 

algorithm has to be taken into account. If the algorithm is computationally 

expensive, but generates a path, which is not significantly better than its competition, 

then it loses its advantage. A plausible algorithm should be balanced in terms of the 

time it takes to execute and the quality of the results that it produces [30]. 

2.3.2 Path Planning Classification 

Path planning problem is organized based on two factors, as follows: 

 Environment type, such as static or dynamic [31]: 

1. Robot path planning in static environment that has fixed obstacles and does not 

contain any moving obstacles, other than a navigating robot. 

2. Robot path planning in dynamic environment that has both fixed and dynamic 

moving obstacles such as moving machines, human beings and moving robots. 

 Planning type, such as global or local: 

1. Global path planning (GPP) is a Map-based system in which the robot has a 

complete knowledge about the search environment (known the positions and 

sizes of the objects) before starting to move. In other words, the global path 

planning can be planned offline. The GPP limitation is the cost of changing 
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environment in global navigation, especially in dynamic environments is very 

expensive because the setting up of a new map is difficult [32, 33]. 

2. Local path planning (LPP) is a Sensor-based system in which means that the 

path planning is implemented during the robot navigating because of a 

complete information about the search environment which is not available in 

advance. In other word, the LPP has the ability of producing a new route 

corresponding to environmental changes [32, 33]. There are several limitations 

of LPP such as error in sensor readings, error in location estimation, changing 

environment and robot dynamics. Therefore, the LPP may fail in finding the 

route to the target location in complex environments. Mostly, this happens 

because the sensors will not provide the sufficient information that is required 

by the mobile robot to drive it out to the wanted location [12]. 

2.3.3 Path Planning Mapping and Environment Modeling 

        Mapping is a process of building a form of the environment, the suitable 

representation of the terrain is needed to generate a sufficiently complete map of the 

given surroundings that the robot will encounter along its route. There are several 

designs of environment forming, including the Grid-based model and the 

Continuous-based model where each model has its features and limitations, as shown 

in Figure (2.2) [34].       

        Some of researchers use Grid-based model, which is a grid with cells. These 

cells may be occupied to represent an obstacle or empty to represent a free space 

when the robot can travel freely. The features of this model are the simple 

representation, suitable for dynamic environment and local changes (only local 

effects). Limitation of Grid-based model requires a large memory size when 

increases the complexity. Others may use a Continuous-based model with the objects 

being either polygons or any other shape.  The features of this model are the simple 
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shape, efficient memory and represent obstacles with a virtual circle. While, the 

limitations are the complex code and wasted space [34, 35]. 

 

           A: Grid-based model                                            B: Continuous-based model 

                                     Figure (2.2): Environment models [34]. 

2.4 Swarm-Based Optimization Algorithms  

        Essentially, optimization is important to any problem including decision 

making, whether in engineering or economic. The decision-making task entails 

choosing between various options. The present study is governed by this choice in 

order to make the optimum decision. The goodness measure of the alternatives is 

described by the fitness function or performance index [36]. Optimization 

approaches can be classified into Deterministic and Nondeterministic (stochastic) 

algorithms. The deterministic algorithms depend on the mathematical nature of the 

problem, while the nondeterministic algorithms do not depend on the mathematical 

properties of a given function and are hence more appropriate for finding the global 

optimal solutions for any type of objective function [37]. 

       Swarm-based algorithms have recently emerged as a family of metaheuristic 

(population-based) algorithms that are capable of producing low cost, fast, and 



CHAPTER TWO                                                                    THEORTICAL BACKGROUND 

21 
 

robust solutions to several optimization problems. The Swarm- based algorithms, 

which are used as multiple solutions in order to move through the search space 

during the optimization process, are known as optimization algorithms. Some of the 

effective algorithms that simulate the social behavior of animals, such as birds, fish, 

bees, ants, flies and even germs are called Nature-Inspired Algorithms [13]. 

        In this thesis, two types of Natural-Inspired Algorithms are applied; the first is 

Particle Swarm Optimization (PSO) algorithm, and the second is Firefly (FF) 

algorithm.  

2.4.1 Particle Swarm Optimization (PSO) Algorithm 

        Particle swarm optimization (PSO) algorithm is an optimization algorithm that 

was invented by Dr.  James Kennedy, a social psychologist, and Dr. Russell 

Eberhart, an electrical engineer, in 1995 [15, 16]. The PSO simulates the social 

behavior of schools of fish and flocks of birds. When a fish or bird looking for food 

finds a good path to the food. Immediately, it transfers the information to the whole 

individuals. Then, the rest of the swarm becomes slow and takes a fancy to the food 

in gradual way [8]. Similarity to other evolutionary computation techniques such as 

genetic algorithms (GAs), PSO is a population-based algorithm, where each 

individual is called (particle) and each particle is a possible solution to the optimized 

problem. However, unlike GAs the PSO does not have cross over and mutation 

operators. PSO implements the simulation of a social behavior instead of 

implementing the survival of the fittest individuals [38]. 

2.4.1.1 The Original PSO Algorithm 

      The space of solution is searched with multiple particles (individuals) where by 

every particle is directed based on its own experience and the experience of the 

whole swarm. The basic variables of this algorithm are as follows: position of 
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particle that represents the potential solution, velocity of the particle that represents 

the change of position in the current iteration and the objective function that is the 

measure of success of the particle [38].  

       In the PSO work, a random position and velocity of each particle are existed, 

and the particles start to fly around the search space with uniform numbers of 

[ 𝑉 , 𝑉 ] and [ 𝑋 , 𝑋  ] respectively as in equations (2.20) and (2.21) [8]. 

𝑉  =  𝑉 + 𝑎 (𝑉 − 𝑉 )                                                                                (2.20) 

𝑋  =  𝑋 + 𝑎 (𝑋 − 𝑋 )                                                                                    (2.21)  

Where, 𝑎  and 𝑎  are random numbers between [0-1].                                            

      Now, particles mutually shared their experience and they will approximate to 

one global best position ever visited by all particles, as shown in Figure (2.3) [39]. 

 

Figure (2.3):  Basic structure of PSO for global best approximation [39].       

       Mathematically, equation (2.22) is used to update the speed of each particle, 

while equation (2.23) represents the update of position according to its previous 

velocity and position. In a gradual way, particles reach the global best positions by 
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communicating the personal best (𝑋 ) and global best (𝑋 ) to each other [8, 

38]. 

𝑉 = Ꞷ 𝑉 + 𝑐 𝑟  𝑋 − 𝑋 +  𝑐 𝑟  [𝑋 − 𝑋 ]                                    (2.22) 

𝑋 =  𝑋 +  𝑉                                                                                                     (2.23) 

Where: 

𝑉  represents the rate of the position change (velocity) of the 𝑖 particle. 

𝑋  represents the position of the 𝑖 particle. 

t and t+1 are denoted by the actual and next iteration respectively. 

𝑋  represents the best weight of the particle. 

𝑋  represents the best particle among all the particles in the swarm. 

𝑐  indicates the individual-learning rate, while 𝑐  indicates the group-learning rate. 

These parameters reveal the relative importance of the particle’s own best position 

to its neighbor’s best position. In other words, they are responsible for varying the 

speed of individual towards  𝑋  𝑎𝑛𝑑 𝑋 . In spite of constants 𝑐  𝑎𝑛𝑑 𝑐   are 

not critical parameters for determining the convergence of PSO algorithm, a correct 

setting may increase the algorithm convergence. 

𝑟 & 𝑟  are uniform distributed random numbers in the range between [0-1].   

       Additionally, Shi and Eberhart proposed inertia weight (Ꞷ) in 1998 [40]. This 

symbol is responsible for dynamically adjusting the speed of particles in order to 

allow the individuals to converge more efficiently and accurately. Therefore, it is 

responsible for balancing between global and local search, then needing less number 

of iterations for PSO algorithm to converge. A high value of inertia weight leads to 

a global search, on another hand, a small value implies in a local search. A balance 
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between local and global search can be achieved by using linearly decreasing inertia 

weight strategy as in equation (2.24) [8, 38].   

Ꞷ =Ꞷ −
Ꞷ Ꞷ

∗  𝑡                                                                                  (2.24) 

Where,  Ꞷ  𝑎𝑛𝑑 Ꞷ  are maximum and minimum values of inertia weight 

factor (Ꞷ), respectively, while 𝑇  is the maximum number of iterations. 

2.4.1.2 The PSO Algorithm Flow 

In summary, the PSO process is as follows [6]: 

Step 1: Initialize the position and velocity randomly for each particle in the swarm. 

Step 2: Evaluate the objective function for each particle in the swarm. 

Step 3: Check, if the objective value is better than the personal best (𝑋 ) 

objective value in history, the current objective value set as a new (𝑋 ). 

Step 4: From all the individuals or neighborhood, choose the particle with the best 

objective value and set it as (𝑋 ). 

Step 5: For each particle in the swarm: 

- Update the particle velocity as in equation (2, 22). 

- Update the particle position as in equation (2, 23). 

Step 6: Repeat to step two until stopping criteria is satisfied.  
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Figure (2.4) shows the general PSO process [41]. 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure (2.4): The flowchart of PSO algorithm [41]. 
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2.4.2 Firefly (FF) Algorithm        

      The Firefly (FF) algorithm is an optimization algorithm that was invented by Dr.  

Xin – She Yang in 2009, which was based on an inspiration from the natural 

behavior of tropical fireflies. The FF algorithm tries to simulate the attraction 

behavior of fireflies and lighting pattern [17]. 

      The sky is filled with the light of fireflies is a marvelous sight in summer in the 

moderately temperature regions. There are almost two thousands firefly species, and 

most of them produce short and rhythmic flashes. The pattern observed for these 

flashes is unique for most of times for a specific species. The rhythm of the flashes, 

rate of flashing and the amount of time for which the flashes are observed are 

together forming a kind of a pattern that attracts both the males and females to each 

other [17]. The primary purpose for a firefly’s flash is to act as a signal system to 

attract other fireflies. It has been successfully employed to find the optimal values 

of various test functions [42]. 

2.4.2.1 Firefly Mainframe 

       However, because an adaptation of the natural behavior of the fireflies in an 

algorithm is too complex, the following idealized rules are considering by firefly 

developing [18]: 

1) The firefly is no gender-specific. Therefore, it will fly to more attractive and 

large brightness companion regardless of its gender. 

2) Firefly attractive size is proportional to its brightness. Moreover, its brightness 

decreases with the distance between individuals. If there is no brighter or more 

attractive one, then it will fly randomly. 

3) The brightness or attractiveness of a firefly is determined by the specified value 

of the objective function. 
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2.4.2.2 The Original FF Algorithm 

       There are two important points in the FF algorithm: the first point is the variation 

of the flash intensity and the second point is the attractiveness formulation. For 

simplicity, one can always assume that the attractiveness of a firefly is determined 

by its brightness that in turn is associated with the encoded objective function. 

1. Flash Intensity or Brightness 

For simplicity, the light intensity 𝐹(𝑟𝑟) varies according to the inverse square law 

as in equation (2.25) [43]. 

𝐹(𝑟𝑟) =                                                                                                                    (2.25) 

Where, 𝐹  is the light intensity at the source. For stated medium with a fixed flash 

absorption factor (𝛾), the flash intensity (F) varies with the distance (𝑟𝑟) as in 

equation (2.26) [43]. 

𝐹 = 𝐹  𝑒                                                                                                                (2.26) 

Where, 𝐹  is the original flash intensity. 

2. Attractiveness towards Brightness 

The form of the attractiveness function of a firefly since its proportional to the flash 

intensity seen by adjacent fireflies is as in equation (2.27) [43]. 

𝛽 =  𝛽  𝑒                                                                                                              (2.27) 

Where, 𝑟𝑟 is the distance between any two fireflies, and 𝛽𝑜 is the attractiveness 

at 𝑟𝑟 = 0. 

3. Distance between Fireflies 

The distance between firefly 𝑖 and firefly 𝑗 at (𝑋 , 𝑌 ) and (𝑋 , 𝑌 ) is Cartesian 

distance as in equation (2.28) [43]. 
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𝑟𝑟 = (𝑋 − 𝑋 ) −  (𝑌 − 𝑌 )                                                                               (2.28) 

4. Movement of Fireflies 

Finally, the movement of firefly (𝑖) that attracted to more attractive firefly (𝑗) is 

calculated by equation (2.29) [43]. 

