
 

Abstract—The image quality of cone-beam CT systems depends 

directly on the precise knowledge of position and orientation of 

the X-ray source and the detector. The current methods to 

determine this geometric information are mainly focused on 

conventional cone-beam CTs with planar or near-planar scanning 

trajectories. Due to the fixed alignment of X-ray source and 

detector, such systems have disadvantages in intraoperative use. 

Therefore, we develop a first prototype for cone-beam CT 

characterized by a free alignment of X-ray source and detector. 

This results in an open system allowing an intraoperative access 

to the patient and the implementation of non-planar scanning 

trajectories in the operating room.  

In this paper, we present a geometric calibration method to 

determine the position and orientation of X-ray source and 

detector for any arbitrary projection. Enhancing the theoretical 

method proposed in Mennessier et al. [1] by introducing an 

asymmetrical marker arrangement, we realized a calibration 

method suitable for practical use. We analyzed the resulting 

accuracy and applied our approach to the open cone-beam CT 

prototype. 

Index Terms—Computed tomography, cone-beam, geometric 

calibration, non-planar scanning trajectories. 

I. INTRODUCTION

n cone-beam computed tomography (CBCT) an object can 

be three-dimensionally (3D) reconstructed by acquiring X-

ray images of this object from different directions. 

Conventional CBCT systems are characterized by a rigid 

configuration of X-ray source and image detector, mostly fixed 

on a C-shaped arm or inside a closed gantry. For 3D image 

acquisition, source and detector are rotating on a planar 

trajectory around the patient. With such systems a high image 

quality is achievable, but the intraoperative use during surgery 

can be time consuming and complicated. Due to the fixed 

arrangement of X-ray source and image detector on opposite 

sides, the patient is surrounded by the system setup and the 

access for the surgeon is restricted. Therefore, we develop a 

first experimental open CBCT system for interventional 

surgery (ORBIT, fig. 1 and 2). The X-ray source is fixed on a 

This work is funded by the German Federal Mininstry of Education and 

Research (BMBF), research grant 13EZ1115A-C.  

F. Stopp and Prof. Dr. E. Keeve are with the Department of Maxillofacial 

Surgery and Clinical Navigation, Charité – Universitätsmedizin Berlin, 

Augustenburger Platz 1, 13353 Berlin, Germany (e-mail: keeve@charite.de).  

A. J. Wieckowski, M. Käseberg, S. Engel, F. Fehlhaber and Prof. Dr. E. 

Keeve are with the Fraunhofer-Institute for Production Systems and Design 

Technology IPK, Pascalstrasse 8-9, 10587 Berlin, Germany. 

robot-arm and the digital flat-panel detector is mounted on a 

self-constructed motorized mechanism directly connected to 

the patient table. This system allows a free alignment of X-ray 

source and image detector towards the patient and offers new 

opportunities for non-planar scanning trajectories (e.g. fig. 2). 

The essential precondition for CBCT is the knowledge of 

the exact projection geometry of each acquired image. 

Therefore the position of the focal spot of the X-ray source 

and the position and orientation of the X-ray image detector is 

needed. This information, described by nine parameters, can 

be determined by a geometric calibration. Most of the 

available calibration methods use dedicated objects with a 

known geometric configuration of small balls of high 

attenuation. By acquiring X-ray images of these objects and 

identifying the ball projections, the needed parameters of each 

single image can be determined. But the majority of proposed 

methods were developed for conventional CBCT systems with 

planar or near-planar scanning trajectories (e.g. in [2]-[7]). 

Other approaches without constraints on the scanning 

trajectory or the alignment of source and detector use complex 

numerical optimization techniques, e.g. in [8]. In [1] a fully 

analytical calibration method for near-planar trajectories 

(using a six points calibration phantom) and for arbitrary 

scanning trajectories (using a 14 points calibration phantom) 

were introduced and first simulated results were shown. In 

further work the direct calibration method for near-planar 

trajectories was realized and applied to an isocentric c-arm X-

ray system using a 6 balls calibration object [9]. 

