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Abstract—Over the last decade there has been a technological 

explosion of advanced, digital, solid state, software controlled, 

and low size, weight, power and cost (SWaPC) sensors and 

payloads. The sensor advancement allowed engineering 

practitioners the ability to easily perform a variety of remote 

sensing operations and consider a wide range of modalities 

measuring the environment simultaneously. However, there 

has not been a common multi-modal data set to compare data 

fusion methods.  This paper describes a multi-mode data set 

performed by the Air Force Research Laboratory, Information 

Directorate, to enable multi-modal signature data-fusion 

research. The Experiments, Scenarios, Concept of 

Operations, and Prototype Engineering (ESCAPE) 

collection brings together electro-optical, infrared, distributed 

passive radio-frequency, radar, acoustic and seismic data in a 

common scenario for the application of advanced fusion 

methods for aerospace systems. The paper details hardware, 

scenarios, and data collection specifics.  Scenarios involved 

disparate moving emitting ground vehicles, challenging vehicle 

path patterns, and differing vehicle noise profiles.  The 

purpose of the data collection, and the resulting data sets, is to 

engage the data fusion community in advanced upstream 

heterogeneous data analytics, design, and understanding. 
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1. INTRODUCTION 

Data sets, challenge problems, and baseline methods 

provide methods of comparison to advance research in 

sensor exploitation [1]. Typically, these data sets comprise 

one modality such as synthetic aperture radar (SAR) [2-4], 

wide-area motion imagery (WAMI) [5-8] or video [9-12].  

Other data sets include two modalities such seismic-acoustic 

[13, 14] and audio-video for data fusion research [15, 16]. 

Recent results extend data sets for events and scenarios [17- 

20]. However, there is a need for multi-mode data set that 

incorporates attributes of the many potential sensors in a 

common scenario. 

The Air Force Research Laboratory (AFRL), Information 

Directorate (RI)
1
 conducted a multi-modal data collection, 

called: Experiments, Scenarios, Concept of Operations, and 

Prototype Engineering (ESCAPE). Figuratively ESCAPE 

describes a theme of the collection, as will be seen, of 

targets leaving the observed scene, then potentially re-

emerging, and hence escaping detection and tracking. The 

challenge is to use multi-modal upstream data fusion 

approaches to determine unique joint multi-modal 

signatures that distinguish targets in stressing conditions 

such as interference, false targets and low received Signal to 

Noise (SNR) ratios. 

The purpose of the ESCAPE multi-source data collection 

was to collect data on various ground target scenarios for 

use in advanced data-fusion research studies.  Previous 

efforts [21-24], investigated pre-detection (upstream) level 

fusion of multi-modal signatures using simulated 

simultaneous Infrared (IR), Full Motion Video (FMV) and 

Passive Radio Frequency (P-RF) data collected from 

moving emitters.  The ESCAPE test significantly enhances 

complexity (and opportunity) by increasing the number of 

modalities utilized as well as including outdoor 

experimental irregularities.  The test utilized Commercial 

off the Shelf (COTS) sensor equipment providing 

simultaneous, heterogeneous collection with P-RF, radar, 

Electro-optical (EO), IR, seismic and acoustic sensing 

modes.  Target types included ground-based vehicles such 

as a pickup truck, panel van, and utility vehicles.   

The ESCAPE test commenced during the summer/fall of 

2018 within the AFRL Stockbridge Test Site (STS) 

(Stockbridge, NY) in which all sensors would have 

simultaneous Line of Sight (LOS) viewpoints, noting that 

some sensors would experience blockages as targets move 

around obstacles, trees, and buildings. 