𝑋 =  𝑋 +  𝛽  𝑒  𝑋 − 𝑋 +  ᾶ ₤                                                                 (2.29) 

Where, the first part in equation above gives the current position of the firefly, 

whereas the second part is responsible for attractiveness, while (ᾶ) is a 

randomization parameter and (₤) is the vector of random variables, which make the 

investigation of the search distance more effective. A firefly will be directed towards 

the brighter one, and if there is no brighter one surrounding to it, then it will move 

randomly as in equation (2.30) [43]. 

𝑋 =  𝑋 + ᾶ (𝑟𝑎𝑛𝑑 − 0.5)                                                                                    (2.30) 

2.4.2.3 The FF Algorithm Flow 

In summary, the FF optimization process is as follows [44]: 

Step 1: Basic initialization of algorithm parameters. 

Step 2: Initializing the position randomly for each firefly in the swarm. Then, the 

objective function value is calculated as the respective maximum fluorescence 

fireflies’ brightness. 

 Step 3: By the equations (2.26) and (2.27), calculating the relative brightness of the 

firefly population 𝐹 and attractiveness 𝛽, according to the relative brightness of the 

decision to move the direction of fireflies. 

 Step 4: According to equation (2.28) updating the spatial location of the firefly. 

Step 5: Repeating to step two until the stopping criterion is satisfied.  

Step 6: Taking the output of the global extreme point and the best individual values. 
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Finally, Figure (2.5) shows the procedure of the FF process [45]. 
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Figure (2.5): The flowchart of FF algorithm [45]. 
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CHAPTER THREE 

MODELING AND OPTIMIZATION BASED PATH 
PLANNING 

3.1 Introduction 

        In this chapter, path planning based decision making systematic is presented 

and three optimization algorithms are implemented for solving this problem. The 

first algorithm represents the enhanced Particle Swarm Optimization (PSO) 

algorithm, the second algorithm represents the original firefly (FF) algorithm and 

the third algorithm represents the proposed hybrid firefly with enhanced Particle 

Swarm Optimization algorithm for global path planning. This chapter also describes 

how the various optimization algorithms are used for solving multiple mobile robot 

problem.  

3.2 Path Planning Based on Decision Making Systematic 

        Based on the systematic of decision making that was described in Chapter One 

(section (1.1)), path-planning problem can be applied, as shown in Figure (3.1). As 

stated before, there are four phases in DM process namely, intelligence, design, 

choice and implementation. In intelligence phase, the first step needs to identify a 

good understanding of path planning problem and environment boundaries, the 

second step requires to collect information about this problem, such as type of robot 

(arm or mobile), environment (static or dynamic) and planning type (offline or 

online) while the third step needs to analyze the requirements (constraints) that 

describe a set of the feasible solutions of path planning problem. The design phase 

(core of the systematic) includes three steps, formulating the kinematic model of 

differential drive wheeled mobile robot and its environment modeling, applying an 

optimization algorithm to obtain a set of feasible solutions, and then obtaining the 
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optimization criteria, such as energy, safety, distance and time. In choice phase, it 

includes the solution (path) evaluation based on optimization criteria and finally 

having a solution (path for the mobile robot). In implementation phase, the path-

planning problem on a real environment is implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.1): Path planning based on decision-making systematic. 
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3.3 Modeling of the Environment and Obstacles 

        In this thesis, the wheeled mobile robot environment, which is occupied by a 

number of static obstacles, is represented by a free-space model, consider a two- 

dimensional (X, Y) square map. This model makes the representation of obstacles 

and calculation of distance easier. In the real world, obstacles maintain all kinds of 

shape and size that make it is hard to model them, therefore, in order to simplify the 

task of modeling of the obstacles, only circles are used. Then, each obstacle must be 

inflated by the size of the mobile robot’s radius (depending on the mobile robot type) 

in order to assure the safety of robot while trying in the environment, as shown in 

Figure (3.2). 

 

Figure (3.2): Original and virtual obstacle boundaries. 

        As displayed in the figure above, boundaries for obstacles area are formed by 

their actual boundaries plus a safety distance that is defined with consideration to 

the mobile robot size that is treated as a point in the workspace.  

3.4 Path Construction 

       This process can be implemented as follows: The optimization algorithm will 

generate search waypoints randomly. Then, these points will be connected by 

polynomial interpolation. So, the cubic polynomial interpolation has been used in 
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this thesis to achieve this purpose. Therefore, the path has smoothness and the and 

as a result, velocity is not changed abruptly in this path when the mobile robot 

follows the smooth path. Thus, the mobile robot can be moved with a continuous 

velocity and acceleration without stop motion. This movement is efficient with 

energy and time because of the energy loss of a mobile robot is related to the smooth 

of the path—the smoother the path, the smaller the loss of energy.  The basic form 

of cubic polynomial interpolation is as in equation (3.1) [46]. 

𝑌 = 𝑎 𝑋 + 𝑏 𝑋 + 𝑐𝑋 + 𝑑                                                                                  (3.1) 

       The primary and second-order differential functions are in equations (3.2) and 

(3.3), respectively [46]. 

= 3𝑎𝑋 + 2𝑏𝑋 + 𝑐                                                                                         (3.2) 

= 6𝑎𝑋 + 2𝑏                                                                                                   (3.3) 

3.5 Objective Function 

        In this study, to obtain precise and effective solutions, two objectives are 

optimized:  path length  and path safety. The energy loss of a mobile robot is related 

to the length of the path—the longer the path, the greater the loss of energy. When 

the robot moves forward at a constant speed and only changes in velocity direction, 

the walking time of the robot is also related to the length. In addition, the most 

important factor that one needs to consider is the safety of the path. The safe path 

distance reflects the distance from the surrounding obstacles—the greater the safety 

distance, the safer the path. Therefore, this work describes the energy loss, walking 

time, and safety distance through the length and safety. The shortest and safest path 

is to be found. This is known as the multi-objective optimization problem. The 
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mathematical definitions of these objectives are described in the following 

subsections. 

3.5.1 Obstacles avoidance 

       The first goal is to find the obstacle-free path, which is essential to path planning 

to make the wheeled mobile robot travel in the workspace safely. This objective 

function must penalize trajectories with respect to their distance to obstacles 

considering the obstacles’ density. To obtain a collision-free robot, the safe distance 

between the mobile robot and the obstacle should be larger than (𝑊/2), where 𝑊  

represents the distance between right and left wheel. 

       The most important property of metaheuristic (population-based) algorithms, 

including the PSO and FF algorithms, is that they are designed for the unconstrained 

optimization problems; they can also be adapted to the constrained optimization 

problems by using penalty. If a solution does not satisfy the constraints, this solution 

is not acceptable, even if the value of the objective function is minimum. So, a 

penalty function is added to the objective function.   

      The distance between a path point and the center of obstacle (𝐷 ) is calculated 

as in equations (3.4) and (3.5) in order to check the feasibility condition, where the 

path is touching or passing the obstacle. 

𝑑𝑖𝑠𝑡 𝑂 (𝑘), 𝑆 (𝑖) =  ( 𝑆 (𝑖) −  𝑂 (𝑘)) +  ( 𝑆 (𝑖) −  𝑂 (𝑘))           (3.4) 

𝐷 (𝑆 , 𝑂) =  ∑ ∑ 𝑑𝑖𝑠𝑡 [ 𝑂 (𝑘), 𝑆 (𝑖)]                                                             (3.5) 

Where, k is the current obstacle, 𝑚 is the total number of obstacles in the workspace, 

𝑛𝑝 is the total number of interpolation points that used to connect the waypoints, 𝑂 

is the obstacles positions and 𝑆  represents the reference path points. 
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        Along the learning process for the actual (optimal) path, the approach of 

obstacle avoidance must be called contentiously in order to prevent the interpolation 

points from entering the obstacle regions. This can be done by defining the safety 

variable for each individual (path) as an indicator of whether there is a collision 

between path interpolation point (𝑆 ) and the obstacles (𝑂) or not. The quantitative 

description of checking the collision is as explained in equation (3.6). 

𝑆𝑎𝑓𝑒𝑡𝑦 (𝑖) =  𝑀𝑎𝑥
1 −  

,

 .  
                  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

0                                                    𝑓𝑟𝑒𝑒
                                  (3.6) 

3.5.3 Minimum path length 

        The second and main goal is to minimize the distance between the starting point 

(𝑋 , 𝑌 ) and the target point (𝑋 , 𝑌 ). This makes the wheeled mobile robot travel in 

the workspace with minimum travelling time and distance. As mentioned before, the 

search waypoints that give the path lineaments is proposed by the optimization 

algorithms. The cubic polynomial will connect the start point (𝑆) with end point 

(𝑇) through the waypoints that are used to calculate the objective function that will 

be minimized by the optimization algorithms. Based on the Euclidean distance, the 

distance between two consecutive points can be calculated, as shown in equation 

(3.7).  

𝑑𝑖𝑠𝑡 (𝑃 , 𝑃 ) =  (𝑋 − 𝑋 ) + (𝑌 − 𝑌 )                                                   (3.7) 

Where 𝑝 = (𝑋 , 𝑌 ) and 𝑝 = (𝑋 , 𝑌 ) denotes two consecutive points.   

       A path consists of some interpolation points (𝑛𝑝), and the total distance (𝑀𝐿) of 

the path (𝑖) can be calculated as in equation (3.8). By summing all the points of this 

path, the length of the entire path can be obtained. 

𝑀𝐿 (𝑖) =  ∑ 𝑑𝑖𝑠𝑡 (𝑃 , 𝑃 )                                                                             (3.8) 
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       The metaheuristic algorithms are designed to find the minimum value of the 

objective function (Euclidian distance) within the bounds of the constraint 

(avoidance of obstacles). The total function is called fitness function. Namely, if 

constraints are in a feasible region, then the penalty function is equal to zero else, 

the fitness function is penalized as in equation (3.9), since the fitness value, measures 

the fitness of the solution to the objective function and because of path planning is 

the minimization problem, which is due it is looking for shortest path length. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖) =  
 ( ) ℋ∗  ( )

                                                                          (3.9)                                        

Where, ℋ is the obstacle zone weight factor, which is used to balance the proportion 

of the path length and 𝑆𝑎𝑓𝑒𝑡𝑦 (𝑖) is penalty added to reduce the fitness of 𝑝𝑎𝑡ℎ 𝑖 

that passes through an obstacle and yields in preventing taking it.  

       Finally, the overall systematic provides the shortest, smooth and safe path on 

the workspace for static known environment that can be abstracted, as shown in 

Figure (3.3).  

 

 

 

 

 

 

 

Figure (3.3): Overall scheme of applying optimization algorithms based path planning. 
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         Following that, the Nature-Inspired algorithms are used in order to create paths 

for three mobile robots in the same map with the same distention point, but different 

source points are for each respective robot. With the implementation of multiple 

mobile robot, the effect on the various optimization techniques has to be considered. 

With more robots in play, it is decided to run the optimization methods for each 

robot at the same time because these methods need to be reconfigured in order to 

find all paths for each mobile robots that means three times of computational cost. 

That computational cost would scale even higher with the addition of more mobile 

robots.  

       The overall systematic of the multiple mobile robot implementation can be 

abstracted, as shown in Figure (3.4). 

 

 

 

 

 

 

 

 

 

 

Figure (3.4): Overall scheme of applying optimization algorithms based path planning for 
mobile robots. 
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        Based on previous idea, the problem of multi robot path planning can be 

described as follows: 

1. Plan a shortest path for each robot from its start point to the end separately. This 

step ensures the lower complexity and completeness for each robot. 

2. Use the kinematic equations to get the velocity arrangements so that the all robots 

can move on their paths designed before without collisions. This step ensures the 

optimality and will not influence the completeness for each mobile robot. 

      Moreover, equation (3.10) [28] investigates whether the new desired trajectory 

is optimal travelling time (𝑇 ) for the wheeled mobile robot.  

 𝑇 =  𝜑 × 𝑇                                                                                                           (3.10) 

Where, 𝑇  is the sampling time and 𝜑 is denoted as the number of samples. 

3.6 Path Optimization Algorithms 

      There are three principles used to organize the mobile robot movement in order 

to reach the goal position without collision with the obstacles or other mobile robot 

in the workspace. These principles are: 

1- Firstly, the mobile robot is the next position in order to align itself to a goal. 

2- Check if there is a collision with the static obstacle. This may happen with an 

obstacle found in the next position. To avoid such collision, the mobile robot path 

changes its position with a penalty. In addition, it may be there is a collision with 

another mobile robot in the case of more than one mobile robot trying to take the 

same position. To avoid such a collision, time and velocity are needed to be 

calculated to know which mobile robot has a high velocity or minimum time and 

can reach the target firstly based on the desired path length.  