Based on the work presented in Mennessier et al. [1], we 

developed, applied and evaluated a direct geometric 
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Fig. 1.  Current prototype of the open cone-beam CT system (ORBIT)

consisting of a pulsed X-ray source (Ziehm Vision R 20 kW) on a robot arm

(Kuka KR 150 R2700 extra) and a currently fixed flat-panel detector (Varian

PaxScan 3030+). 



calibration method with a subsequent optimization of the 

parameters for arbitrary scanning trajectories. In contrast to the 

simulations in [1], no additional features of the calibration 

markers are used for marker identification, like absorption 

coefficients or marker size. After first simulation results, we 

applied our calibration method to the open CBCT prototype. 

II. OUR GEOMETRIC CALIBRATION METHOD

To calibrate and determine the nine geometric parameters of 

an arbitrary image acquisition (X-ray source position, image 

position and image orientation), we defined the marker 

arrangement of the calibration object. 

A. Marker arrangement 

Similar to [1], we align four ball markers on each of the 

three orthogonal axes and two additional markers on the 

diagonal axis (x1..x4, y1..y4, z1..z4, s1, s2). For the marker 

assignment to be independent of additional marker features, 

like size or X-ray absorption coefficients, we defined five 

constants K1, K2, �x, �y, and �z and modified the arrangement 

of M = 14 ball markers (fig. 3). The arrangement of the four 

markers on the x-axis is:  

xx K ex 11 α−= xK ex 12 −=
 (1)

xK ex 23 = xx K ex 24 α=

The arrangement of the eight markers on the y- and z-axis 

(using �y and �z) is equivalent to (1). The three unit vectors ex, 

ey and ez represent the axes of the calibration object’s 

coordinate system. The two diagonal markers are aligned as 

follows: 

)(11 zyxK eees ++−= )(22 zyxK eees ++= (2)

Depending on the system characteristics of our open CBCT 

setup (image size of 298 x 298 mm² and a cone-beam opening 

angle of 16°), we used the following values:  K1 = 25 mm, K2 = 

35 mm and �x = 1.4, �y  = 1.7, and �z = 2. These constants 

fulfill our basic precondition for good calibration results: the 

14 marker must be fully contained and fill as much as possible 

of the X-ray image. 

B. Marker detection 

To detect the regions of the projected ball markers in the X-

ray images, we apply the following four steps: 

1.  Segmenting the regions of the ball marker projections 

by an adaptive threshold. 

2.  Classification of the segmented regions. 

3.  Analyzing the blob response of the region using the 

determinant of Hessian. 

4.  Analyzing the foreground to background intensity 

difference. 

A region is described by a set of N pixel positions rk and 

intensities Ik. Given the neighborhood of that region with a 

mean intensity of background b, the projection of the marker 

center is estimated as the center of mass with background 

suppression [10]: 
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In the following section, we assume that all 14 marker 

projections are detected in the image. The degenerated cases 

(e.g. marker overlaps) are described in section II E. 

C. Marker assignment 

We divide the detected marker projections di (i = 1..M) into 

four groups, representing the three orthogonal axes and the 

both diagonal marker. From each found line of four markers, 

we can infer the respective axis of the calibration object. We 

identify the lines by retrieving an approximation of the 

constant � from the X-ray image. Assuming d1…d4 are the 

four detected marker projections, classified as a line (ordered 

along that line), and c is the projection of the calibration 

object’s origin o (symmedian point of the triangle bound by 

the three detected lines [1]), an approximation of �j (j∈ {x,y,z})

is given by:�
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Using the value �j obtained from (4), we can determine the 

corresponding axis of the marker projections. But we cannot 

infer the order of the markers in terms of direction nor can we 

assign both diagonal marker projections. Because each group 

is assigned in two ways (e.g. the projections of the markers on 

the x-axis: {(x1, d1), (x2, d2), (x3, d3), (x4, d4)} and {(x1, d4), 

(x2, d3), (x3, d2), (x4, d1)}), we are considering 16 possible 

marker assignments. 

