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Abstract—Many initiatives have been taken to observe the
adaptation of endangered animal species to various environmen-
tal changes they face and their chances of surviving. In this
paper, we propose an original solution that consists on a new
framework based on wireless sensor technology that enables to
track individual movements and to collect spatio-temporal data
to be analyzed without any harmful contact with animals. We
discuss network configuration parameters what may optimize the
elicitation of two specific kinds of collective motion behavior from
such recorded data.

I. INTRODUCTION

Among the issues threatening ecosystems is the disappear-
ance of animal species, a sign of unbalanced environment. The
observation of animal populations in their original area has
motivated numerous scientific experiences in which in most
cases individual behaviors are manually recorded by scientists.
This task is difficult especially in the case of birds since human
intrusion [8], may itself cause change in their way of life and
be harmful.

Mobile devices have provided new perspectives thanks to
their miniaturization and technological advances both in terms
of computational power and memory capacity. Since they
provide regular information on their positioning in time and
space, geographic locators are used to collect spatial-temporal
data enabling to track animal motions remotely. This technique
is conceivable nor for observing frail animals such as little
birds that may greatly participate in the ecological balance
and need attention, neither for tracking flock movement. While
they bring a very interesting alternative to physical intrusion
in animal communities areas, they nevertheless need at least
a minimal human interaction that is sometimes not advisable.

In our work, we have focused on this particular issue to
propose an alternative that combines wireless sensor networks
to collect data and data mining techniques to process them.
The objective is to record data that inform about individual
positions in time and space in order to study group motions and
thus improve current knowledge on a given specie. We have
been particularly interested in the case of a bird, the “Moqueur
Gorge Blanche”, an endangered species endemic to the island
of Martinique. The work we conducted could be applied on
similar cases. With the objective to avoid any trouble on the
bird community, we have proposed a new architecture based
on fixed sensors fitted with microphones where sensors are
located randomly as if they were thrown by plane. Sensors are
able to detect the presence of individuals on the basis of their

songs only. Spatio-temporal data deduced from song records
are broadcasted through a two layer sensor network and they
are analyzed for eliciting group movement patterns.
This paper focuses mainly on a first issue that is to define
and configure the sensor network to be set up on the ground.
In this preliminary step, our objective is to simulate various
configurations in order to define optimal parameters for the
real architecture. To the best of our knowledge, this kind of
framework based on audio record and wireless sensor fitted
with microphones has not yet been exploited to elicit flock
motion patterns.

Movements are very essential for understanding the way
endangered communities are organized and how they live
in an area. Thus, studying movements provides important
information not only on social structure and habits, but on the
way these movements evolve and which elements influence
them [4], [7].

The paper is organized as follows. Section II introduces the
motion pattern detection problem. In Section III, we describe
the data collection framework we designed and we give a
more formal definition of movement patterns. Section IV and
Section V are each devoted to the specific flock and periodic
collective motions. Section VI details experimental results
obtained by simulating the sensor networks with various
parameters. Finally, in Section VII, we conclude and present
our future research directions.

II. MOTION PATTERN DETECTION

Recent development of technologies for real-time tracking
of moving entities (GPS, mobile phones, RFID chips, etc.) has
allowed the collection and exploitation of a new type of data
so called spatio-temporal data that relate to time and space.
They are often used to represent and study the trajectories
of entities moving in spaces with two or three dimensions.
The exploitation of this kind of data to track spatio-temporal
movements of groups or communities has motivated early
works. However, most methods on moving entities (humans,
animals or objects) assume either the observation by a human
observer, or mobile devices placed on the entities.

A first study initiated in movement patterns focused on flock
movement [20], [16]. A flock pattern in a time interval T
can be defined informally by the movement of m entities,
such as for each point taken in the time interval T , we can
find the same set of m entities at a different location. For
example, this problem was studied in [3] by Benkert et al.



and assumed human interaction and manual data collection.
Subsequently, it was established that collective movements
of entities are limited to a finite number of patterns. Let
us take the example of a company’s employees. Everyday,
they wake up at the same time and follow and take more
or less the same route to their work [21]. This repetitive
character of the movement can also be found for vehicles,
animals and humans. From this observation, Laube et al.
[19] defined a set of spatio-temporal models based on the
characteristic of movements such as flock pattern and periodic
pattern. With a different point of view Gudmundsson and al.
[13] distinguished new movement patterns : flock patterns [3],
leadership patterns, periodic patterns [21] and meeting patterns
or frequent patterns.