3- Finally, if the mobile robot can align itself to the goal without any collision with 

the obstacle or other mobile robot, it will move to the next position safely.  
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       In the next subsections, Chaotic PSO, original FF and the proposed hybrid 

FFCPSO algorithms are used to locate the optimal control points (waypoints) within 

the interpolation points to find the optimum path from start to target points.   

3.6.1 Improved Basic PSO Algorithm 

       Although the PSO algorithm has the advantages of simple structure, easy to be 

described and implemented, uses a relatively small size of population, adjusts the 

few parameters, takes on fast convergence, good robustness and higher 

computational efficiency than the traditional methods, it is easy to fall into a local 

extreme value and cannot obtain the global optimal solution. There are two essential 

reasons for this problem namely, firstly the character of the optimization function 

and secondly the inappropriate parameters design and population size of algorithm 

in the operation process. These two reasons will rapidly vanish the diversity of 

particles in the calculation process and cause the premature problem. In order to 

improve the ability of global searching and prevent a slide into the premature 

convergence to local minima, PSO and chaotic map technique are combined to form 

a Chaotic Particle Swarm Optimization (CPSO) algorithm, which practically 

combines the behavior of the chaotic searching with the population-based 

evolutionary searching ability. Chaos is random and unpredictable, which can be 

described as a bounded non-linear system with deterministic dynamic behavior that 

has stochastic features. Logistic map as one of the simplest chaotic maps which has 

been paid much attention by the researchers over the last few decades is employed 

in this thesis for constructing the hybrid PSO as described in equation (3.11) [47].    

𝑍 =  𝑈 𝑍 (1 − 𝑍 )                    0 ≤  Z  ≤ 1                                                   (3.11) 

Where, 𝑈 is a control parameter with a real number from [0 to 4]. Although (3.11) 

is deterministic, it exhibits the chaotic dynamic when 𝑈 = 4 and  0 ≤ Z ≤ 1. It 
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exhibits the sensitive dependence on the initial conditions, which is the basic feature 

of chaos. The new inertia weight factor (Ꞷ ) is defined by multiplying the inertia 

weight in equation (2.24) by the logistic map in equation (3.11) as shown in equation 

(3.12) [47]. 

Ꞷ =  Ꞷ ×  𝑍                                                                                             (3.12) 

       Finally, in order to improve the global search capability of basic PSO algorithm, 

one has to introduce a new velocity update as in equations (3.13) and (3.14) [47]. 

𝑉 =  Ꞷ  𝑉 +  𝑐 𝑟 (𝑃 −  𝑋 ) +  𝑐 𝑟 (𝐺 −  𝑋 )                             (3.13) 

𝑉 =  Ꞷ  𝑉 +  𝑐 𝑟 (𝑃 −  𝑌 ) +  𝑐 𝑟 (𝐺 −  𝑌 )                            (3.14) 

       In the next iteration, these particles are then moved to the next position 

according to equations (3.15) and (3.16). 

𝑋 =  𝑋 +  𝑉                                                                                             (3.15) 

𝑌 =  𝑌 +  𝑉                                                                                             (3.16) 

      The flowchart of Chaotic PSO algorithm based on path planning application is 

illustrated in Figure (3.5). 
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Start 

Initialize the environment with static obstacles, identify the 
start, and target points. 

Let 𝑻𝒎𝒂𝒙 = maximum number of iterations, pop= maximum number of particles, 𝒊= the current 
particle, t= the current iteration. 

Initialize particles (pop) with random waypoints and zero velocity. 

𝒊=1 

For particle (𝒊)  

Apply cubic polynomial interpolation. 

Checking collision as in equations (3.5) and (3.6). 

Calculate the path length as in equation (3.8). 

For particle (𝒊) set personal best cost = current cost function 

𝑷𝒃𝒆𝒔𝒕 = current position. 

If 𝒊 <= pop 

Set global best cost function = min (for all local best cost function). 

t=1 

Calculate the inertia weight (Ꞷ) as in equation (2.22) 

Calculate the new inertia weight based on logistic map as in equation (3.12). 

A 

𝒊 = 𝒊 + 𝟏 

B 

𝒊=1 

Yes 

No 
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Figure (3.5): The Flowchart of CPSO Algorithm based path planning. 

If current cost < 
local cost function 

For this particle set personal best = current cost function. 

If 𝒊 <= pop 

Set global best cost function = min (for all local best cost function). 

If 𝒊 <= 𝑻𝒎𝒂𝒙 

The best solution = global particle. 

End 

For particle (𝒊) update the velocity and position according to equations (3.13), (3.14), (3.15) and (3.16). 

A 

For particle (𝒊)  

Apply cubic polynomial interpolation. 

Checking collision as in equations (3.5) and (3.6). 

Calculate the path length as in equation (3.8). 

𝒊 = 𝒊 + 𝟏 

𝒕 = 𝒕 + 𝟏 

B 

If current cost < 
local cost function 

Yes 

No 

Yes 

No 

No 

Yes 

No 

Yes 
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3.6.2 Firefly (FF) Algorithm 

       Firefly (FF) algorithm is vastly used for solving optimization and engineering 

problems, because of including features such as high error tolerance, automatic 

segmentation of the population into subgroups and non-sensitive to initial values, 

which can produce acceptable results. The flowchart of FF algorithm based path 

planning application is illustrated in Figure (3.6). 

3.6.3 Proposed Hybrid FFCPSO Algorithm 

        Despite that the FF algorithm is widely used for solving optimization problems, 

the conventional FF algorithm also has some coming in term of trapping into local 

optima and the process of updating of the movement (position) of Fireflies is not 

faster. The FF algorithm does not have a velocity characteristic, and there are no 

parameters to use the previous best position of each firefly. Therefore, fireflies will 

move regardless of their previous best positions. As a result, it is advantageous for 

the fireflies to find a new optimum search space with a definite velocity to arrive at 

global optimum point very quickly. On the other hand, PSO has a faster convergence 

ability rather than some other population-based algorithms. Balance between 

exploration and exploitation in PSO can be efficiently controlled by using three 

control factors namely, (Ꞷ, 𝑐  and 𝑐 ). Thus, some modification and hybridization 

are proposed to overcome this problem.   

      In this thesis, an optimization algorithm that combines the search ability of 

firefly and chaotic PSO algorithms has been proposed. By using this combination, a 

balance between exploration and exploitation is aimed to establish and it benefits the 

strengths of both algorithms.  
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Start 

Initialize the environment with static obstacles, identify the 
start, and target points. 

Let 𝑻𝒎𝒂𝒙 = maximum number of iterations, pop= maximum number of fireflies, 𝒊= the current 
firefly and t= the current iteration. 

Initialize fireflies with random positions (waypoints). 

𝒊=1 

If 𝒊 <= pop 

Set best solution cost function = min (for all local best cost function). 

t=1 

For 𝒊= 1: pop 
for j= 1: pop 

 if cost j> cost 𝒊 Move firefly 𝒊 towards j 
according to equation (2.27) 

Calculate the distance between 
two fireflies according to 

equation (2.26) 

A 

For firefly (𝒊)  

Apply cubic polynomial interpolation. 

Checking collision as in equations (3.5) and (3.6). 

Calculate the path length as in equation (3.8). 

B 

𝒊=1 

C 

D 

Yes 

No 

Yes 

No 

𝒊 = 𝒊 + 𝟏 
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Figure (3.6): The Flowchart of FF Algorithm based path planning. 

 

 

 

 

 

A 

If 𝒊 <= pop 

Set best solution cost function = min (for all local best cost function). 

If 𝒕<= 𝑻𝒎𝒂𝒙 

Optimal Path 

End 

Firefly 𝒊 is move randomly toward firefly j according to 
equation (2.28). 

B 

For firefly (𝒊)  

Apply cubic polynomial interpolation. 

Checking collision as in equations (3.5) and (3.6). 

Calculate the path length as in equation (3.8). 

C D 

Yes 

No 

Yes 

No 
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      As mentioned before, fireflies have no velocity and personal best position (𝑃 ) 

memories in comparison to particles. Previous works show that PSO is one of the 

popular methods for a global search. Therefore, the combination of FF and PSO will 

find a better solution to explore the search space by applying the capability of PSO 

in memorizing its previous best in determining the next possible solution.          

       In the suggested algorithm, the flash (light) intensity attraction step of each 

firefly is mutated by a PSO operator. At this step, each firefly is attracted randomly 

towards the global best position in the entire population. Hence, the velocity term 

with modification for faster convergence is appended in order to improve exploration 

and exploitation capability. So, the FFCPSO algorithm is modified as follows: 

       Firstly, the Cartesian distance between (𝑋  and  𝑃 ) and (𝑌  and  𝑃 ) is in 

equations (3.17) and (3.18), respectively. 

𝐷 = ∑ (𝑃 , − 𝑋 , )                                                                                 (3.17) 

𝐷 = ∑ (𝑃 , − 𝑌 , )                                                                                  (3.18) 

      Secondly, the Cartesian distance between (𝑋  and 𝐺 ) and (𝑌  and 𝐺 ) is in 

equations (3.19) and (3.20), respectively. 

𝐷 = ∑ (𝐺 − 𝑋 , )                                                                                   (3.19) 

𝐷 = ∑ (𝐺 − 𝑌 , )                                                                                   (3.20) 

 Finally, the position vector is mutated by equations (3.21) and (3.22). 

𝑋 =  Ꞷ 𝑋 +  𝑐 ∗  𝑒 (𝑃 − 𝑋 ) +  𝑐 ∗  𝑒 (𝐺 − 𝑋 ) +  ᾶ ₤                   (3.21) 

𝑌 =  Ꞷ 𝑌 +  𝑐 ∗  𝑒 (𝑃 − 𝑌 ) + 𝑐 ∗  𝑒 (𝐺 − 𝑌 ) +  ᾶ ₤                   (3.22) 
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The flowchart of FFCPSO algorithm is illustrated in Figure (3.7). 

 

 

  

 

 

 

 

 

 

 

  

 

  

 

 

  

   

 

  

 

 

 

Start 

Initialize the environment with static obstacles, identify the start point 
(𝑿𝒔, 𝒀𝒔), and target point (𝑿𝒕, 𝒀𝒕). 

Let 𝐓𝐦𝐚𝐱 = maximum number of iterations, pop= maximum number of fireflies, 𝒊= the current 
firefly and t= the current iteration. 

Initialize fireflies (pop) with random positions. 

𝒊=1 

If 𝒊 <= pop 

Set best solution cost function = min (for all local best cost function). 

t=1 

Calculate Cartesian distance between 𝑷𝒃𝒆𝒔𝒕 − 𝑿𝒊 
and 𝑷𝒃𝒆𝒔𝒕 − 𝒀𝒊 according to equation (3.17) and 

(3.18), respectively. 

Calculate Cartesian distance between 𝑮𝒃𝒆𝒔𝒕 − 𝑿𝒊 
and 𝑮𝒃𝒆𝒔𝒕 − 𝒀𝒊 according to equation (3.19) and 

(3.20), respectively. 

For firefly (𝒊)  

Apply cubic polynomial interpolation. 

Checking collision as in equations (3.5) and (3.6). 

Calculate the path length as in equation (3.8). 

𝒊=1 

𝒊 = 𝒊 + 𝟏 
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Figure (3.7): The Flowchart of FFCPSO Algorithm based path planning. 

Movement of fireflies according to equation (3.21) 
and (3.22), respectively. 

If current cost < 
local cost function 

For this firefly set personal best = current cost function. 

If 𝒊<= pop 

Set global best cost function = min (for all local best cost function). 

If 𝒊<= 𝐓𝐦𝐚𝐱 

The best solution (optimal path). 

End 

Calculate the distance between 
two fireflies according to 

equation (2.26) 

Move firefly i towards j 
according to equation (2.27) 

For 𝒊= 1: pop 
for 𝒋= 1: pop 

 if cost 𝒋> cost 𝒊 

For firefly (𝒊)  

Apply cubic polynomial interpolation. 

Checking collision as in equations (3.5) and (3.6). 

Calculate the path length as in equation (3.8). 
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𝑖 = 𝑖 + 1 
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𝑡 = 𝑡 + 1 
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CHAPTER FOUR 

SIMULATION RESULTS AND DISCUSSION 

4.1 Introduction    

        In this chapter, the simulation results that evaluate the performance of various 

optimization algorithms, namely PSO, CPSO, FF and proposed hybrid FFCPSO for 

solving the path-planning problem of wheeled mobile robots are presented. The 

simulation was conducted with static known environment based on different cases. 

Furthermore, the collected results based on different optimization algorithms are 

verified through comparison with each other and also with other researcher’s works. 