The rest of the paper is as follows. Section 2 describes the 

location and scenario for the ESCAPE data set.  Section 3 

details the equipment used and the simultaneous data 

collection layout. Section 4 gives a few examples of the 

multi-modality data collected. Section 5 provides a 

summary and future research.   
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2. COLLECTION LOCATION AND SCENARIOS 

Location 

The ESCAPE data collection was performed at the 

AFRL/RI Stockbridge Test Site (STS). The location is in a 

rural part of central New York (NY) state near Stockbridge 

NY, 43.031897
o
 N, 75.651311

o 
W.  The STS is a 300 acre, 

partially wooded site, formally an AF Radio Frequency 

(RF) and antenna pattern measurement facility re-purposed 

for Small Unmanned Air Systems (SUAS), optical, 

expanded RF, cyber and Intelligence, Surveillance, and 

Reconnaissance (ISR) research. Figure 1 shows the overall 

site and location of the ESCAPE test.    

 

Figure 1. Stockbridge Test Site (STS), Stockbridge, NY.  

Shaded region indicates location of the ESCAPE data 

collection.  Northerly direction is at the top of the 

picture. 

The location of the ESCAPE collection within the STS 

provides some unique features and provides simultaneous 

Line of Site (LOS) of the target scene from a majority of the 

sensors participating in the test; where the sensor layout is 

described in Section 3. The terrain features include flat grass 

fields, dirt roads, asphalt/concrete roads, sparse-tree 

hedgerows, and a large commercial steel building. The 

building, known as the Butler Building, provides a tunnel 

like feature allowing vehicles to enter/exit from the South 

and enter/exit from the North. The scene allows for 

performance evaluation of target representation approaches, 

fundamental for optimal fusion performance.  For example, 

ground vehicle scenarios include a vehicle(s) that enters the 

building, and a vehicle(s) that leaves the building, begging 

the question - is it the same vehicle?   

Targets 

Ground targets used for the ESCAPE data collection, in the 

scenarios described below, are pictured in Figure 2. They 

consisted of utility vehicles (e.g. John Deer Gator), a pickup 

truck, panel van and a stake rack truck. One interesting 

variation in the target set was the use of one diesel and two 

gas Gators.  All three Gators were 4-seat versions, hence 

having essentially the same length and width; however, the 

diesel gator had a different acoustical and presumably 

seismic signature due to the nature of the diesel engine vs. 

the gas engine. It is of interest to determine if algorithmic 

methods applied to the various modality signatures of these 

vehicles can disambiguate them sufficiently.  In many of the 

use case scenarios, one version of the gator would enter the 

Butler building and another would exit; can advanced 

upstream fusion of the multi-modality signatures make this 

differentiation?   

 
Figure 2. Ground vehicles used during ESCAPE data 

collection, a.) gas motor Gator utility vehicle, b.) diesel 

motor Gator utility vehicle, c.) pickup truck, d.) panel 

van, and e.) stake rack truck. 

Scenarios 

An objective of the ESCAPE collection was to record multi-

modality data on diverse ground vehicle scenarios.  

Scenarios range from single vehicle trajectories to multi-

vehicle behaviors. In any given scene, at least one vehicle 

was emitting, and in most multi-vehicle scenarios, two 

vehicles were emitting various communication waveform 

standards.  The single vehicle scenarios allow researchers to 

focus on, and perfect, new algorithmic approaches for 

developing multi-modality target representations by 

exploiting the pre-detection level (upstream) sensor data 

available from the collection.  Denser target scenarios (up to 

4 vehicles) contain conditions of closely spaced targets, 

opposing targets, passing targets, move-stop-move 

trajectories, and LOS blockage.  These scenarios should 

provide difficulties for traditional detection-level fusion 

approaches while potentially showing the benefit of pre-

detection level approaches. 
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Figure 3 shows an example of a two-vehicle scenario 

conducted during the ESCAPE data collection.  Colored red 

and yellow paths show the trajectories of two separate 

targets.  Typically, the vehicles started and ended at the 

same time with speeds of 10-15 miles per hour (MPH).  

Variations to the scenario included different vehicle types 

and multiple vehicles.  The sensor layout is also indicated 

Figure 3. 