Fig. 3.  The arrangement of the 14 ball markers of the calibration object. 

Four markers are placed on each orthogonal axis and two on the diagonal. 

The exact positions are defined by the constants K1, K2 and �x, �y, and �z. 

Fig. 2.  Open cone-beam CT system ORBIT with an X-ray source fixed on a 

ceiling-mounted robot arm and a robot-guided flat panel detector directly 

connected with the patient table. The red path and the blue path indicate an 

exemplary non-planar scanning trajectory of the X-ray source and detector. 



D. Geometric parameter determination 

We directly determine the geometric parameters for each 

possible marker assignment by solving a linear equation 

system as described in [1]. Each set of geometric parameters is 

verified using a score based on the re-projection errors erepr,i

(fig. 4) of this configuration: mean �e, variance �e
2
 and 

maximum emax. Because of the unambiguity of the marker 

projections (imposed by the asymmetry constraint K1 � K2), the 

best score indicates the correct marker assignment and 

geometric parameter set.  

In the last step we refine the geometric parameters using a 

non-linear Levenberg-Marquardt optimization algorithm to 

minimize the sum of squared re-projection errors erepr. Because 

of the good initialization with the directly determined 

parameters, the optimization problem can be solved efficiently. 

E. The degenerated cases 

There are two basic problems that might occur when dealing 

with X-ray images of the marker arrangement described in 

section II A (for example fig. 5 right): 

-  Marker overlaps: two or more ball markers form an 

overlap in the image. 

-  Structural overlaps: two axes of markers form nearly 

the same line in the image. 

The detection of marker overlaps is not fully possible by 

using features like size or intensities of detected regions 

(especially with oblique X-ray projections and elliptical 

marker regions). We recognize marker overlaps, if less than 14 

regions were detected in the image. We then assume for each 

region that it is an overlap and divide all 14 markers 

accordingly into four groups (representing the three orthogonal 

and one diagonal axis). The respective marker centers di of an 

overlap are approximated by determining the center and the 

main axis of this region. All marker groups are verified by the 

following criteria: 

-  Each detected line must contain exactly the same 

number of marker projections on each side of c. 

-  We dissolve a structural overlap with eight marker 

projections, by verifying both identified lines using (4). 

-  There must be either none or two marker projections 

not assigned to any line (s1 and s2). 

-  In case a marker projection is detected near c, we 

assume that the X-ray projection is in direction of an 

orthogonal or diagonal axis and these marker 

projections are ignored. 

For each marker group in accordance with the criteria, we 

perform a marker assignment (section II C) and verify the 

resulting parameter set using the score function (section II D). 

The approximated marker centers di of an overlap are only 

used for marker assignment and not for the determination of 

the geometric parameters. 

III. CALIBRATION OBJECT

We constructed and manufactured a calibration object with 

14 drill-holes to perform a geometric calibration of single X-

ray projections images acquired with our open CBCT system. 

By the defined arrangement and depth of the drill-holes, 14 

steel balls with 3 mm diameter can be placed accordingly to 

the previously described marker arrangement in section II A 

(Fig. 5 left). To verify and compensate manufacturing 

inaccuracies, we scanned the calibration object with an 

industrial CT and measured the exact steel ball locations. By 

taking arbitrary X-ray projections of this calibration object, the 

geometric parameters of each image can be determined using 

our proposed method (fig. 5 right). 

IV. RESULTS

At the current project state, the image detector of our open 

CBCT prototype is fixed on the patient table (fig. 1). 

Therefore, we first applied our calibration method on a 

scanning trajectory similar to tomosynthesis: a circularly 

moving X-ray source above an object on a fixed image 

detector (fig. 6). 

A. Simulation results 

Using our simulation environment, we generated 360 

artificial projection images of our calibration object equally 

distributed along this scanning trajectory. The acquisition 

parameters were defined according to our open CBCT system 

setup: 298 x 298 mm² image size with 1024 x 1024 px and a 

distance from X-ray source to image center of approximately 

1050 mm. The artificial images are ideal projections of our 

marker arrangement without noise or motion artifacts. We 

calculated the nine geometric parameters of all images and 

compared the results with the defined parameters of the 

Fig. 5.  Calibration object with 14 steel balls (left) and exemplary X-ray 

image of the calibration object with our CBCT system ORBIT (right). 