The simulation code was implemented by using the same personal computer (PC) 

with the Hardware and Software specifications shown in Table (4.1) in order to get 

an unbiased comparison of CPU times.  

Table (4.1): The Hardware and Software specifications. 

Name  Setting 

H
. W

 

CPU Core ™ i7-7500U 
Frequency 2.90 GHz 

RAM 8.00 GHz 
Hard drive 953869 MB 

S
. W

 Operating system Windows 10 
Language MATLAB R2014a 

       The kinematic model of the Non-holonomic Wheeled Mobile Robot (WMR), 

which has been presented in Chapter Two (section (2.2)), used in the simulation in 

order to calculate the robot velocities on the desired path. The simulation was 

executed (off line) by planning a feasible path from start position to the target 

position in static known environment. The National Instrument (NI) wheeled mobile 

robot was used in this simulation and its specifications taken from [48] are listed in 

Table (4.2) as follows: 
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Table (4.2): Wheeled NI- Mobile Robot parameters [48]. 

NI-Mobile Robot Parameter Acronym Value Unit 

Distance between two wheels W 0.36 m 

Wheel Radius R 0.075 m 

Period Time T  0.1 sec 

Mobile Robot Length L 0.40 m 

Max. Linear Velocity of Right and Left wheel 𝑉𝑅 & 𝑉𝐿  0.5 m /sec 

Min. Linear Velocity of Right and Left wheel 𝑉𝑅 & 𝑉𝐿  -0.5 m /sec 

Max. Angular Velocity of  Right and Left wheel 𝑊𝑅 & 𝑊𝐿  6.67 rad /sec 

Min. Angular Velocity of  Right and Left wheel 𝑊𝑅 & 𝑊𝐿  -6.67 rad /sec 

Max. Linear Velocity of Platform 𝑉  0.5 m /sec 

Min. Linear Velocity of Platform 𝑉  0 m /sec 

  Max. Angular Velocity of platform 𝑉  2.77 rad /sec 

Min. Angular Velocity of platform 𝑉  -2.77 rad /sec 

4.2 Simulation Parameters’ Setting 

       Different cases have been done with the various intelligent algorithms. In all 

cases, the map dimensions are (1000×1000) cm. The obstacles can be located at any 

place on the map except at starting and target points. The possible parameters’ values 

of each optimization algorithm and the locations of obstacles are explained in the 

following subsections. 

4.2.1 Parameters Setting for basic PSO and CPSO Algorithms  

      The flowchart of CPSO algorithm, which has been established in Chapter Three  

(Figure (3.5)), is used to locate the optimal waypoints (control points) to find the 

best path for wheeled NI- mobile robot. Table (4.3) shows the set of PSO and CPSO 

parameters that have been used in the simulation. For more details, see Appendix A. 
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Table (4.3): PSO and CPSO parameters. 

PSO and CPSO parameter Acronym value 
Max. Number of Iterations 𝑇  80 

Number of particles 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 20 
Acceleration Constant 𝑐  & 𝑐  1.5 

Min. Inertia Weight Factor Ꞷ  0.4 

Max. Inertia Weight Factor Ꞷ  0.9 
Random Values 𝑟  & 𝑟  0-1 

Control parameter 𝑈 4 
 Chaotic Initial value 𝑍  0.3 

4.2.2 Parameters’ Setting for basic FF Algorithm  

      The flowchart of FF algorithm, which has been demonstrated in Chapter Three 

(Figure (3.6)), is used to optimize the waypoints (control points) to find the best path 

for wheeled NI- mobile robot. The wrong selection of (ᾶ) can cause a small or big 

step increment and take away the solution in some other side far away from the 

global best. Table (4.4) shows the set of FF parameters that have been used in the 

simulation. For more details, see Appendix A. 

Table (4.4): FF parameters. 

FF parameter Acronym value 
Max. Number of Iterations 𝑇  80 

Number of fireflies 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 20 

Flash absorption coefficient 𝛾 1 
Initial attractiveness parameter 𝛽  2 

Randomness parameter ᾶ 0.2 

4.2.3 Parameters’ Setting for Hybrid FFCPSO Algorithm 

      The flowchart of FFCPSO algorithm, which has been demonstrated in Chapter 

Three (Figure (3.7)), is used to optimize the waypoints (control points) to find the 

best path for wheeled NI- mobile robot. Table (4.5) shows the set of FFCPSO 

parameters that have been used in the simulation. 
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Table (4.5): FFCPSO parameters. 

FFCPSO parameter Acronym value 
Max. Number of Iterations 𝑇  80 

Number of fireflies 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 20 
Acceleration Constant 𝑐  & 𝑐  1.5 

Flash absorption coefficient 𝛾 1 

Initial attractiveness parameter 𝛽  2 
Randomness parameter ᾶ 0.2 

Min. Inertia Weight Factor Ꞷ  0.4 
Max. Inertia Weight Factor Ꞷ  0.9 

Control parameter 𝑈 4 
Initial value 𝑍  0.3 

4.2.4. Parameter Setting of Start and Target Position  

       In case A, single wheeled NI-mobile robot was used on a static environment. In 

case B, three wheeled NI- mobile robots were used, these robots have different start 

positions and same target position. While in case C, three follow up-wheeled NI-

mobile robots were used, each robot has its start position and then follows up other 

robot to the same target. These locations are ordered in Table (4.6) as follows: 

Table (4.6): Start and target definition for all cases. 

Case No. Robot No. (𝑿𝒔, 𝒀𝒔) (𝑿𝒕, 𝒀𝒕) 
A 1 (100,100)  

 
 

(900,900) 
 

 
B 

1 (500,100) 
2 (100,200) 
3 (700,0) 

 
C 

1 (100,150) 
2 (100,100) 
3 (100,50) 

4.2.5. Parameter Setting of Obstacles Positions  

The locations of all static obstacles in all cases are ordered in Table (4.7) as follows: 
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Table (4.7): Obstacles definition for all cases. 

Obstacle No. 𝑹𝒐𝒃𝒔 (cm) Center (𝑿𝒐𝒃𝒔,𝒀𝒐𝒃𝒔) 
1 34 (100,820) 
2 64 (150,450) 
3 40 (300,700) 
4 34 (400,300) 
5 54 (600,600) 
6 40 (610,210) 
7 34 (800,800) 
8 60 (900,400) 
9 64 (900,100) 

4.3 Simulation Results  

       The four metaheuristic (population-based) optimization algorithms are 

implemented based on a path-planning application in order to find optimal or near 

to optimal actual paths for WMRs with three different cases. The paths are found in 

order to show the effectiveness of each algorithms and how can achieve three 

objectives (distance, smoothness and safety) as a first step, and then the distances of 

these paths between the mobile robot initial position and terminal position are 

determined based on equation (3.8). The second step can be achieved by obtaining 

the desired paths equations for the actual paths by using the basic fitting function. 

Therefore, in the third step the WMR velocities on the desired path are calculated. 

4.3.1 Case A: Single Wheeled NI- Mobile Robot  

       In the case of empty map, the total path length from start to target point is equal 

to (1131.37) cm. In this case, the number of waypoints that needs to be optimized 

(D) is equal to 4. 

4.3.1.1 Single Optimal Path Finding 

       Figure (4.1) reveals the simulation results of the optimum route for the wheeled 

NI- mobile robot based on PSO, CPSO, FF and hybrid FFCPSO algorithms. Based 
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on the number of samples between (𝑋 , 𝑌 ) and (𝑋 , 𝑌 ), the WMR has travel time 

(𝑇 ) equal to 80 sec on the desired path. 

 

Figure (4.1): The shortest path for the case A based on optimization algorithms. 

       After ten runs, the outputted waypoints based on various algorithms are ordered 

in Table (4.8). 

Table (4.8): Waypoints coordination for case A. 

Waypoints 
(D) 

Coordinate 
(𝑿, 𝒀) 

Type of Intelligent Algorithm 
PSO CPSO FF FFCPSO 

D  X (cm) 328.729 397.724 121.796 347.563 
Y (cm) 372.737 469.780 132.757 414.511 

D  X (cm) 469.155 513.662 189.289 560.296 
Y (cm) 547.543 614.743 218.320 665.378 

D  X (cm) 496.680 612.248 421.841 708.256 
Y (cm) 582.702 717.285 532.636 794.053 

D  X (cm) 619.992 738.988 732.089 619.992 
Y (cm) 732.612 824.693 818.865 732.612 

        Figure (4.2) explains the variation of the objective function through the number 

of iterations based on presented methods until reaching the best values. 
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 Figure (4.2): Variation of objective function through number of iterations / case A. 

        From the figure above, the optimal path with shortest distance using standard 

PSO is equal to (1148.81) with in iteration (53) and is equal to (1148.52) with in 

iteration (36). The optimal path with shortest distance using standard FF is equal to 

(1158.4) with in iteration (79) and is equal to (1148.01) with in iteration (39). 

       The simulation results for case A are summarized in Table (4.9). Standard 

deviation is a measure of how “spread out” a set of data is. If it is large, data has a 

large range of numbers. If it is small, most of data points are close to the average. 

While, the percentages of the objective function between techniques are explained 

in Table (4.10). 

Table (4.9): Comparison results for case A. 

Type of 
intelligent 
Algorithm 

Min. 
Distance 
 in (cm) 

 
Fitness 

Iteration 
of best 
value 

Max. 
Distance 
in (cm) 

Average 
in (cm) 

Standard 
Deviation 

PSO 1148.81 0.087 53 1156.77 1151.2 0.0254 
CPSO 1148.52 0.087 36 1149.78 1148.77 5.638E-3 

FF 1158.4 0.0863 79 1164.41 1160.73 0.0165 
FFCPSO 1148.01 0.0871 39 1149.91 1148.75 8.067E-3 
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Table (4.10): Percentages of objective function between algorithms for case A. 

Algorithm 
Type  

PSO-
CPSO 

PSO-
FF 

PSO-
FFCPSO 

CPSO-
FF 

CPSO-
FFCPSO 

FF-
FFCPSO 

Percentage,% 0.0252 0.8278 0.0696 0.8529 0.0444 0.8969 

      One can conclude that the objective function values varied sharply within several 

runs since the particles or fireflies’ best positions (candidate solutions) varied 

intensively, as shown in Figure (4.3).  

 
Figure (4.3): Variation of objective function through number of runs for case A. 

      From the above figure, PSO algorithm can achieve the best path with the shortest 

distance in run no. 7. While, the best path with the shortest distance by using CPSO 

algorithm is achieved in run no. 9. FF algorithm can achieve it in run no. 8 and 

FFCPSO algorithm in run no. 5. 

      The presented algorithms generate an optimal obstacle free trajectory for single 

robot in static environment that can contain known multiple obstacles. From the case 

A results, it is plainly to say that both PSO and CPSO algorithms always lead to an 

optimum or near to optimum path, but there is a difference in the number of iteration 

between the two algorithms, where the basic PSO algorithm requires more number 

of iterations than CPSO algorithm. Hybrid FFCPSO algorithm can enhance the 

performance of FF algorithm by providing more smoothness and optimal path value 
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with less number of iterations and minimum execution time. Hybrid FFCPSO 

technique is perfect in providing excellent path tracking equals to (1148.01) cm at 

39 iteration. On the other hand, CPSO is better than FFCPSO in iteration number 

equal to 36 and time consuming. Additionally, the small percentage between both 

methods equals (0.0444 %). 

4.3.1.2 Single Mobile Robot Velocities     

      After finding the actual robot’s path for each optimization algorithm, the desired 

path fitting function for the CPSO, FF and FFCPSO algorithms are given in 

equations (4.1), (4.2) and (4.3), respectively. 

𝑦(𝑥) = 4.2 × 10 𝑥 − 1.9 × 10 𝑥 + 0.0016𝑥 + 0.81𝑥 + 9.9                                         (4.1) 

𝑦(𝑥) = − 4.1 × 10 𝑥 − 7.7 × 10 𝑥 + 1.5 𝑥 − 45                                                            (4.2) 

𝑦(𝑥) = −7.6 ×  10  𝑥 + 0.00053𝑥 + 1.2𝑥 − 23                                                               (4.3) 

      Figure (4.4) shows the both actual and desired path based on CPSO, FF and 

FFCPSO algorithms, respectively. 
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Figure (4.4): Desired and actual path for case A. 

       From the above figure, the distance error between actual and desired paths is 

equal to (0.95%) for CPSO, (1.67%) for FF and (1.44%) for FFCPSO algorithms.   