 

Figure 3. Ground vehicle scenario, two-vehicle case. 

Figure 4 shows an extension to the scenario shown in Figure 

3 by adding a third vehicle - the green path. This scenario is 

representative of the ESCAPE data collection title.  Two 

vehicles enter the building as a third emerges. Question at 

hand, is it one of the targets that entered the building or an 

entirely different target? 

Figure 5 depicts a multi-vehicle scenario, four vehicles in 

this example, which adds more diversity to the target scene.  

Two vehicles were emitting communication signals. The 

movement of all vehicles varied in terms of their motion.  

For example, the green path vehicle performed some move-

stop-move variations while other targets passed each other.  

Other variations of this scene included vehicles overtaking 

the vehicle in front.  These types of situations are expected 

to cause some issues with traditional post-detection level 

vehicle tracking approaches as well as the line of sight 

(LOS) blockage at some sensors produced from the westerly 

tree hedge row and the Butler Building. 

 

Figure 4. Ground vehicle scenario, Three-vehicle case. 

 

Figure 5. Ground vehicle scenario, four-vehicle case. 
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Emitters 

To make the ground target signatures more discernable, one 

emitter was placed in two separate vehicles for all scenarios, 

with one emitter being used for the single target scenarios.  

Furthermore, the emitter signal’s design simultaneously 

transmits 13 different transmissions separated in frequency.  

There were 11 typical communication modulation schemes 

that included Binary Phase Shift Keyed (BPSK), Quadrature 

PSK (QPSK), Offset QPSK (OQPSK), 8 PSK, 16 

Quadrature Amplitude Modulation (16-QAM), 64-QAM, 

Gaussian Minimum shift Keying (GMSK), 4 Amplitude 

Shift Keying (4ASK), Frequency Modulation (FM), 

Amplitude Modulation Single Sideband Suppressed Carrier 

(AM-SSB-SC) and Amplitude Modulation Double Sideband 

Suppressed Carrier (AM-DSB-SC). Additionally two tones 

were added to make 13 total frequency channels.   

Each emitter transmits the 13 frequency channels over a 4 

MHz frequency band.  One emitter would transmit over a 4 

MHz band from 1240 MHz to 1244 MHz; referred to as the 

low band emitter. The second emitter, separated by 1 MHz 

from the first emitter, would transmit on a similar 4 MHz 

frequency band from 1245 MHz to 1249 MHz; referred to 

as the high band emitter. The total is 8 MHz worth of 

transmit signals, plus 1 MHz of guard band between them.  

It was designed to fit within the ESCAPE data collection 

receiver’s bandwidth, particularly the ESCAPE payload 

(described in Section 3), of 12.5 MHz.  Figure 6displays a 

spectrogram of the received data from one of the ESCAPE 

payloads when both emitters are transmitting.  Note the 13 

frequency channels in both the low band and the high band. 

This design of the multiple transmit frequency channels 

allows the data user to select a waveform of choice through 

appropriate channel selection/filtering. Hence, only one 

collection scenario emulates a number of transmitter types 

for the desired research and data analysis interests, instead 

of collecting the given scenario 13 separate times. 

 

 

 

Figure 6.  Emitter spectrum as seen by one of the 

ESCAPE payload RF receivers.  13 waveforms between 

1240-1244 MHz and another copy of the 13 waveforms 

between 1245-1249 MHz.   

 

3. EXPERIMENT LAYOUT & SENSING EQUIPMENT 

Experiment Layout 

The orange shaded region in Figure 1 represents the area 

within the STS used for target activity during the ESCAPE 

data collection.  Hence, sensors placed in proximity to this 

region for collection purposes.  Figure 7 shows the specific 

layout of the sensing equipment used for the collection.  

