Ertugrul BasarKoc University · Department of Electrical and Electronics Engineering
Ertugrul Basar
Doctor of Philosophy
About
310
Publications
89,493
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,938
Citations
Introduction
Associate Professor, Koç University --
Director, Communications Research and Innovation Laboratory (CoreLab) --
Editor, IEEE Transactions on Communications --
Associate Editor, IEEE Communications Letters --
Editor, Physical Communication (Elsevier) --
Senior Member, IEEE & IEEE ComSoc --
https://corelab.ku.edu.tr/
Additional affiliations
September 2011 - June 2012
July 2018 - present
Koç University
Position
- Professor (Associate)
December 2014 - February 2017
Publications
Publications (310)
In this paper, we introduce the concept of space-time channel modulation (STCM), which extends the classical space-time block codes into a new third dimension: channel states (transmission media) dimension. Three novel STCM schemes, which provide interesting trade-offs among decoding complexity, error performance and data rate, are proposed. It is...
The increasing demand for higher data rates, better quality of service, fully mobile and connected wireless networks lead the researchers to seek new solutions beyond 4G wireless systems. It is anticipated that 5G wireless networks, which are expected to be introduced around 2020, will achieve ten times higher spectral and energy efficiency than cu...
A novel multiple-input multiple-output (MIMO) transmission scheme, called space-time block coded spatial modulation (STBC-SM), is proposed. It combines spatial modulation (SM) and space-time block coding (STBC) to take advantage of the benefits of both while avoiding their drawbacks. In the STBC-SM scheme, the transmitted information symbols are ex...
This paper presents a novel index modulation (IM) technique named hybrid reconfigurable intelligent surface (RIS) enabled enhanced reflection modulation (Hyb-ERM), which capitalizes on the hybrid RIS architecture comprising both active and passive elements. In Hyb-ERM, a hybrid RIS is partitioned into groups, with information bits transmitted throu...
This paper presents an innovative approach to orthogonal time frequency space (OTFS) modulation by integrating autoencoder-based enhanced (AEE) joint delay-Doppler index modulation (JDDIM) techniques. The proposed AEE-JDDIM-OTFS framework leverages deep learning to optimize the mapping and demapping processes, significantly improving spectral and e...
This paper introduces a novel approach to efficient localization in next-generation communication systems through a base station (BS)-enabled passive beamforming utilizing beyond diagonal reconfigurable intelligent surfaces (BD-RISs). Unlike conventional diagonal RISs (D-RISs), which suffer from limited beamforming capability, a BD-RIS provides enh...
Affine frequency division multiplexing (AFDM) is a novel modulation technique based on chirp signals that has been recently proposed as an effective solution for highly reliable communications in high-mobility scenarios. In this paper, we focus on the design of robust index modulation (IM) schemes under the multiple-antenna AFDM transmission framew...
Reconfigurable intelligent surface (RIS)-assisted communication is a key enabling technology for next-generation wireless communication networks, allowing for the reshaping of wireless channels without requiring traditional radio frequency (RF) active components. While their passive nature makes RISs highly attractive, it also presents a challenge:...
In this paper, a novel amplitude phase shift keying (APSK) modulation scheme for cooperative backscatter communications aided by a reconfigurable intelligent surface (RIS-CBC) is presented, according to which a passive or an active RIS is configured to modulate backscatter information onto unmodulated or PSK-modulated signals impinging on its panel...
Reconfigurable intelligent surfaces (RISs) bring great potential to the advancement of 6G and beyond wireless communication technologies. RISs introduce a great degree of flexibility, allowing some sort of virtual control over the wireless channel. Exploiting the flexibility introduced by RISs, we propose a novel RIS-enabled downlink (DL) non-ortho...
This paper presents a promising design concept for reconfigurable intelligent surfaces (RISs), named plug-in RIS, wherein the RIS is plugged into an appropriate position in the environment, adjusted once according to the location of both base station and blocked region, and operates with fixed beams to enhance the system performance. The plug-in RI...