Then, based on kinematic equations of the differential drive mobile robot, one can 

calculate the robot velocity on the desired path as follows: 

1. Wheels Angular Velocity 

       The right and left wheels angular velocity of the robot system is described in 

Figures (4.5), (4.6) and (4.7) based on the CPSO, FF and FFCPSO algorithms, 

respectively. 

 

Figure (4.5): The angular velocity of the right and left wheels / case A based on CPSO 
algorithm. 
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Figure (4.6): The angular velocity of right and left wheels / case A based on FF algorithm. 

 

Figure (4.7): The angular velocity of right and left wheels / case A based on FFCPSO 
algorithm. 

       From Figure (4.5), (4.6) and (4.7), the angular velocity of the left and right 

wheels (𝑊𝐿& 𝑊𝑅) based on the CPSO, FF and FFCPSO approaches are equal to 

(1.9) rad/sec, (2.18) rad/sec and (2.09) rad/sec, respectively and should range 

between (-6.67, +6.67) rad/sec. 

2. Wheels Linear Velocities 

       The linear velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms is illustrated in Figures (4.8), (4.9) and (4.10), respectively.  
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Figure (4.8): The linear velocity of right and left wheels / case A based on CPSO algorithm. 

 
Figure (4.9): The linear velocity of right and left wheels / case A based on FF algorithm. 

 

Figure (4.10): The linear velocity of the right and left wheels / case A based on FFCPSO 
algorithm. 
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      The linear velocity of the left and right wheels (𝑉𝐿& 𝑉𝑅) based on the CPSO, 

FF and FFCPSO approaches are equal to (0.14) m/sec, (0.16) m/sec and (0.15) 

m/sec, respectively and should range between (-0.5, +0.5) m/sec. 

3. Platform Linear and Angular Velocities 

      The angular and linear velocities of the platform (𝑉 & 𝑉 ) based on the CPSO, 

FF and FFCPSO algorithms are manifested in Figures (4.11), (4.12) and (4.13), 

respectively.  

 
Figure (4.11): The platform angular and linear velocities/ case A based on CPSO 

algorithm. 
 

 

Figure (4.12): The platform angular and linear velocities/ case A based on FF algorithm. 
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Figure (4.13): The platform angular and linear velocities/ case A based on FFCPSO 
algorithm. 

4.3.2 Case B: Three Independent Wheeled NI- Mobile Robots  

        In the case of empty map, the total path length for the first, second and third 

wheeled NI- mobile robot from start to target point is equal to (894.427) cm, 

(1063.014) cm and (921.954) cm, respectively. In this case, the number of waypoints 

that needs to be optimized (D) is equal to 3 for each path. In tacit way, the 

optimization algorithms work as a dynamic path planning because every mobile 

robot must avoid collision with another mobile robot during its movement to the 

same target. So, each mobile robot is considered as a dynamic obstacle to other 

mobile robots. 

4.3.2.1 Multi Optimal Path Finding 

      Figure (4.14) displays the resulted paths for the three wheeled NI- mobile robots 

based on PSO, CPSO, FF and hybrid FFCPSO algorithms.  
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Figure (4.14): The shortest path for each robot / case B.  

      

       After ten runs, the outputted waypoints based on various algorithm are 

abstracted in Table (4.11). 

       Since the candidate solutions varied intensively, the PSO algorithm can achieve 

best path with shortest distance in run no.7. While the best path with the shortest 

distance by using CPSO algorithm is achieved in run no. 5. FF algorithm can achieve 

it in run no. 7 and FFCPSO algorithm in run no. 6. Depends on the number of 

samples between (𝑋 , 𝑌 ) and (𝑋 , 𝑌 ), the WMR  has travel time (𝑇 ) equal to 40 

sec, the WMR  has travel time (𝑇 ) equal to 80 sec and the WMR  has travel time 

(𝑇 ) equal to 90 sec. Thereafter, based on the kinematic equations of differential 

drive mobile robot, one can calculate the robot velocity on its specific path. In this 

case, all mobile robots start to move to the target at (𝑇 =0) sec. 
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Table (4.11): Waypoints coordination for case B. 

Path 
No. 

Waypoints 
(D) 

Coordinate 
(𝐗, 𝐘) 

Types of Intelligent Algorithm 
PSO CPSO FF FFCPSO 

P
at

h 
1 

D  X (cm) 574.649 577.006 595.198 562.162 
Y (cm) 276.490 279.072 312.357 248.874 

D  X (cm) 634.478 656.897 770.467 648.581 
Y (cm) 378.611 417.631 616.499 407.635 

D  X (cm) 703.852 793.283 838.292 778.190 
Y (cm) 474.164 665.875 718.212 636.921 

P
at

h 
2 

D  X (cm) 412.551 223.359 287.493 493.487 
Y (cm) 532.630 321.973 377.432 600.880 

D  X (cm) 445.648 342.890 419.634 716.700 
Y (cm) 569.036 443.390 556.245 802.813 

D  X (cm) 627.777 606.640 598.260 790.809 
Y (cm) 741.597 714.316 743.441 855.571 

P
at

h 
3 

D  X (cm) 329.119 168.254 485.423 391.060 
Y (cm) 798.859 752.526 839.609 813.245 

D  X (cm) 491.968 263.544 552.923 600.653 
Y (cm) 828.929 781.950 846.302 850.045 

D  X (cm) 571.733 426.158 689.632 717.287 
Y (cm) 843.544 819.375 905.631 869.566 

 

       Figures (4.15), (4.16) and (4.17) explain the changing of the objective function 

through the number of iterations until reaching the optimal value for the first, second 

and third paths, respectively. 
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Figure (4.15): Variation of objective function through the number of iterations for first 
path / case B. 

        From the figure above, the optimal path with shortest distance using standard 

PSO is equal to (897.75) with in iteration (75) and is equal to (895.82) with in 

iteration (29) in CPSO algorithm. The optimal path with shortest distance using 

standard FF is equal to (900.25) with in iteration (73) and is equal to (895.78) with 

in iteration (33) in the hybrid FFCPSO algorithm. 

 

Figure (4.16): Variation of objective function through the number of iterations for second 
path / case B. 
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       From the figure (4.16), the optimal path with shortest distance using standard 

PSO is equal to (1074.43) with in iteration (66) and is equal to (1073.74) with in 

iteration (47) in the CPSO algorithm. The optimal path with shortest distance using 

standard FF is equal to (1082.54) with in iteration (44) and is equal to (1072.34) with 

in iteration (59) in the proposed FFCPSO algorithm. 

 

Figure (4.17): Variation of objective function through the number of iterations for third 
path/ case B. 

       While from the figure (4.17), the optimal path with shortest distance using 

standard PSO is equal to (923.7) with in iteration (58) and is equal to (923.59) with 

in iteration (38) in the CPSO algorithm. The optimal path with shortest distance 

using standard FF is equal to (938.66) with in iteration (77) and is equal to (923.77) 

with in iteration (44) in the proposed hybrid FFCPSO algorithm. 

       Table (4.12) summarizes the results of case B, which can be achieved by the 

various intelligent algorithms after ten runs. Posteriorly, the percentages of the 

objective function between algorithms for each path are explained in Table (4.13). 
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Table (4.12): Comparison results for case B. 

Robot 
No. 

Type of 
Intelligent  
Algorithm 

Min. 
Distance 
in (cm) 

 
Fitness 

Iteration 
of best 
value 

Max. 
Distance 
in (cm) 

Average 
Distance 
in (cm) 

Standard 
Deviation 

 
1 

PSO 897.75 0.1113 73 899.7 897.85 7.473E-3 
CPSO 895.82 0.1116 29 897.3 896.42 5.546E-3 

FF 900.25 0.1110 73 907.44 903.4 0.0253 
FFCPSO 895.78 0.1116 33 898.19 896.24 4.509E-3 

 
2 

PSO 1074.43 0.0930 66 1079.9 1075.1 7.313E-3 
CPSO 1073.74 0.0931 47 1076.1 1074.43 9.154E-3 

FF 1082.54 0.0923 44 1107.39 1096.64 0.1429 
FFCPSO 1072.34 0.0932 59 1076.6 1073.99 0.0111 

 
3 

PSO 923.7 0.1082 58 924.5 923.82 3.096E-3 
CPSO 923.59 0.1082 38 923.78 923.63 1.476E-3 

FF 938.66 0.1065 77 949.4 944.4 3.1644 
FFCPSO 923.77 0.1082 44 924.5 923.73 2.915E-3 

 

Table (4.13): Percentages of the objective function between algorithms for case B. 

Robot 
No. 

Algorithm 
Type 

PSO-
CPSO 

PSO-
FF 

PSO-
FFCPSO 

CPSO-
FF 

CPSO-
FFCPSO 

FF-
FFCPSO 

1  
Percentage,% 

0.2149 0.2777 0.2194 0.492 4.465E-3 0.4965 
2 0.0642 0.7491 0.1945 0.8129 0.1303 0.9422 
3 0.0119 1.5937 7.577E-3 1.6054 0.0194 1.5863 

     The discussed algorithms generate short, safe and smooth paths for three 

independent two-wheeled mobile robots. Firstly, the first mobile robot arrived to the 

target. Then, the second and third mobile robots depend on their velocities and travel 

time. From the case B results, it is clearly to say as follows: 

1. For path1, it is clearly from Figures (4.14) and (4.15) that CPSO and FFCPSO 

can get the same path length difference in few cm so there is a small percentage 

between them equal to (4.465E-3%), but CPSO can get it just with (29) iterations 

and has a good convergence curve than FFCPSO. 
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2. For path 2, Figures (4.14) and (4.16) show that FFCPSO is better than other 

algorithms in the minimum path length equal to (1072.34) cm with a high fitness 

value equal to (0.0932) however, FF became stable at (44) epoch. 

3. For path 3, Figures (4.14) and (4.17) depict that FFPSO is better than PSO to get 

the same third path length with (44) epoch, but CPSO is better in the iteration 

number and the shortest distance. 

4.3.2.2 Multi Mobile Robot Velocities 

      After finding the actual paths of mobile robots based on each presented 

approach, the desired path equations for WMR  based on CPSO, FF and FFCPSO 

by using basic fitting function are given in equations (4.4), (4.5) and (4.5), 

respectively. 

𝑦(𝑥) = −1.6 × 10 𝑥 + 5.2 × 10 𝑥 − 0.016𝑥 + 33𝑥 − 6.5 × 10                              (4.4)   

𝑦(𝑥) =  9.7 × 10 𝑥 − 0.02𝑥 + 16𝑥 − 3.9 × 10                                                             (4.5) 

𝑦(𝑥) = −9.8 ×  10  𝑥 + 3.4 × 10 𝑥 − 0.043𝑥 + 25𝑥 − 5.2 × 10                             (4.6) 

      The desired path equations for WMR  based on CPSO, FF and FFCPSO are 

given in equations (4.7), (4.8) and (4.9), respectively. 

𝑦(𝑥) = −4.8 × 10 𝑥 − 1.6 × 10 𝑥 + 0.00047𝑥 + 0.80𝑥 + 1.2 × 10                               (4.7) 

𝑦(𝑥) = − 1.6 × 10−6𝑥 + 0.0017 𝑥 + 0.62𝑥 + 1.1 × 10                                                     (4.8) 

𝑦(𝑥) = −1.9 ×  10  𝑥 + 3.1 × 10 𝑥 − 0.0019𝑥 + 1.5𝑥 + 62                                        (4.9) 

      While, the desired path equations for WMR  based on CPSO, FF and FFCPSO 

are obtained in equations (4.10), (4.11) and (4.12), respectively. 

𝑦(𝑥) = −5.6 × 10 𝑥 + 2.9 × 10 𝑥 − 0.00043𝑥 + 0.41𝑥 + 7 × 10                      (4.10)  

𝑦(𝑥) =  −2.6 × 10  𝑥 + 4.5 × 10 𝑥 − 0.0025𝑥 + 0.77𝑥 + 6.9 × 10                        (4.11)                

𝑦(𝑥) = 2 ×  10  𝑥 − 2.1 × 10 𝑥 − 0.00012𝑥 + 0.36𝑥 + 7 × 10                              (4.12) 

        Figure (4.18) shows the both actual and desired paths based on CPSO, FF and 

FFCPSO algorithms, respectively. 
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Figure (4.18): Desired and actual path for case B. 

      The distance error between actual and desired path for each NI-mobile robot 

based on three approaches are explained in Table (4.14). 

Table (4.14): Distance error for case B. 