There were 6 separate modalities, 8 sensor locations and 

over 20 total sensors utilized. The specific modalities 

include EO FMV, IR FMV, P-RF, radar, seismic and 

acoustic. The idea behind the sensor placement was to have 

a large geometrically diverse layout of the various 

modalities, with some co-location of some of the modalities.  

For example, one of the prime sensors was a collection of 3 

modalities, co-located, including EO FMV, IR FMV, and P-

RF (EO/IR/P-RF) - referred to as the ESCAPE payload, 

described below. Other co-located modalities included EO 

FMV and P-RF. 

Sensors resided on towers, SUASs, ground tripods, and 

ground contact sensors.  Figure 7 depicts the sensor layout 

at the STS and the associated towers and their heights. 
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Figure 7.  ESCAPE sensor modality layout at the Stockbridge Test Site. 

 
Based on the sensor layout and the scenarios described in 

Section 2, a majority, but not all, of the sensors will view a 

given target simultaneously. The coordinated collection 

provides simultaneous multi-modality data on a given 

target. 

ESCAPE EO/IR/P-RF Payload 

The ESCAPE payload is a collection of three sensing 

modalities, EO FMV, IR FMV and passive RF (EO/IR/P-

RF).  The intent was to fly (hover) the ESCPAE payload on 

two separate SUASs (denoted SUAS EO/IR/P-RF in Figure 

7), and have one tower mounted (denoted Tower EO/IR/P-

RF in Figure 7).  The payload is pictured in Figure 8Figure 

8 in a configuration mounted under a DJI M600 SUAS 

Vertical Take Off and Landing (VTOL) aircraft. 

The ESCAPE payload consists of the following equipment: 

 Ettus B200 software defined radio (SDR) receiver 

 LP0965 Log Periodic Antenna 

 GPS  

 FLIR Vue Pro-R Radiometric thermal camera 

o Radiometric: 640x512, 1 Frame Per Second (FPS) 

o Analog video: 320x240, 30 FPS  

 Basler ace acA3800-14uc camera 

o 3840x2748, 14 FPS 

 Intel NUC NUC6i5SYK Computer 

 MaxAmps LiPo 2800 4S 14.8V Battery Pack (Qty: 2) 

In order to accommodate mounting on an SUAS, the 

payload design approximated the size of 20cm × 16cm × 

4cm, and with a mass of no more than 2500g (5.51 lbs). The 

components of the payload are self-contained and do not 

require power or control signals from the SUAS. All power 

consumed by the payload comes from its internal batteries. 

All three sensor payloads are operated remotely via standard 

wireless networking. 

 

Figure 8. The ESCAPE payload, mounted to DJI M600 

SUAS, featuring an EO FMV camera, an IR FMV 

camera and a SDR-based P-RF system with log periodic 

antenna. 
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Passive RF Receivers (P-RF) 

Three P-RF receivers, independent of the ESCAPE payload, 

were placed on towers, indicated as Tower P-RF in Figure 

7.  These three sensor synchronously measure RF signals 

using an Ettus N210 software defined radio receiver.  The 

nodes operated remotely via a standard wireless network.  

Data is recorded in real-time to the hard drive of the 

Macbook Pro with adequate recording capability for the 

intended collections.  Specifics on each receiver node are:  

 Ettus N210 software defined radio (SDR) receiver 

 GPS  

 Apple Macbook Pro computer 

 External hard drive for additional data storage 

 AH Systems SAS-510-4 Log Periodic (LP) Antenna 

 

Each node was mounted to a 40’ portable tower.  The 

antenna was mounted directly below an EO camera 

discussed below. Figure 10 shows the mounting 

configuration. 

 

UHF Radar 

The UHF radar used in the ESCAPE collection was 

comprised of an Akela RF Vector Signal Generator, two 

Akela tapered horns (one transmit, one receive) and a 

control laptop.  The hardware operates within a frequency 

range of 380 – 3000 MHz.  For the ESCAPE collection the 

frequency was limited to 1700 - 2400 MHz (avoiding 1559 

– 1610 MHz) with a transmit peak power of 100 milliWatts 

(mW). It is a software-designed system capable of a stepped 

frequency continuous wave mode operation.  The equipment 

was mounted on the STS 110’ tower, focused in the 

direction of the ESCAPE data collection, shown in Fig. 9.  