Various methods are proposed for detecting these patterns
[18], [14] and most of them employ data mining techniques
[27], including clustering [20], [16] and association rules [25],
[5] that have greatly contributed to their success. Verhein [25]
showed how it is possible to describe the entities movements
by association rules. Similarly, Gudmundsson et al. [13] pro-
vide a very complete overview of data mining contributions
in the development of algorithms for research patterns in the
movement.

The low cost of micro-devices that provide spatial-temporal
information about moving entities are now involved in the
ethology domain. Various studies using GPS collars to collect
the animals motions were conducted. For example, GPS collars
were experimented by Rumble and al. [23] on elks to obtain
their positions every twenty minutes and by Dumon and al.
[9] on sheep for studying their collective motions. Associated
with environmental data such as temperature, light or noise,
spatial-temporal data can provide valuable information about
the movement of endangered species and facilitate their rein-
tegration in similar environments.
As proved by a lot of experiments, GPS systems gather several
advantages. But in our context, it was not conceivable to
consider such a solution for several reasons listed below. A
GPS system:

• only works effectively in open areas without any object
which may obstruct the field of view of the receiver. Thus,
operation under dense foliage is not possible.

• is particularly expensive. For large populations of birds,
it would be difficult to fit each bird with a GPS device.

• consumes energy enormously.
• may have a sizeable weight, and often cannot be placed

on a small bird because of risks it cannot fly anymore,
or it is tired very rapidly.

• may be harmfulness since it needs to operate not only in
the animal area but on selected specimens too.

On the other hand, sensors are fixed devices in the space.
Unlike GPS collars, they are not grafted onto a single indi-
vidual, but simply set up on the target area. By fitting each
sensor with a microphone, it is possible to detect the presence
of a bird when it sings. Obviously, although the sensors do not
have the same problems as the GPS devices, they also have

some disadvantages that have to be considered. First of all,
as explained just above, sensors detect the presence of a bird
only if and when it sings. And we know that birds do not sing
all the time. In addition, signals recorded by sensors do not
allow identifying one individual. It only ensures to recognize
the specie. Since we are only interested in collective patterns,
this is not a real drawback as we show in further sections.

Other technologies like mobile phones supply different
media to collect spatio-temporal data too. For instance, trian-
gulation schemes are proposed [2] to locate, track and count
mobile phones. For obvious reasons, this cannot be a solution
for this experiment.

III. THE PROPOSED FRAMEWORK

In the work presented here, the experimental context set
strong constraints that contribute to the originality of the
approach. Indeed we propose a quite novel solution with a
network of fixed sensors to collect audio signals (bird songs)
that are interpreted in terms of individual positions in space
and in time.

A. Sensor network configuration

In order to configure the wireless sensors network fitted
with microphone, we assume that the target area is divided
into sub-areas, that we call “regions” and that are supposed
to be delimited by experts. Typically, a region may delimit
an area around a water supply point. Another region may
define an area of dense vegetation, or freshness, etc. The
advantage of such a definition is that it eventually allows to
obtain semantic information on the movements of individuals
based on characteristics of regions. Unfortunately, this form of
delimitation is not always possible. In a first stage, we define
regions in an arbitrary manner.

Thus, each region has a unique identifier r1, r2, r3, etc.
Each sensor is attached to one region only. We will see that
depending on the sensor placement method, a sensor can be
in a region boundary and even in some cases, its detection
area may overlap several regions. All sensors of a same
region can communicate with each other through intra-region
communications. For example, these communications are used
to determine the number of birds in a region. The detail of
methods that we defined for counting birds with a similar
sensor network [11], [12], [24] are out of scope in this paper.
They use triangulation techniques to locate songs and signal
comparisons. Thus in this paper, we are able to consider that
birds in a region may be counted on the basis of their songs.