As wireless information transmission (WIT) progresses into its sixth generation (6G), a challenge arises in sustaining terminal operations with limited batteries for Internet-of-Things (IoT) platforms. To address this, wireless power transfer (WPT) emerges as a solution, empowering battery-less infrastructures and enabling nodes to harvest energy f...
Reconfigurable intelligent surfaces (RISs) are rapidly gaining prominence in the realm of 5G-advanced and predominantly 6G mobile networks, offering a revolutionary approach to optimizing wireless communications. This article delves into the intricate world of the RIS technology, exploring its diverse hardware architectures and the resulting versat...
Extreme natural phenomena are occurring more frequently everyday in the world, challenging, among others, the infrastructure of communication networks. For instance, the devastating earthquakes in Turkiye in early 2023 showcased that, although communications became an imminent priority, existing mobile communication systems fell short with the oper...
Integrated sensing and communication (ISAC) is recognized as one of the key enabling technologies for sixth-generation (6G) wireless communication networks, facilitating diverse emerging applications and services in an energy and cost-efficient manner. This paper proposes a multi-user multi-target ISAC system to enable full-space coverage for commu...
Users' desire for enhanced performance drive the inevitable technological progress on vertical applications in wireless communication systems. To meet these demands, researchers vigorously investigate potential 6G and beyond technologies and solutions. Reconfigurable intelligent surfaces (RISs) have risen in popularity and attracted the attention o...
Orthogonal time frequency space (OTFS) is a promising waveform with outstanding performance in doubly-selective channels. Spreading information symbols across the entire delay-Doppler plane enables OTFS to exploit full diversity. Nevertheless, there is a need for enhanced reliability in OTFS systems to satisfy the rigorous requirements of forthcomi...
The rising demand for energy and spectrum resources in next-generation Internet-of-things (IoT) systems accounts for innovative modes of information and power transfer. One potential solution is to harness the active transmission capability of devices to facilitate data transmission and wireless energy harvesting (WEH) for backscatter communication...
This article presents reconfigurable intelligent surface (RIS)-aided deep learning (DL)-based spectrum sensing for next-generation cognitive radios (CRs). To that end, the secondary user (SU) monitors the primary transmitter (PT) signal, where the RIS plays a pivotal role in increasing the strength of the PT signal at the SU. The spectrograms of th...
Physical layer (PHY) authentication methods provide spatial security by exploiting the unique channel between two users. In recent years, many studies focused on substituting traditional threshold-based detection mechanisms with machine/deep learning classifiers to solve the threshold selection problem and obtain better detection accuracy. However,...
According to the planned key performance indicator (KPI) standards, 6G technology should achieve higher throughput than 5G. More efficiency in transceiver schemes is required to meet this demand. In this study, we take advantage of spatial modulation (SM) and pulse index modulation (PIM) techniques to increase spectral efficiency. The proposed PIM-...
In this study, we introduce Spider RIS technology, which offers an innovative solution to the challenges encountered in movable antennas (MAs) and unmanned aerial vehicle (UAV)-)-enabled communication systems. By combining the dynamic adaptation capability of MAs and the flexible location advantages of UAVs, this technology offers a dynamic and mov...
Considering the current capability in hardware design, wireless power transmission enables the next stage in the current consumer electronics revolution by reducing the dependency on the lifetime of the batteries in the devices. Information harvesting (IH) introduced a novel mechanism by enabling information transmission to the existing far-field w...
Reconfigurable intelligent surface (RIS)-empowered communication is one of the promising physical layer enabling technologies for the sixth generation (6G) wireless networks due to their unprecedented capabilities in shaping the wireless communication environment. RISs are modeled as passive objects that can not transmit or receive wireless signals...
Today's wireless communication networks have many requirements such as high data rate, high reliability, low latency, low error data transmission, and high energy efficiency. High-performance index modulation (IM) techniques and reconfigurable intelligent surface (RIS) technology, which has recently attracted the attention of researchers, are stron...
Practical experiments are a crucial step to demonstrate the viability of reconfigurable intelligent surface (RIS)-empowered communication, which is one of the emerging technologies for next-generation networks. In this paper, we present practical measurements to demonstrate the RIS capabilities for enhancing signal coverage and providing physical l...