 

Figure 9. Akela tapered radar horns (1 transmit, 1 

receive) mounted to the STS tower, 110’ above ground 

(outlined in red). 

Electro-Optical Cameras 

Three EO FMV cameras (denoted as Tower FMV Camera in 

Figure 7) mounted atop 40’ portable towers capture the 

orchestrated activity during the ESCAPE data 

collection.Each camera location contained the following: 

 AVT Prosilica GX3300 GigE Camera (resolution: 

3296x2472, 12 bit color) 

 FLIR PTU-D48E Pan and Tilt Unit (PTU) 

 Nvidia Jetson Tegra TK1 control board 

 SATA hard drive 

 Control laptop 

 

Control of the camera was via a wireless network.  The 

camera captured 7 frames per second (FPS).  A weather 

tight enclosure protects the equipment. Figure 10 shows the 

deployment of the EO camera (in weather-tight enclosure), 

mounted above the P-RF log periodic antenna mentioned 

above.   

 

Figure 10.  EO camera (in enclosure) mounted above the 

P-RF log periodic antenna atop a 40’ portable tower. 

 

Acoustic Sensor  

The ESCAPE data collection is unique in that is employed 

non-traditional ISR sensors such as above-ground acoustic 

and seismic modalities.  The acoustic sensor should be able 

to provide unique signatures of the different ground targets 

and allow for beamforming as it consists of two arrays that 

were approximately 2-3’ off the ground.  Each array has 8 

elements and the arrays are placed orthogonal too each 

other.  Figure 11 presents the acoustic sensor setup.  The 

acoustical sensor consists of the following components: 

 16 Bruel & Kjaer 4952 outdoor microphones 

 2 Sound Devices 788T 8 channel recorders 

 Pre-amplifiers 

 24 bit A/D 
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Figure 11.  Acoustic array consisting of 16 mircophones. 

Seismic Sensor  

Seismic sensing adds an additional interesting component to 

the ESCAPE data collection as it is presumed that the 

different ground targets will have uniquely different seismic 

signature profiles.  The seismometer is a COTS product 

referred to as a Raspberry Shake, shown in Figure 12.  The 

Raspberry Shake is a Raspberry Pi 3 controlled single 

channel electronically extended 4.5 Hz geophone with a 24 

bit digitizer sampled at 50 Hz with the data presented in 

miniSEED format. The Raspberry Shake is traditionally 

used for earthquake recordings up to 300 miles from the 

epicenter. For the ESCAPE data collection, 10 units were 

deployed around the testing area.  Each sensor was placed in 

contact with the ground and located on a grass field, asphalt 

driveway, and the concrete floor of the Butler building. 

 

Figure 12.  Raspberry Pi 3 based seismometer, Raspberry 

Shake.   

 

4. DATA COLLECTED 

With over 20 sensors collecting during any given ESCAPE 

scenario run, a number of combinations of sensing 

modalities exist for data-fusion potential. Nearly 60 ground-

target scenarios exist, each being on the average of 1 minute 

in length. The total data size of all data is approximately 15 

Tera Bytes (TB).  Availability of portions of this data 

collection to the public will be forth coming and are in the 

review process at the time of writing this paper.  Please 

contact Peter Zulch, AFRL, for availability and distribution. 

A quick look at the data show relationships between the 

various modalities.  Future joint use of the upstream multi-

modal data is expected to produce more unique relationships 

and target representations such as manifold [26] and 

topological feature visualizations [27, 28]. In particular, 

advanced fusion algorithms, designed to ingest 

heterogeneous, upstream data afford associations between 

the various signatures in an autonomous fashion. 