Each region has at least one specific sensor called “gateway-
sensor”. It is able to communicate with other gateway-sensors
of neighbor regions through inter-regions communications.
These communications allow regions to exchange information
and communicate with the central base responsible for collect-
ing the whole records for further analysis. Figure 1 presents
this architecture.

These two-layer communication system, intra-region and
inter-region, not only enables sensors to locally determine the
detected birds, but prevents that redundant information was
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Fig. 1. Sensor architecture

sent to the central base. This has the effect of severely limiting
useless exchanges in the network.

The two communication levels are presented on Figure 2.
We can see an architecture on three stages :

1) The sensors communicate with the gateway-sensors.
2) The gateway-sensors communicate with the base station.
3) The base station stores aggregated data.
Figure 2 shows two types of communications. Colored

links illustrate the communications at a logical level. Indeed,
all detection sensors can send information to their gateway-
sensors. Similarly, only the gateway-sensor can communicate
with the central base.

In practice, a given sensor may not be able to communicate
directly with its gateway-sensor. For instance, a sensor that
is too far from its gateway-sensor of its region will have
to contact a neighbor sensor to send information. These
communications are real. They are represented by dotted lines
and exist both between sensors and between gateway-sensors.

We assume that all sensors have the same properties: both
same detection radius r and same energy level. Each sensor
knows the region to which it is affiliated and its position in
this region. Sensors are able to detect an individual of the
given species by analyzing its song [12], [24], but they are
not able currently to differentiate individuals between them.
They can communicate with the sensors in the same region
to send information to gateway-sensors. The gateway-sensor
determines the number of birds currently in its region and
sends this information to the base station. The central base
knows all regions and receives the information on detected
birds count in each region from gateway-sensors. In this work,
we are not interested in the routing information to the base
station. We focus only on the study of movements.

Before presenting the problem more formally, it is important
to detail sensor placement, i.e. how to locate sensors against
each other. Indeed, while only one region is assigned to a
sensor, the detection radius of a sensor can cover several
regions and thus strongly influences the results. There are

R1 R2 R3

Fig. 2. Communication levels

different kinds of configuration:
Uniform configuration: this configuration consists on laying
out the sensors uniformly so that they cover the entire zone.
Unfortunately, this scheme is not realistic, in the case of
dropping sensors by plane, as it is often the case.
Dense configuration: this configuration consists on placing
a maximum of sensors to cover the maximum area. This
configuration naturally raises problems of cost and interference
between signals.
Incremental configuration: this method consists on opti-
mizing the overall calculation, with an approximate optimal
place for each new sensor integrated into the network. This
mechanism is good for adjustment after installation.
Random configuration: this method consists on placing the
sensors randomly on the area, usually by dropping of the
sensors by plane.
Self-deployment: the objective of this method is to maximize
the surface covered by the network, and ensure the inclusion of
obstacles. The disposition by self-deployment should be done
independently by the nodes.

Due to the specific constraints we meet, we are only able
to consider a random deployment. However, we show below
how the choice of a placement may influence the detection of
movements.

B. Motion Detection Problem

The technical solution we adopted due to domain constraints
provides only a limited set of collected information: a sound,
the region where it has been recorded, an estimate of its
position (using triangulation scheme) and the recording time.
In this configuration, we assume that such information is
collected over a period long enough to be exploited. Thus,
whenever a desired sound is detected, for example the specific
song of bird specie, communications intra and inter regions are
done to send to the central base the information which will be
used to study the movements. Then the base station stores a



dataset which is analyzed and investigated to discover patterns
in movements.

More formally, let denote R = {r1, ..., rn} the set of all the
regions which divide the area. Each gateway-sensor is able to
count locally the number of birds at a time ti on its region [11],
[12], [24]. Thus, for a given time sequence I = 〈t1, ..., tk〉,
the central base stores a n × k matrix M , called “detection
matrix”, in which each element Mij represents the count in
the region ri at a time tj .