This paper presents an innovative approach for terahertz (THz) band communications, utilizing reconfigurable intelligent surfaces (RISs) to implement an angular-based hybrid beamforming (AB-HBF). This study examines two significant THz channel scenarios with cost-efficient solutions utilizing RISs to enhance performance. The first scenario ensures...
In this letter, we propose a novel reconfigurable intelligent surface (RIS)-assisted transmission scheme called RIS-aided enhanced receive spatial modulation (RIS-ERSM). To achieve high spectral efficiency and reliability, RIS-ERSM leverages both M-ary modulated data symbols and receive antenna (RA) combinations. In this scheme, an RIS is partition...
In this article, we propose a novel simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted nonorthogonal multiple access (NOMA) system. Unlike most of the STAR-RIS-assisted NOMA works, we target scalable phase shift design for our proposed system that requires a reduced channel estimation overhead. Within th...
Orthogonal time frequency space (OTFS) is a novel waveform that provides a superior performance in doubly-dispersive channels. Since it spreads information symbols across the entire delay-Doppler plane, OTFS can achieve full diversity. However, reliability still needs to be improved in OTFS systems to meet the stringent demands of future communicat...
While wireless information transmission (WIT) is evolving into its sixth generation (6G), maintaining terminal operations that rely on limited battery capacities has become one of the most paramount challenges for Internet-of-Things (IoT) platforms. In this respect, there exists a growing interest in energy harvesting technology from ambient resour...
The march towards 6G is accelerating and future wireless network architectures require enhanced performance along with significant coverage especially, to combat impairments on account of the wireless channel. Reconfigurable intelligent surface (RIS) technology is a promising solution, that has recently been considered as a research topic in standa...
Space exploration has witnessed a steady increase since the 1960s, with Mars playing a significant role in our quest for further knowledge. As the ambition to colonize Mars becomes a reality through the collaboration of private companies and space agencies, the need for reliable and robust communication infrastructures in the Martian environment be...
Reconfigurable intelligent surface (RIS)-empowered communication is an emerging technology that has recently received growing attention as a potential candidate for next-generation wireless communications. Although RISs have shown the potential of manipulating the wireless channel through passive beamforming, it is shown that they can also bring un...
This paper presents reconfigurable intelligent surface (RIS)-aided deep learning (DL)-based spectrum sensing for next-generation cognitive radios. To that end, the secondary user (SU) monitors the primary transmitter (PT) signal, where the RIS plays a pivotal role in increasing the strength of the PT signal at the SU. The spectrograms of the synthe...
While the first 5G-Advanced standard is being developed step by step with certain advancements, wireless researchers have already begun exploring radical communication paradigms toward 6G wireless networks of 2030 and beyond. Within this context, index modulation (IM) technologies might provide spectrum- and energy-efficient solutions by utilizing...
The actuation accuracy of sensing tasks performed by molecular communication (MC) schemes is a very important metric. Reducing the effect of sensors fallibility can be achieved by improvements and advancements in the sensor and communication networks design. Inspired by the technique of beamforming used extensively in radio frequency communication...
This paper introduces a reconfigurable intelligent surface (RIS)-assisted grant-free non-orthogonal multiple access (GF-NOMA) scheme. We propose a joint user equipment (UE) clustering and RIS assignment/alignment approach that jointly ensures the power reception disparity required by the power domain NOMA (PD-NOMA). The proposed approach maximizes...
This paper introduces a reconfigurable intelligent surface (RIS)-assisted grant-free non-orthogonal multiple access (GF-NOMA) scheme. To ensure the power reception disparity required by the power domain NOMA (PD-NOMA), we propose a joint user clustering and RIS assignment/alignment approach that maximizes the network sum rate by judiciously pairing...
Reconfigurable intelligent surface (RIS)-empowered communication stands out as a solid candidate for future wireless networks due to its flexibility, ease of deployment, and attractive advantages to control the wireless propagation environment. In this perspective article, a brief overview is presented considering the application of reconfigurable...