Path No. Type of Intelligent Algorithm 
CPSO FF FFCPSO 

1 Distance 
Error 100% 

6.25 14.55 4.27 
2 0.72 0.86 0.24 
3 0.17 0.62 5.41E-3 
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      Then, based on kinematic equations of the differential drive mobile robot, one 

can calculate the robot velocity on the desired path as follows: 

1. Wheels Angular Velocity 

      The angular velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is revealed in Figures (4.19), (4.20) and 

(4.21), respectively. 

 
Figure (4.19): The angular velocity of right and left wheels for 1st robot / case B based on 

CPSO algorithm. 
 

 

Figure (4.20): The angular velocity of right and left wheels for 1st robot / case B based on 
FF algorithm. 
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Figure (4.21): The angular velocity of right and left wheels for 1st robot / case B based on 
FFCPSO algorithm. 

      From the figure (4.19), (4.20) and (4.21), the angular velocity of the right and 

left wheels for WMR based on the CPSO, FF and FFCPSO approaches are equal to 

(4.2) rad/sec, (4.8) rad/sec and (3.7) rad/sec, respectively.    

     The angular velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the specific path of WMR  is illustrated in Figures (4.22), 

(4.23) and (4.24), respectively.  

 
Figure (4.22): The wheel angular velocity of right and left for 2nd robot / case B based on 

CPSO algorithm. 
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Figure (4.23): The angular velocity of right and left wheels for 2nd robot / case B based on 
FF algorithm. 

 

Figure (4.24): The angular velocity of right and left wheels for 2nd robot / case B based on 
FFCPSO algorithm. 

       From figure (2.22), (2.23) and (2.24), the angular velocity of the right and left 

wheels for WMR  based on the CPSO, FF and FFCPSO approaches are equal to 

(1.8) rad/sec, (1.81) rad/sec and (1.79) rad/sec, respectively. 

      The angular velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is manifested in Figures (4.25), (4.26) 

and (4.27), respectively.  
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Figure (4.25): The angular velocity of right and left wheels for 3rd robot / case B based on 

CPSO algorithm. 

 

Figure (4.26): The angular velocity of right and left wheels for 3rd robot / case B based on 
FF algorithm. 

 
Figure (4.27): The angular velocity of right and left wheels for 3rd robot / case B based on 

FFCPSO algorithm. 
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       From the figure (4.25), (4.26) and (4.27), the angular velocity of the right and 

left wheels for WMR  based on the CPSO, FF and FFCPSO approaches are equal to 

(1.44) rad/sec, (1.66) rad/sec and (1.41) rad/sec, respectively. 

2. Wheels Linear Velocity 

      The linear velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  system is displayed in Figures (4.28), 

(4.29) and (4.30), respectively. 

 

 

Figure (4.28): The linear velocity of right and left wheels for 1st robot / case B based on 
CPSO algorithm. 
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Figure (4.29): The linear velocity of right and left wheels for 1st robot / case B based on FF 

algorithm. 
 

 
Figure (4.30): The wheel linear velocity of right and left for 1st robot / case B based on 

FFCPSO algorithm. 

       From figure (4.28), (4.29) and (4.30), the linear velocity of the right and left 

wheels for WMR  based on the CPSO, FF and FFCPSO approaches are equal to 

(0.31) m/sec, (0.34) m/sec and (0.28) m/sec, respectively. 

      The linear velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is clarified in Figures (4.31), (4.32) and 

(4.33), respectively.  
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Figure (4.31): The linear velocity of right and left wheels for 2nd robot / case B based on 

CPSO algorithm. 

 
Figure (4.32): The linear velocity of right and left wheels for 2nd robot / case B based on FF 

algorithm. 

 

Figure (4.33): The linear velocity of right and left wheels for 2nd robot / case B based on 
FFCPSO algorithm. 
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       From the figures (4.31), (4.32) and (4.33), the linear velocity of the right and 

left wheels for WMR  based on the CPSO, FF and FFCPSO approaches are equal to 

(0.134) m/sec, (0.136) m/sec and (0.135) m/sec, respectively.  

       The linear velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the specific path of WMR  is exhibited in Figures (4.34), 

(4.35) and (4.36), respectively. 

 
Figure (4.34): The linear velocity of right and left wheels for 3rd robot / case B based on 

CPSO algorithm. 
 

 
Figure (4.35): The linear velocity of right and left wheels for 3rd robot / case B based on FF 

algorithm. 
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Figure (4.36): The linear velocity of right and left wheels for 3rd robot / case B based on 
FFCPSO algorithm. 

       From the figures (4.34), (4.35) and (4.36), the linear velocity of the right and 

left wheels  for WMR  based on the CPSO, FF and FFCPSO approaches are equal 

to (0.108) m/sec, (0.125) m/sec and (0.108) m/sec, respectively. 

3. Platform Linear and Angular Velocities 

       The linear and angular velocities of the platform based on CPSO, FF and 

FFCPSO algorithms for the path of WMR  is demonstrated in Figures (4.37), (4.38) 

and (4.39), respectively. 

 

Figure (4.37): The platform angular and linear velocities for 1st robot / case B based on 
CPSO algorithm. 
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Figure (4.38): The platform angular and linear velocities for 1st robot / case B based on FF 
algorithm. 

 

Figure (4.39): The platform angular and linear velocities for 1st robot / case B based on 
FFCPSO algorithm. 

      The linear and angular velocities of the platform based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is exhibited in Figures (4.40), (4.41) and 

(4.42), respectively.  
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Figure (4.40): The platform angular and linear velocities for 2nd robot / case B based on 

CPSO algorithm. 
 

 
Figure (4.41): The platform angular and linear velocities for 2nd robot / case B based on FF 

algorithm. 
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Figure (4.42): The platform angular and linear velocities for 2nd robot / case B based on 

FFCPSO algorithm. 
     The linear and angular velocities of the platform based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is clarified in Figures (4.43), (4.44) and 

(4.45), respectively.  

 
Figure (4.43): The platform angular and linear velocities for 3rd robot / case B based on 

CPSO algorithm. 
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Figure (4.44): The platform angular and linear velocities for 3rd robot / case B based on FF 
algorithm. 

 

Figure (4.45): The platform angular and linear velocities for 3rd robot / case B based on 
FFCPSO algorithm. 
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        In the case of empty map, the total path length for the first, second and third 

wheeled NI- mobile robot from start to target point is equal to (1096.585) cm, 

(1131.37) cm and (1167.261) cm, respectively. 

4.3.3.1 Follower Optimal Path Finding  

       Figures (4.46), (4.47), (4.48) and (4.49) reveal the simulation results of the 

optimum route for each wheeled NI- mobile robot based on the PSO, CPSO, FF and 

FFCPSO algorithms, respectively.  
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Figure (4.46): Follower Mobile Robots / case C Based on basic PSO algorithm. 

 

Figure (4.47): Follower Mobile Robots / case C Based on CPSO algorithm. 
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Figure (4.48): Follower Mobile Robots / case C Based on basic FF algorithm. 

 

Figure (4.49): Follower Mobile Robots / case C Based on hybrid FFCPSO algorithm. 
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      Based on the number of samples between start locations (𝑋 , 𝑌 ) and target 

location (𝑋 , 𝑌 ), all the wheeled NI- mobile robots have the same travel time (𝑇 =

80) sec. Therefore, to avoid the collision that may occur between them, the WMR  

has less velocity than the WMR  and the WMR  has less velocity than theWMR .      

After ten runs, the outputted waypoints based on various algorithm are abstracted in 

Table (4.15). 

Table (4.15): Waypoints coordination for case C. 

Path 
No. 

Waypoints 
(D) 

Coordinate 
(𝐗, 𝐘) 

Type of Intelligent Algorithm 
PSO CPSO FF FFCPSO 

P
at

h 
1 

D  X (cm) 370.366 376.315 262.277 505.389 
Y (cm) 467.166 112.841 362.895 609.776 

D  X (cm) 539.111 506.144 508.853 713.274 
Y (cm) 646.807 125.203 621.166 801.019 

D  X (cm) 608.755 619.456 677.588 787.644 
Y (cm) 787.195 726.561 788.128 854.462 

P
at

h 
2 

D  X (cm) 373.953 439.438 280.369 132.986 
Y (cm) 450.269 522.830 388.581 141.205 

D  X (cm) 479.229 538.403 544.960 176.969 
Y (cm) 577.363 642.184 677.696 195.978 

D  X (cm) 664.174 684.755 705.875 365.075 
Y (cm) 765.556 784.528 818.550 430.423 

P
at

h 
3 

D  X (cm) 298.845 254.816 421.596 383.230 
Y (cm) 331.062 261.703 437.264 439.346 

D  X (cm) 410.864 321.636 514.929 532.083 
Y (cm) 481.889 357.383 615.450 636.074 

D  X (cm) 607.865 549.014 669.483 677.026 
Y (cm) 718.221 653.913 780.972 769.369 

        Figures (4.50), (4.51) and (4.52) explain the changing of the objective function 

through the number of iteration until reaching the optimal value for the first, second 

and third paths, respectively.  
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Figure (4.50): Variation of objective function for first path through the number of 
iterations / case C. 

         From the figure (4.50), the optimal path with shortest distance using standard 

PSO is equal to (1110.71) with in iteration (74) and is equal to (1109.89) with in 

iteration (24) in the CPSO algorithm. The optimal path with shortest distance using 

standard FF is equal to (1113.74) with in iteration (64) and is equal to (1108.98) with 

in iteration (48) in the proposed hybrid FFCPSO algorithm.  

 

Figure (4.51): Variation of objective function for second path through the number of 
iterations / case C. 



CHAPTER FOUR                                           SIMULATION RESULTS AND DISCUSSION 

88 
 

         From the figure (4.51), the optimal path with shortest distance using standard 

PSO is equal to (1148.48) with in iteration (74) and is equal to (1148.04) with in 

iteration (45) in the CPSO algorithm. The optimal path with shortest distance using 

standard FF is equal to (1159.98) with in iteration (65) and is equal to (1147.96) with 

in iteration (46) in the proposed hybrid FFCPSO algorithm.  

 

Figure (4.52): Variation of objective function for third path through iterations / case C. 

         From the figure (4.52), the optimal path with shortest distance using standard 

PSO is equal to (1188.24) with in iteration (57) and is equal to (1187.68) with in 

iteration (43) in the CPSO algorithm. The optimal path with shortest distance using 

standard FF is equal to (1194.27) with in iteration (53) and is equal to (1187.17) with 

in iteration (45) in the FFCPSO algorithm.  

      Since the candidate solutions varied intensively, the PSO algorithm can achieve 

best path with shortest distance in run no.7. While the best path with the shortest 

distance by using CPSO algorithm is achieved in run no. 6. FF algorithm can achieve 

it in run no. 10 and FFCPSO algorithm in run no. 8. 
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       After executing the programs of various intelligent optimization algorithms ten 

times, the results for the case C are summarized in Table (4.16). Moreover, the 

percentages of the objective function between algorithms are given in Table (4.17). 

Table (4.16): Comparison Results for case C. 

Robot 
No. 

Type of 
Intelligent 
Algorithm 

Min. 
Distance 
in (cm) 

 
Fitness 

Iteration 
of best 
value 

Max. 
Distance 
in (cm) 

Average 
in (cm) 

Standard 
Deviation 

 
1 

PSO 1110.71 0.09 74 1114.2 1111.49 0.0323 
CPSO 1109.89 0.09 24 1112.28 1110.15 7.023E-3 

FF 1113.74 0.0897 64 1119.04 1115.34 0.0227 
FFCPSO 1108.98 0.0901 48 1110.2 1109.58 4.481E-3 

 
 
2 

PSO 1148.48 0.087 74 1148.83 11.48.6 1.506E-3 
CPSO 1148.04 0.0871 45 1148.79 1148.18 2.191E-3 

FF 1159.98 0.0862 65 1162.77 1160.83 8.737E-3 
FFCPSO 1147.96 0.0871 46 1148.35 1148.05 1.468E-3 

 
 
3 

PSO 1188.24 0.0841 57 1190.45 1188.81 5.637E-3 
CPSO 1187.68 0.0841 43 1188.92 1188.13 4.883E-3 

FF 1194.27 0.0837 53 1199.39 1197.49 0.015 

FFCPSO 1187.17 0.0842 45 1188.15 1187.77 2.610E-3 
 

Table (4.17): Percentages of objective function between algorithms for case C. 

Robot 
No. 