Different patterns may be elicited from lines and columns
of M : flock and periodic patterns. These data aggregated by
regions, enables to handle the “noise” which may exist when
considering individual positions. Indeed, the entities surveyed
never have exactly the same coordinates while moving. More-
over, sensors that we use can only provide an estimate of
the position by triangulation techniques. However, this region
oriented approach is highly dependent on the size of regions.
If an area is too large, the movement may be detected only
in this region. On the other hand, if regions are too narrow,
movements may occur in different regions. Anyway in the
following subsections, we show how it is possible to find the
two kinds of pattern with this sensor architecture.

IV. FLOCK PATTERNS

Several definitions have been given for the expression of
Flock pattern. Let us consider a sequence of successive times
I = 〈t1, ..., tk〉. Benkert et al. [3], define a Flock pattern as
being a movement of at least m entities such as for each time
in I , we can find a disk of radius v which contains m entities.
However, in the context of this paper, we have to take a less
precise definition for two reasons. First, the current network
does not supply the birds position with precision. We cannot
use disks of a given radius to seek such groups. In addition, the
detection is highly dependent on bird song and we know that
at a time tj , all individuals in the group does not necessarily
sing. Thus, we are unlikely to find a group of the same size
exactly at each point in I . That is why, in our context, we give
another definition.

Definition 1: Let α ∈ N be the detection margin of a group,
m ∈ N, I a time sequence 〈t1, t2, ..., tk〉 with ∀j ∈ [1..k],
tj < tj+1, R the set of given regions and E is a set of m
entities. We call α−Flock pattern of m individuals over E,
R and I , the sequence 〈rt1 , rt2 , ..., rtk〉 of regions in R such
as at each time tj of I , a maximal set of g entities among E
occur in region rtj with |m− g| ≤ α.

Thus, we consider a α−Flock pattern as a motion of almost
the entire group observed. If the whole area is divided in
regions so that they are not too large, we can consider that
the birds appearing in same region at same time all along the
I time sequence represent a flock movement. The example
of the matrix M1 below, shows the flock movement of six
birds whose songs have been partially recorded since they are
not singing at every time in I . Indeed, it is expected that the
number of birds detected is not always equal to the group size.

This is the result of two phenomena inherent in our solution
based on sound detection. First, sensors are only fitted for
sound recordings, but at a time tj , birds in the group are
unlikely singing together. Secondly, the noise that can occur
on the signal may prevent the detection.

M1 =


6 6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 5 6
0 0 5 5 0 5 5 4 0 0
0 0 1 0 6 0 1 0 0 0


According to the definition, an α−Flock pattern may be

seen as the sequence S = 〈rt1 , rt2 , ..., rtk〉 of regions, if it
exists, that maximizes the number of entities detected. Thus
∀rtj ∈ S, rtj is the only region ri of R, if it exists, such
that Mij = maxnl=1Mlj and |m −Mij | ≤ α. Thus, for this
example if we take α = 2, we detect a Flock pattern of a six
birds across regions 〈r1, r1, r3, r3, r4, r3, r3, r3, r2, r2〉.

For now, our architecture only allows us to study the
collective movements of the entire group. According to the
above definition, we consider that if at the same time tj ,
several regions satisfy this definition, birds do not adopt a
flock movement. Let us consider the example of matrix M

′

1

below.

M
′

1 =


6 6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 5 6
0 0 5 3 0 5 3 4 0 0
0 0 1 3 6 0 3 0 0 0


We can observe at time t4 and t7, no region satisfies the

definition whatever be α. This may be due to three phenomena.
Either the bird community does not adopt a flock movement,
or the majority of birds does not sing enough or sensors do
not correctly detect the location of birds in the regions. In all
cases for such a recording, we consider that the birds do not
follow a flock movement.

V. PERIODIC PATTERNS

A periodic movement is a movement which repeats itself
after a certain time called the period. A periodic pattern is not
a flock pattern, it only reveals tendencies to adopt periodic
paths through regions.

Definition 2: Let us consider S as a sequence of re-
gions. We call periodic segment of period T , a sub-sequence
〈rta , ..., rtb〉 of S, where (tb − ta) mod T = 0 and for
each (tp, tq) ∈ N × N, a ≤ p ≤ b, a ≤ q ≤ b we have
rtp = rtq if tp mod T = tq mod T . Thus the segment
s = 〈ra, ra+1, ..., ra+T 〉 is repeated in S that is called a
periodic pattern of period T .