A brief overview is presented in this perspective, considering the application of reconfigurable intelligent surfaces for future multiple-input multiple-output (MIMO) systems.
Reconfigurable intelligent surface (RIS)-empowered communication is an emerging technology that has recently received growing attention as a potential candidate for next-generation wireless communications. Although RISs have shown the potential of manipulating the wireless channel through passive beamforming, it is shown that they can also bring un...
This paper investigates the effect of various antenna array structures, i.e., uniform linear array (ULA), uniform rectangular array (URA), uniform circular array (UCA), and concentric circular array (CCA), on cluster index modulation (CIM) enabled massive multiple-input multiple-output (mMIMO) millimeter-wave (mmWave) communications systems. As the...
Orthogonal frequency division multiplexing with index modulation (OFDM-IM), which transmits information bits through ordinary constellation symbols and indices of active subcarriers, is a promising multicarrier transmission scheme and has attracted the attention of researchers due to numerous benefits such as flexibility and simplicity. Nonetheless...
In this paper, we propose a transmission mechanism for a reconfigurable intelligent surface (RIS)-assisted millimeter wave (mmWave) system based on cluster index modulation (CIM), named best-gain optimized cluster selection CIM (BGCS-CIM). The proposed BGCS-CIM scheme considers effective cluster power gain and spatial diversity gain obtained by the...
In this paper, a cyclic-prefixed single-carrier (CPSC) transmission scheme with phase shift keying (PSK) signaling is presented for broadband wireless communications systems empowered by a reconfigurable intelligent surface (RIS). In the proposed CPSC-RIS, the RIS is configured according to the transmitted PSK symbols such that different cyclically...
There have been recently many studies demonstrating that the performance of wireless communication systems can be significantly improved by a reconfigurable intelligent surface (RIS), which is an attractive technology due to its low power requirement and low complexity. This paper presents a measurement-based characterization of RISs for providing...
Innovative reconfigurable intelligent surface (RIS) technologies are rising and recognized as promising candidates to enhance 6G and beyond wireless communication systems. RISs acquire the ability to manipulate electromagnetic signals, thus, offering a degree of control over the wireless channel and the potential for many more benefits. Furthermore...
Despite various intelligent reconfigurable surface (IRS)‐assisted use cases in the existing literature, there is no strong consensus to identify the killer applications that effectively exploit the potential of RISs to control the transmission medium with intelligent reflections for enhanced end‐to‐end system performance. The first step in clearing...
Reconfigurable intelligent surface (RIS)-empowered communications represent exciting prospects as one of the promising technologies capable of meeting the requirements of the sixth generation networks such as low-latency, reliability, and dense connectivity. However, validation of test cases and real-world experiments of RISs are imperative to thei...
Reconfigurable intelligent surface (RIS)-assisted communications recently appeared as a game-changing technology for next-generation wireless communications due to its unprecedented ability to reform the propagation environment. One of the main aspects of using RISs is the exploitation of the so-called passive beamforming (PB), which is carried out...
Detection of jamming attacks is an important tool to improve the resource efficiency of jammer resilient communication networks. Detecting reactive jammers is especially difficult since the attacker is cognitive and focuses only on the used channels. Orthogonal frequency division multiplexing with index modulation (OFDM-IM) consists of active and p...
In this study, we present a unifying framework for future reconfigurable intelligent surface (RIS)-assisted space shift keying (SSK) systems; we additionally propose two novel transmission schemes. The key strategies surrounding this concept, namely power-sensing RIS-SSK and partitioned RIS-SSK, grant knowledge of the activated transmitter (Tx) ant...
This paper introduces a reconfigurable intelligent surface (RIS)-assisted grant-free non-orthogonal multiple access (GF-NOMA) scheme. We propose a joint user equipment (UE) clustering and RIS assignment/alignment approach that ensures the power reception disparity required by the power domain NOMA (PD-NOMA). The proposed approach maximizes the netw...
This paper introduces a reconfigurable intelligent surface (RIS)-assisted grant-free non-orthogonal multiple access (GF-NOMA) scheme. We propose a joint user equipment (UE) clustering and RIS assignment/alignment approach that ensures the power reception disparity required by the power domain NOMA (PD-NOMA). The proposed approach maximizes the netw...