EO and IR Association 

Figure 13 displays a snapshot in time from the recorded 

video data from 3 of the ESCAPE payloads, positioned as 

shown in Figure 7.  In Figure 13, row (a) is from the 110’ 

foot walk up tower, row (b) is from the most Westerly 

SUAS position, and row (c) is from the most Southerly 

SUAS position.  Interestingly, some of the moving vehicles 

exist in most of the cameras simultaneously.  

 

Figure 13.ESCAPE payload EO and IR frames during a 

data collection run of the scenario shown in Figure 5 (4 

vehicles).  a.) 110’ tower view, b.) Westerly SUAS view, 

c.) Southerly SUAS view.  Color code: red- Gator, green 

– pickup, orange – van. 
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The objective in fusion research will be to determine if a 

joint representation of each target can be produced that is 

unique to the given target in order to accurately and 

optimally improve target detection, improve 

discriminability, and improve target tracking. With 

overlapping fields of view across the three camera locations 

and across the EO and IR modalities, image fusion [29, 30] 

could yield robust results. 

Radar Returns  

Figure 14 displays the UHF radar returns for the multi-

vehicle scenario depicted in Figure 5.  The right side of the 

Fig. 14 displays amplitude (color code) vs range (vertical 

axis) vs time (horizontal axis). As indicated, certain paths, 

predictably, have different traces.  For example, the orange 

path vehicle, panel van, starts in view of the radar and 

moves away from the radar until it is lost in the Butler 

building, as indicated in the radar return. The wide band of 

returns between 160 m and 200 m represents the Butler 

building and tree line scattering, and hence, the van return 

gets consumed by this clutter as it is blocked from the radar.  

Later in time, the van re-emerges from the Butler building 

and is easily detectable in the diagram between pulse 

indexes 800 and 1400.   

 

Figure 14.  UHF radar returns (right side) of the multi-

vehicle scenario shown in Figure 5.  Returns are in range 

(vertical axis) vs. time (horizontal axis).  Colored arrows 

relate the vehicle paths with the radar returns. 

The data provides an opportunity for more interesting fusion 

approaches make use of the radar phase-history information 

in order to assign each target a unique feature that correlates 

with other modality specific signatures. 

 

5. SUMMARY 

The field of heterogeneous data fusion is rapidly changing 

due to the accessibility of high quality multi-modal digital 

data.  Access to raw unprocessed data from modern digital 

solid-state systems will greatly expand the potential to 

exploit multi-modal data.  The ESCAPE data collection is 

an example of the kind of data that could be readily 

available by today’s advanced technology of ISR sensors.  

Having a data set to explore new methods of processing 

such multi-modality, high dimensional and complex data 

should yield improved performance benefits.  

The ESCAPE data collection collected heterogeneous multi-

modal data of diverse target scenarios in order that 

researchers can explore the possibilities of utilizing such 

data.  By jointly exploring data in its unprocessed form will 

greatly improve detection, recognition, classification, 

identification, and tracking performance for maneuvering 

targets in difficult sensing conditions.  The challenging 

target behaviors and operational conditions, that degrade 

current post-detection fusion algorithms, include weak 

received signal-to-noise ratio (SNR) target signatures, false 

targets, dense target environments, complex target 

kinematics and difficult collection geometries.   

The data set along with the baseline methods are available 

for further research and investigation; however, parts of the 

data set are sequestered for algorithmic testing. Future 

challenge problems, metrics, and variations will be 

compiled from the data set to motivate the community for 

advances in upstream data fusion (UDF) [31], classification 

[32], target tracking [33], and machine learning [34]. 

Examples include compression, user interpretability, and 

downstream data-fusion methods [35]. Likewise, continual 

use of the data includes adding to the knowledge of the data 

set to include software developments in signals processing, 

registration, and metrics for future comparisons and data 

analytics. 
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