The detection matrix M2 below shows for instance a Peri-
odic pattern observed for six birds even if the number of birds
detected is not always equal to the size of the group.

M2 =


4 6 0 0 0 6 6 0 0 0
1 0 5 1 0 0 0 6 1 0
0 0 0 5 0 0 0 0 4 0
0 0 0 0 2 0 0 0 0 6





The analysis of M2 is done in two steps. As described
for Flock pattern, we begin by extracting from M2 the se-
quence S which maximizes the number of detected entities
as follows: ∀rtj ∈ S, rtj is the region ri of R such that
Mij = maxnl=1Mlj . Then, we extract from S the periodic
segment s which repeats itself in S.

For instance, S = 〈r1, r1, r2, r3, r4, r1, r1, r2, r3, r4〉, is
deduced from M2. The objective is to extract from S the
periodic segment 〈r1, r1, r2, r3, r4〉. How can we find this
segment ? Some algorithms had already been developed to
mining periodic pattern in spatio-temporal data. We detail
below the reason why these algorithms cannot be applied
directly and we present a simple algorithm to discover periodic
segment in S.

The example of matrix M2 is very interesting. Indeed, if
we define α = 2, we can observe that the movement is both
periodic and flock. But it is not always the case. Indeed,
although our architecture only allows us to study collective
movements, bird movements can be detected as being periodic
type without be flock type. If we define M2(5,4) = 1 our
specific definition allows us to detect a periodic pattern without
detect a flock pattern.

This issue can be considered as apparently similar to ques-
tions studied in data stream or spatio-temporal data mining.
The search for sequential patterns among large data streams
has been conducted since earliest data mining works as an
extension of classical association mining [1], [17], [28]. These
patterns provide useful information on sequential relationships
between objects in a dataset in multiple areas like web design,
DNA sequences, intrusion detection or sensor network analysis
for instance. In on line data streams, due to the continuous and
high speed data flow it is not possible to store the whole data
and to perform multi-scan of the dataset like in traditional
data mining solutions. It is thus necessary to keep only the
least possible data and to mine approximate patterns in order
to avoid memory overflow [22]. Pattern mining in temporal
and spatio-temporal data [14], [26], [21], [13], [15] is mainly
based on time-series analysis where data are collection of
time-series of each object over time. Indyk et al.[15] present
this problem as follows. Given a long sequence S and a
period T , the aim is to discover the most representative trend
that repeat itself in S every T timestamps. Wang et al. [26]
introduced flow patterns which describe the changes of events
over space and time. They consider events occurring in regions
and dependencies among changes in neighboring regions. The
work conducted by Mamoulis et al. [21] on the search for
periodic patterns focused on the movement of entities by using
an area divided into regions too. They partition the space into
a set of regions which allows them to define a pattern P as a
sequence [r0, r1, ..., rn] of given length n, where ri is a spatial
region or the special character *, indicating the whole spatial
universe. If the entities follow the pattern P enough times, the
pattern is said to be frequent.
While this topic seems quite similar to the issues addressed
in our case, the solutions are not suited to it for two reasons.
The first one is that we do not have any information about

the period of repetition of the pattern like in [21] or [6]. It
is in fact what we want to determine. The second is that
unlike the proposed methods, we do not have personal data
on the movements of each individual, but we have only one
estimate sequence of collective movements of birds. Indeed,
the detection matrix M introduced in Section 3 only allows
us to obtain the most representative sequence in movements.
That’s why we do not seek to obtain a frequent periodic
segment for each individual, but rather a fixed segment, which
is repeated in a collective sequence S. Indeed, if the group of
birds really adopt a movement of periodic nature, we expect
to identify a corresponding sub-segment into S that should be
exactly the same at every period T .

This specific problem seems to have been thoroughly
studied in bioinformatics [10], [6]. Indeed, the search for
repeated patterns in DNA and protein sequences is proved
to be important in sequence analysis, in particular in large-
scale genome sequencing projects. Although these methods
are efficient, they often aim to seek the repetition of segments
known in advance or unequally spaced in the sequence.