Reconfigurable intelligent surface (RIS)-assisted communications recently appeared as a game-changing technology for next-generation wireless communications due to its unprecedented ability to reform the propagation environment. One of the main aspects of using RISs is the exploitation of the so-called passive beamforming (PB), which is carried out...
Reconfigurable intelligent surface (RIS)-empowered communication is a revolutionary technology that enables to manipulate wireless propagation environment via smartly controllable low-cost reflecting surfaces. However, in order to outperform conventional communication systems, an RIS-aided system with solely passive reflection requires an extremely...
This paper proposes a reconfigurable intelligent surface (RIS)-aided and angular-based hybrid beamforming (AB-HBF) technique for the millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems. The proposed RIS-AB-HBF architecture consists of three stages: (i) RF beamformer, (ii) baseband (BB) precoder/combiner, and (iii) RIS pha...
Innovative reconfigurable intelligent surface (RIS) technologies are rising and recognized as promising candidates to enhance 6G and beyond wireless communication systems. RISs acquire the ability to manipulate electromagnetic signals, thus, offering a degree of control over the wireless channel and the potential for many more benefits. Furthermore...
This paper introduces a reconfigurable intelligent surface (RIS)-assisted grant-free non-orthogonal multiple-access (GF-NOMA) scheme. To ensure the power reception disparity required by the power domain NOMA (PD-NOMA), we propose a joint user clustering and RIS assignment/alignment approach that maximizes the network sum rate by judiciously pairing...
This letter investigates the bit error rate (BER) performance of simultaneous transmitting and reflecting re-configurable intelligent surfaces (STAR-RISs) in non-orthogonal multiple access (NOMA) networks. In the investigated network, a STAR-RIS serves multiple non-orthogonal users located on either side of the surface by utilizing the mode switchi...
Molecular communication via diffusion (MCvD) schemes are limited to short distances between the nanomachines due to the transmitted signal becoming rapidly weaker as the distance increases. Additionally, these schemes are very often affected by high inter-symbol interference, which makes them prone to errors, thus leading to unreliability. In this...
This paper introduces the concept of spatial and media‐based modulated (SMBM) orthogonal frequency division multiplexing (OFDM) as a potential candidate for highly mobile next generation beyond 5G (B5G) wireless communications. The proposed SMBM‐OFDM technique utilizes not only the transmit antenna and channel state indices but also OFDM subcarrier...
Reconfigurable intelligent surface (RIS)‐empowered communications is on the rise and is a promising technology envisioned to aid in 6G and beyond wireless communication networks. RISs can manipulate impinging waves through their electromagnetic elements enabling some sort of control over the wireless channel. The potential of RIS technology is expl...
The demanding objectives for the future sixth generation (6G) of wireless communication networks have spurred recent research efforts on novel materials and radio-frequency front-end architectures for wireless connectivity, as well as revolutionary communication and computing paradigms. Among the pioneering candidate technologies for 6G belong the...
The demanding objectives for the future sixth generation (6G) of wireless communication networks have spurred recent research efforts on novel materials and radio-frequency front-end architectures for wireless connectivity, as well as revolutionary communication and computing paradigms. Among the pioneering candidate technologies for 6G belong the...
This letter investigates the bit error rate (BER) performance of simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) in non-orthogonal multiple access (NOMA) networks. In the investigated network, a STAR-RIS serves two non-orthogonal users located on either side of the surface by utilizing the mode switching pro...
In this paper, we propose a novel orthogonal frequency division multiplexing (OFDM) scheme with high carrier frequency offset (CFO) resistance and low peak‐to‐average power ratio (PAPR). In this scheme, we consider a hybrid model with two subblock types, namely, pilot subblocks and standard subblocks. In pilot subblocks, active subcarriers are util...
One of the most critical aspects of enabling next-generation wireless technologies is developing an accurate and consistent channel model to be validated effectively with the help of real-world measurements. From this point of view, remarkable research has recently been conducted to model propagation channels involving the modification of the wirel...