  

Fig. 4.  The projection geometry: X-ray source position s, image position q

and a calibration object at o with a ball marker. The X-ray projection of o is 

called c. The real image position of the projected marker center is p, the 

detected position is d (the difference of both is the detection error edet). 

Position p’ is the re-projection of the marker using the calibrated parameters 

s’ and q’ (the difference of p’ and d’ is the re-projection error erepr). 



simulation environment. Additionally, we calculated the 

accuracy of our marker center detection algorithm (edet) and 

the re-projection error of the calibrated configuration (erepr). 

The results are shown in table 1. 

B. Experimental results 

Furthermore, we applied the calibration method on the open 

CBCT prototype and acquired 360 images of our calibration 

object. We calculated the geometric parameters of each 

acquired image and repeated the scanning trajectory with 

vertebral bodies of the lumbar spine. Based on the calculated 

geometric parameters and the 360 projection images, we 

reconstructed the scanned volume with a simultaneous 

algebraic reconstruction technique. Fig. 6 shows the vertebral 

test bodies and an axial and coronal slice of the reconstructed 

volume. As a quantitative measurement of the experimental 

result, we calculated the re-projection errors erepr,i using the 

calibrated parameters and the found marker assignment of each 

image of the calibration object: μ = 0.058 mm, � = 0.047 mm, 

emax = 0.583 mm. 

V. CONCLUSION AND DISCUSSION

The errors in the simulation (shown in table I) result from 

the marker center detection of the projected ball markers and 

the parameter determination with our calibration method. 

Discrepancies between the real and calibrated geometric 

parameters mainly occur in direction of the projection 

(indicated with symbol || in table I), but these deviations have 

little impact on the accuracy of the x-ray projections. 

Regarding the image plane, the maximum error of the image 

center position is less than a pixel size of 0.29 mm. 

By applying our method on the open CBCT system, 

additional errors influence the resulting accuracy: the 

repeatability of the X-ray source positioning by the robot-arm 

and inaccuracies of the manufactured calibration body. Errors 

caused by the movement of the X-ray source during the image 

acquisition are excluded at the moment, as the image 

acquisition is currently done in defined fixed positions. In 

further project work we will develop a motorized mechanism 

to move the flat-panel detector independently of the X-ray 

source and execute freely definable scanning trajectories. To 

compensate occurring mechanical instabilities, we will 

perform an additional online calibration method during the 

image acquisition. 
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TABLE I 

SIMULATION RESULTS

�� � max 

Marker detection error edet  [mm] 0.009 0.005 0.036

Image center position error [mm] u 0.029 0.026 0.166

v 0.033 0.035 0.239 

n 0.046 0.037 0.237 

� 0.066 0.054 0.344

� 0.004 0.002 0.015 

X-ray source position error [mm] u 0.634 0.548 3.375 

v 0.672 0.722 3.988 

n 0.940 0.770 3.954 

� 1.375 1.110 5.680 

� 0.136 0.104 0.554 

Image orientation error [°] � 0.004 0.004 0.022 

	 0.005 0.005 0.027 


 0.006 0.004 0.040 

Re-projection error erepr [mm] 0.008 0.005 0.038 

The image center and source position errors are given in image 

coordinate system u-v-n. The symbols || and � indicate position deviations in 

direction (||) and perpendicular (�) to the central X-ray beam. The angles �, 

	, and 
 describe the image rotation errors in uv-, vn- and un-plane of the 

image coordinate system. 

Fig. 6.  a) Executed and calibrated scanning trajectory with a fixed flat-panel 

detector; b) Vertebral bodies of the lumbar spine; c) Axial slice of the 

reconstructed volume; d) Coronal slice of the reconstructed volume. 