Algorithm 
Type 

PSO-
CPSO 

PSO-
FF 

PSO-
FFCPSO 

CPSO-
FF 

CPSO-
FFCPSO 

FF-
FFCPSO 

1  
Percentage, 

% 

0.0738 0.272 0.1557 0.3456 0.0819 0.4273 
2 0.0383 0.9913 0.0452 1.0293 6.968E-3 1.0362 
3 0.0681 0.4839 0.111 0.5518 0.0429 0.5945 

       The presented algorithms tries to achieve the best path for the three follower 

mobile robots. These mobile robots have the same travel time on the desired path 

because they have the same number of samples between starting and target positions 

but difference in robot’s start time in order to avoid the collision that may occur 

between these robots and based on national instrument robot length, there are 

difference in robot’s start time. Where, the WMR  is start to move at (𝑇 = 0) sec, 
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the WMR  is start to move at (𝑇 = 5) sec and the WMR  is start to move at (𝑇 =

10) sec. From the case C results, it is clearly to say that CPSO approach can provide 

a wonderful following for three wheeled NI- mobile robots.      

4.3.3.2 Follower Mobile Robots Velocities 

      After finding the shortest paths of WMRs based on each swarm-based 

optimization technique, the desired path equations for WMR  based on CPSO, FF 

and FFCPSO are given in fitting equations (4.13), (4.14) and (4.15), respectively. 

𝑦(𝑥) = −8.9 × 10 𝑥 + 4.9 × 10 𝑥 + 0.00028𝑥 + 0.91𝑥 + 61                                (4.13)   

𝑦(𝑥) = −2.5 × 10  𝑥 + 4.2 × 10 𝑥 − 0.0028𝑥 + 1.9𝑥 − 5.3                                     (4.14) 

𝑦(𝑥) = −1.4 ×  10  𝑥 + 2.2 × 10 𝑥 − 0.0015𝑥 + 1.6𝑥 + 3.2                                    (4.15) 

      The desired path equations for WMR  based on CPSO, FF and FFCPSO are 

given in equations (4.16), (4.17) and (4.18), respectively. 

𝑦(𝑥) =     2 × 10 𝑥 − 1.5 × 10 𝑥 + 0.0013𝑥 + 0.89𝑥 + 3.9                                    (4.16)   

𝑦(𝑥) = −2.7 × 10  𝑥 + 5.1 × 10 𝑥 − 0.004𝑥 + 2.5𝑥 − 1 × 10                             (4.17)            

𝑦(𝑥) = −1 × 10 𝑥 + 0.00095𝑥 + 0.99𝑥 − 4.8                                                                (4.18) 

     While, the desired path equations for WMR  based on CPSO, FF and FFCPSO 

are given in equations (4.19), (4.20) and (4.21), respectively. 

𝑦(𝑥) = 1.2 × 10 𝑥 − 3.3 × 10 𝑥 + 0.0023𝑥 + 0.84𝑥 − 49                                       (4.19)  

𝑦(𝑥) = −2.8 × 10 𝑥 + 0.0035𝑥 + 0.061𝑥 + 16                                                             (4.20)                

𝑦(𝑥) = 1.5 × 10 𝑥 − 3.9 × 10 𝑥 + 0.0026𝑥 + 0.74𝑥 − 45                                       (4.21) 

       Figure (4.53) shows the both actual and desired paths forWMR , WMR  and 

WMR  based on CPSO, FF and FFCPSO algorithms, respectively. 
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Figure (4.53): Desired and actual path for case C. 

      The distance error between actual and desired path for each NI-mobile robot 

based on three approaches are explained in Table (4.18). 

Table (4.18): Distance error for case C. 

Path No. Type of Intelligent Algorithm 
CPSO FF FFCPSO 

1 Distance 
Error 100% 

1.12 2.05 0.98 
2 0.39 2.92 1.19 
3 2.28 8.43 2.03 

 

      Subsequently, based on the kinematic equations of differential drive mobile 

robot, one can calculate the robot velocity on its special path as follows: 
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1. Wheels Angular Velocity 

     The angular velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is shown in Figures (4.54), (4.55) and 

(4.56), respectively. 

 
Figure (4.54): The angular velocity of right and left wheels for 1st robot / case C based on 

CPSO algorithm. 

 

Figure (4.55): The angular velocity of right and left wheels for 1st robot / case C based on 
FF algorithm. 
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Figure (4.56): The angular velocity of right and left wheels for 1st robot / case C based on 
FFCPSO algorithm. 

       From the figure (4.54), (4.55) and (4.56), the angular velocity of right and left 

wheels for WMR  based on CPSO, FF and FFCPSO approaches are equal to (1.86) 

rad/sec, (2.34) rad/sec and (1.85) rad/sec, respectively.   

      The angular velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is illustrated in Figures (4.57), (4.58) and 

(4.59), respectively. 

 
Figure (4.57): The angular velocity of right and left wheels for 2nd robot/ case C based on CPSO 

algorithm. 

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
he

el
 A

n
gu

la
r 

V
el

oc
it

y 
of

 R
ig

ht
 a

n
d

 L
ef

t 
in

 (
ra

d
/s

ec
) Mobile Robot 1 / FFCPSO algorithm

 

 

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

6

Time in (sec)

W
h

ee
l 

A
ng

u
la

r 
V

el
oc

it
y 

of
 R

ig
h

t 
an

d
 L

ef
t 

in
 (

ra
d

/s
ec

) Mobile Robot 2 / CPSO algorithm

 

 

The Angular Velocity of Right Wheel The Angluar Velocity of Left Wheel



CHAPTER FOUR                                           SIMULATION RESULTS AND DISCUSSION 

95 
 

 
Figure (4.58): The angular velocity of right and left wheels for 2nd robot / case C based on FF 

algorithm. 

 
Figure (4.59): The angular velocity of right and left wheels for 2nd robot / case C based on 

FFCPSO algorithm. 

        From the figure (4.57), (4.58) and (4.59), the angular velocity of right and left 

wheels For WMR  based on CPSO, FF and FFCPSO approaches are equal to (1.99) 

rad/sec, (2.75) rad/sec and (2.01) rad/sec, respectively. 

        The angular velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of  WMR  is displayed in Figures (4.60), (4.61) and 

(4.62), respectively. 
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Figure (4.60): The angular velocity of right and left wheels for 3rd robot/ case C based on 

CPSO algorithm. 

 

Figure (4.61): The angular velocity of right and left wheels for 3rd robot/ case C based on 
FF algorithm. 

 

Figure (4.62): The angular velocity of right and left wheels for 3rd robot / case C based on 
FFCPSO algorithm. 
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While from the figure (4.60), (4.61) and (4.62), the angular velocity of right and left 

wheels for WMR  based on CPSO, FF and FFCPSO approaches are equal to (2.08) 

rad/sec, (2.15) rad/sec and (2.04) rad/sec, respectively. 

2. Wheels Linear Velocity 

        Figures (4.63), (4.64) and (4.65) clarify the left and right wheels linear velocity 

for the path of WMR based on the CPSO, FF and FFCPSO algorithms, respectively 

 
Figure (4.63): The linear velocity of right and left wheels for 1st robot / case C based on CPSO 

algorithm. 

 

Figure (4.64): The linear velocity of right and left wheels for 1st robot / case C based on FF 
algorithm. 
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Figure (4.65): The linear velocity of right and left wheels 1st robot/ case C based on FFCPSO 
algorithm. 

       From the figures (4. 63), (4.64) and (4.65), the linear velocity of the right and 

left wheels for WMR  based on the CPSO, FF and FFCPSO approaches are equal to 

(0.139) m/sec, (0.165) m/sec and (0.138) m/sec, respectively. 

      The linear velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is revealed in Figures (4.66), (4.67) and 

(4.68), respectively. 

 
Figure (4.66): The linear velocity of right and left wheels for 2nd robot / case C based on 

CPSO algorithm. 
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Figure (4.67): The linear velocity of right and left wheels for 2nd robot / case C based on FF 
algorithm. 

 

Figure (4.68): The linear velocity of right and left wheels for 2nd robot/ case C based on 
FFCPSO algorithm. 

 
       For WMR , the linear velocity of the right and left wheels based on the CPSO, 

FF and FFCPSO approaches are equal to (0.149) m/sec, (0.177) m/sec and (0.15) 

m/sec, respectively. 

      The linear velocity of the left and right wheels based on the CPSO, FF and 

FFCPSO algorithms for the path of WMR  is manifested in Figures (4.69), (4.70) 

and (4.71), respectively. 
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Figure (4.69): The linear velocity of right and left wheels for 3rd  robot  / case C based on 

CPSO algorithm. 

 

Figure (4.70): The linear velocity of right and left wheels for 3rd robot / case C based on FF 
algorithm. 
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Figure (4.71): The linear velocity of right and left wheels for 3rd robot / case C based on 
FFCPSO algorithm. 

       While for WMR , the linear velocity of the right and left wheels based on the 

CPSO, FF and FFCPSO approaches are equal to (0.157) m/sec, (0.21) m/sec and 

(0.154) m/sec, respectively. 

 
3. Platform Linear and Angular Velocity 

       The angular and linear velocities of the platform based on the CPSO, FF and 

FFCPSO algorithms for WMR  is demonstrated in Figures (4.72), (4.73) and (4.74), 

respectively.  

 

Figure (4.72): The platform angular and linear velocities for 1st robot / case C based on 
CPSO algorithm. 
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Figure (4.73): The platform angular and linear velocities for 1st robot / case C based on FF 
algorithm. 

 

Figure (4.74): The platform angular and linear velocities for 1st robot / case C based on 
FFCPSO algorithm.  

       The angular and linear velocities of the platform based on the CPSO, FF and 

FFCPSO algorithms for WMR  is viewed in Figures (4.75), (4.76) and (4.77), 

respectively.  
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Figure (4.75): The platform angular and linear velocities for 2nd robot/ case C based on 

CPSO algorithm. 

 
Figure (4.76): The platform angular and linear velocities for 2nd robot/ case C based on FF 

algorithm. 

 
Figure (4.77): The platform angular and linear velocities for 2nd robot/ case C based on 

FFCPSO algorithm. 
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      The angular and linear velocities of the platform based on the CPSO, FF and 

FFCPSO algorithms for WMR  is explained in Figures (4.78), (4.79) and (4.80), 

respectively.  

 

Figure (4.78): The platform angular and linear velocities for 3rd robot / case C based on 
CPSO algorithm. 

 

 

Figure (4.79): The platform angular and linear velocities for 3rd robot/ case C based on FF 
algorithm. 
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Figure (4.80): The platform angular and linear velocities for 3rd robot / case B based on 

FFCPSO algorithm.    

         From the all velocities figures, the angular velocity of the left and right wheels 

(𝑊𝐿& 𝑊𝑅) should range between (-6.67, +6.67) rad/sec. The linear velocity 

constrain of the left and right wheel (𝑉𝐿& 𝑉𝑅) should range between (-0.5, +0.5) 

m/sec. While, the angular velocity of platform (𝑉 ) should range between (-2.77, 

+2.77) rad/sec, and the linear velocity constrain of platform ( 𝑉 ) should not exceed 

(0.5) m/sec.  Clearly, these figures demonstrate the effectiveness of the optimization 

algorithms by showing its ability to produce smooth and small values of the angular 

and linear velocities of left and right wheels, this leads to a small power that is 

wanted by the mobile robot to move on its path. 

4.4 Performance Evaluation 

        In this section, three research papers are utilized in order to evaluate the 

performance of the metaheuristic (population-based) algorithms and cubic splines 

interpolation with the same research’s parameters setting.  

      In the first evaluation phase, a comparison is done between four optimization 

algorithms with the basic Artificial Bee Colony (ABC) and Directed Artificial Bee 

Colony (DABC), which were already presented in [7]. The four optimization 
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algorithms are applied on (10×10) m two-dimensional workspace with start point 

(0, 0) and target point (10, 10). Figures (4.81) offers the results of ABC and DABC 

algorithms. While, Figure (4.82) shows the results of optimization algorithms. 

                   

       

Figure (4.81 a-b): The best results achieved by [7] case study 2. 

 

Figure (4.82): The best results of first comparison. 

     Table (4.19) summarizes the best path length, which can be achieved by various 

intelligent algorithms.  

Table (4.19): Results Comparison with [7]. 

 [7] The proposed Algorithms 
Algorithm   ABC DABC PSO  CPSO  FF FFCPSO 
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        In the second evaluation phase, a comparison is done between the cubic 

polynomial interpolation and Bezier curve based on PSO-w, GA and FA algorithms, 

which were already presented in [21]. The algorithms are applied on (15×15) m 2D 

arena with start point (5, 5) and target point (15, 15).  Figure (4.83) reveals the 

simulation results of [21], and Figure (4.84) show the results of the cubic polynomial 

interpolation for the two maps. 

 

Figure (4.83 a-b): The best results achieved by [21]. 

 
Figure (4.84 a-b): The best results of second comparison / Map a and Map c. 
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       Table (4.20) summarizes the best path length for two maps, which can be 

achieved by the various intelligent algorithms.  

Table (4.20): Results Comparison with [21]. 

[21] The Proposed Algorithms 
Algorithm GA PSO-w FA PSO CPSO FF FFCPSO 

Map a 17.3 17.13 17.44 14.795 14.698 16.377 14.714 
Map c 18.23 17.76 18.31 16.385 16.353 16.744 16.349 

       While, in the third evaluation phase, a comparison is done between the cubic 

polynomial interpolation and Bezier curve based on AFA and CFA-OAS algorithms, 

which were already presented in [24]. The algorithms are applied on (10×10) m two-

dimensional arena with the start point (1, 1) and target point (11, 17).  Figure (4.85) 

shows the results of [25], and Figure (4.86) shows the results of cubic polynomial 

interpolation based on PSO and FF algorithms.  

 

Figure (4.85a-b): The best results achieved by [24] case one. 
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Figure (4.86): The best results of third comparison. 

       Table (4.21) summarizes the best path length that can be achieved by various 

intelligent algorithms. 

Table (4.21): Results Comparison with [24]. 

[24] The proposed Algorithms 
Algorithm AFA CFA-OAS PSO CPSO FF FFCPSO 

Distance (m) 12.41 11.85 11.82 11.814 11.85 11.813 
Iteration No. 68 72 42 28 32 30 

      The above Comparisons analysis with previous papers between various 

intelligent algorithms are concluded as follows: 

1. Compared with other previous techniques with the same research’s parameter 

setting, the features of presented algorithms stands out on path planning problems 

where cubic polynomial interpolation is used to generate the smooth path.  

2. The results also tells that cubic polynomial interpolation is suitable on path 

planning problems for its stable feature when we employed population-based 

techniques in order to optimize its waypoints. 
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CHAPTER FIVE 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE 
WORK 

5.1 Conclusions 

        This thesis presents in details, a comparative study of various types of 

optimization algorithms including Chaotic Particle Swarm Optimization (CPSO) 

and proposed Hybrid Firefly Chaotic Particle Swarm Optimization (FFCPSO) 

algorithms with standard version of Particle Swarm Optimization (PSO) and Firefly 

(FF) algorithms that applied to single and multi-mobile robot path planning problem. 

The effectiveness of these algorithms was tested on different cases; the results 

achieved were verified through comparison of adaptive algorithms with each other 

and with the previous works. From the collected results and the comparison, the 

following can be concluded:   

1. The simulation results showed the validity of the kinematic model of the non-

holonomic wheeled mobile robot (NWMR). 

2. Both PSO and FF algorithms are powerful methods for their efficiency. PSO is 

simple to implement as compared to FF due to its less number of variables. FF 

has more variables and most of them are random. In addition, these parameters 

have been changed to obtain an optimal, safe, smooth and guaranteed path. 

3. The effective minimization capability of specific paths for NI-mobile robots 

model before (80) iterations for presented techniques is based on three cases 

according to three objectives: shortest path to target, safety and smoothness to 

follow a desired continuous path.  
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4. Development of the standard version of PSO with Chaotic optimization in order 

to form Chaotic PSO algorithm has a better ability in order to get away from local 

minima with shortest path and less number of iteration than basic PSO algorithm. 

5. PSO keeps a memory of its earlier iteration by storing the values of personal and 

global best, so it can be concluded that there is a balance between the local and 

global minima. FF does not memorize or remember any history of better situation 

for each firefly and this makes them to move regardless of its previous better 

situation, and they may end up missing their situations. Therefore, the hybrid 

FFCPSO is proposed firstly for this purpose and then to reduce the FF 

randomization. 

6. The four intelligent algorithms have an effectiveness and good performance by 

finding feasible, shortest and smoothness without colliding any obstacles in the 

environment in order to solve the problem of robot path planning. Therefore, 

these algorithms could be suitable for multi robot systems to find the shorted path 

length and avoid the collision between them. 

7. From Tables (4.9), (4.12) and (4.16) show, Chaotic PSO algorithm is a perfect 

optimization algorithm due to its effectiveness to provide best path with 

minimum time and less number of iteration. 

8. Figure (4.47) offers that CPSO algorithm is a very good method in the case of 

follow up mobile robot than other presented methods.  

9. The simulation results explained the effectiveness of the cubic polynomial 

interpolation based on suggested techniques by displaying its ability to produce 

very good smooth values of the velocities for left and right wheels and mobile 

robots velocities without exceeding the limited values (less than 0.5 m/sec for 

linear velocity). 
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  5.2 Suggestions for Future Work 

       Many issues interested in solving the mobile robot path planning problems. 

Some of them, which might entice a researcher to work with and can be 

recommended as future works, are indicated as follows: 

1. Using other types of intelligent algorithms to find the optimal desired path, 

such as Cat Swarm algorithm (CSA), Fruit fly algorithm (FA), etc. 

2. Applying the enhanced algorithms to real wheeled NI- mobile robot can be a 

good challenge because of nonlinear factors such as noise, which the 

optimization algorithm has to be able to deal with these factors. Then, making 

a comparison between theoretical part and practical part.  

3. Future research can investigate the performance of the suggested algorithms in 

dynamic unknown environments and use fuzzy rules as a decision maker in 

order to prevent a collision with dynamic obstacles or other mobile robot. 

4. Workout other types of environment like maze-type, and enhancements in 

terms of obstacles like including the different shapes of obstacles. The different 

shapes, like square, upward U, inverted U, upward V, and inverted V can be 

included in the environment. 

5. Another future direction is to examine the effectiveness of the suggested 

approaches by solving the obstacle collisions limited to three dimensions (3D) 

environment. 
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Appendix A 
Parameters Setting 

      Parameters setting for any evolutionary algorithm is important as designing the 
algorithm itself. In the following sections, the effect of the control points 
(waypoints), number of individuals and the number of iterations on the results were 
investigated as illustrated below.  

 Control Points Setting  

     In this simulation, the number of control points (waypoints) are randomly 
selected from 1 to 16 control points based on basic PSO and basic FF algorithms. 
The size of population is 20, and the maximum number of iteration is 80. Figures 
(A.1), (A.2) and (A.3) show the results of this testing.  

 

 

                    (A)                                                                   (B)                                                        
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                                (C)                                                                             (D) 

 

                               (E)                                                                                  (F) 

Figure (A.1): Simulation of one run for the basic PSO algorithm with different numbers of 
waypoints. 
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 Figure (A.2): The performance of the basic PSO algorithm with different numbers 
of waypoints. 

 

      Figure (A.3): The performance of the basic FF algorithm with different numbers of 
waypoints. 

      From the above figures, the best results achieved when the number of control 
points (waypoints) was small such as (3 or 4). Obviously, the distance increased 
when the value of (D) was more than eight, and the worst results achieved when 
(D=16) because of making the path lose its smoothness. 

 



APPENDIX A 

121 
 

 Population Size Setting 

      Population size is an important parameter for the quality of solution and the 
convergence of the population-based algorithms. In this test, the effect of the 
population size on the results was investigated when the number of particles ranged 
from 2 to 30 particles. The cost value of PSO and FF techniques after ten runs are 
shown in Figure (A.4). 

 

Figure (A.4): Comparison in the distance through population numbers based on PSO & FF 
algorithms. 

       From this figure, the population size makes the path go toward the optimal value 
if it increases. That is because the PSO and FF algorithms will take better chance to 
find more odds of feasible path. On the other hand, increasing the number of 
population leads to increase the execution time. 

 Number of Iteration Setting 

      The number of iterations also has a great impact on the performance of two 
Nature-Inspired algorithms based path planning problem. In this test, the effect of 
the number of iterations on the cost function was tested when the number of 
iterations was ranged from 10 to 100. The cost value of the PSO and FF algorithms 
shown in Figure (A.5).  
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Figure (A.5): Effect of the number of iterations on the performance of PSO and FF 
algorithms. 

      The above trials and comparison analysis between the PSO and FF techniques 
are concluded as follows: 

1. The control points significantly influence the length and smoothness of the path. 
2. In PSO and FF, a population and variables is generated randomly. However, FF 

is very much random in nature, while PSO is not random in nature.  
3. In PSO and FF, the large size of population is not considered. If the large size is 

considered, it does not improve the quality of solution but increases the 
computational time. Therefore, the pop size is kept small around 15-20. 
Therefore, it can be concluded that both algorithms do not require a large size of 
population. 

4. In FF, the wrong selection of (ᾶ) can cause a small or big step increment and 
take away the solution in some other side far away from the global best. In 
addition, FF parameters are set fixed and they do not change with the time. In 
PSO, most of parameters are updated during the iteration process. 

5. Regardless of the number of obstacles, increasing the number of iterations does 
not lead to increase the chance to find the optimal path that has the minimum 
distance. On the contrary, the maximum number of iterations that range from 60 
to 80 was enough to reach the optimal path. 
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     الملخص
القرارات الغير  وقد تؤدي .والتصميم والتحليل واستخراج البياناتالقرار يشمل جمع المعلومات  اتخاذ       

مشكلة تخطيط المسار الأمثل هي . لذلك فأن العملية المتبعة يجب أن تكون صحيحة الى فشل المنظمة الصحيحة

مسار من نقطة  أقصر الروبوتات، والغرض منه هو العثور علىواحدة من تطبيقات اتخاذ القرار في مجال 

                                                                                لغاية نقطة الهدف.                                              البدء و

الروبوتات المتنقلة. لروبوت واحد و عدد  مسار متعدد الاهداف ديجالا ا البحث أربع خوارزمياتيقدم هذ      

اسراب  اسراب الطيور الاساسية وعلى هي خوارزمية تعتمد الخوارزميتان الاولى والثانية على خوارزمية

الى  نزلاقمنع الامن اجل مع خريطة الفوضى لتشكيل خوارزمية اسراب الطيور المشوشة  ةالطيور المطور

ن على النسخة الأساسية من خوارزميات اليراعات المضيئة الاخريتا نالخوارزميتيتعتمد  الحدود الدنيا المحلية.

التي تعتمد على النسخة  والخوارزمية المقترحةمن المشكلة المثلى المحلية  وقوية ولكنها تعانيحديثة  وهي تقينه

اسراب الطيور المحسنة لتشكيل تقنية هجينة تسمى  يةخوارزمالأساسية لخوارزمية اليراعات المضيئة مع 

يستخدم المنحى المكعب   .لتخطيط المسار العالمي اسراب الطيور المشوشة –خوارزمية اليراعات المضيئة 

ويتم تقييم دالة الهدف من خلال قيدين  من اجل انشاء مسار سلس عن طريق الاستيفاء من خوارزميات التحسين

متنقلة ذات عجلات   أساس نموذج حركي لروبوتات  ، علىعلاوة على ذلك تجنب العوائق.وهما طول المسار و

يتم حساب السرع الخطية والدورانية للعربة والسرع الخطية والدورانية للعجلتين اليمنى واليسرى تفاضلية 

لتوجيه عجلات اليه متنقلة لمتابعة المسار المطلوب للوصول الى الهدف المحدد 

                                                                                                                                سبقا.م

نتائج المحاكاة أظهرت ان خوارزمية  وانلغة البرمجة (الماتلاب) تم محاكاتها باستخدام  تالخوارزميا      

 أقصرمن خوارزمية اسراب الطيور الاصلية من حيث حصولها على  أفضلاسراب الطيور المشوشة هي 

اليراعات المضيئة الهجينة مع اسراب الطيور المشوشة هي  وان خوارزميةمسافة بعدد اقل من التكرارات 

لى حصول الموبايل روبوت ذات في النهاية ا وهذا أدىالاصلية  من خوارزمية اليراعات المضيئة أفضل

 متر/ثانية. 50.ال بحيث لا تتجاوز  والعجلة اليسرىة للعجلة اليمنى على سرعة خطية سلس جلات المتنقلةالع

تم مقارنة هذه الخوارزميات مع أوراق بحثية أخرى لتقييم أدائها. من خلال مقارنة النتائج  بالأضافة الى ذلك

حت نفس الظروف نستنتج ان التي حققتها الخوارزميات المقترحة مع النتائج التي حققتها الأعمال السابقة ت

الأستيفاء متعدد الحدود التكعيبي هو ميزة جيدة عن طريق توليد مسار سلس دون حواف حادة خلال عملية 

                                                     التعلم لذلك يمكن للروبوت المحمول التحرك بسلاسة و سلامة.      
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