We propose the simple algorithm Periodic Mine very much
inspired by these methods, to dynamically generate a candidate
segment from a sequence S and automatically check if it
is periodic in S. This algorithm extracts a periodic segment
Scand from a sequence S. The rehearsal period T of the
segment Scand in S is equal to the size of the segment, i.e.
T = |Scand|.

Input : A sequence S
Output : A periodic sequence Scand extracted from S

Function PeriodicMine( S : Sequence) : Sequence
isFrequent : boolean
isFrequent← false
SCand : Sequence
SCand← ∅
While (S 6= ∅ and isFrequent = false) do

add S[0] to Scand
removeElement 0 from S
isFrequent← is(Scand periodic in S)

done
If (isFrequent) then

return Scand
end If
return ∅

End

Algorithm 1: PeriodicMine for Mining periodic sequence

VI. EXPERIMENTAL EVALUATION

In order to understand the collective behavior of the Mo-
queurs Gorge Blanche which motivated this work, we search
for useful information on their movements. This knowledge
may be significant to reintroduce them in environments that
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Fig. 3. random(a) and uniform(b) sensor placement in LYPUS

have similar characteristics to their original habitat. However,
before deploying our solution on the ground in a real situation,
a first necessary step is to design a prototype and thus measure
the impact of all factors implicated on results. Indeed, to the
best of our knowledge, the solution we propose has no equiv-
alent in the literature. Consequently, simulations are expected
to reveal relevant information for optimizing the deployment
of wireless sensors. Simulations have indeed become essential
steps in the study and comprehension of complex phenomena.
They will allow us to test different configurations, but also to
analyze parameters that are most prominent for the detection
of movements. Thereafter, we plan to use the results obtained
in simulation to adapt the architecture in real environment.
This section is devoted to the simulation tool LYPUS and the
results.

In order to evaluate the efficiency and the role of various
parameters in the discovery of patterns, we built the 2D
simulation environment LYPUS, which models the behavior
of birds in their habitat. This simulation aims at representing
a natural environment that virtually reproduces bird habitat in
which virtual sensor network is set up.

In this tool, the area is first divided into uniform regions.
Then, the sensors are set up and associated to the region
to which it belongs. All sensors have the same capabilities
(detection radius and battery level). We are interested nor in
optimizing exchanges, neither in reducing loss or corruption
of information frequently observed on sensor networks. We
assume that inter and intra regions communications are always
successful.

LYPUS is fully customizable. Thus, it is possible to define
the size of the area, the number of regions and their size, the
number of sensors, the size of their detection radius, the kind
of sensor configuration, the size of the bird population, the
probability of bird song, the type of movements, etc. Figure 3
shows the LYPUS 2D interface visualization with two areas
of 200m x 200m. The largest rectangle represents the global
area and each small rectangle represents a region. Sensors are
figured by a point and their detection radius by circles. Birds
are represented by small red filled squares.

To evaluate the efficiency of the architecture in pattern
discovery, we give predefined behaviors to birds. We have im-
plemented the two types of movements formalized in section 3:
Flock and Periodic movements. The objective is to check

and evaluate how the method we propose can retrieve these
behaviors. Results which are proposed have been made with
a calibration that we consider close to the real environment of
birds. The dimension of the area is about 1000m x 1000m and
it is divided in 100 regions of 100m x 100m. The sensors have
detection radius of 25m. Furthermore, we assume that when
several birds are singing in a sensor neighboring, it generates
noise that cancels the recognition process. These birds are not
detected by this sensor.

The results were obtained on a Intel Core 2 Duo P8600
2.4 Ghz, with 4Go RAM, Linux Ubuntu 9.04 and JDK
1.6. The pattern discovery efficiency is evaluated from the
average results of 100 tests, using different configurations for
sensor location and route taken by birds. The discovery of the
α−Flock pattern is done with α = 2.

However, it is clear that the discovery of patterns with such
an architecture is confronted with three main issues: the song
occurrence, the coverage of the area and the kind of placement.
It is obvious that if birds do not sing, we will not detect any
pattern. Moreover, according to the way sensors are set up,
either the area may be partially covered or sensor detection
regions may overlap. This situation may create a bias on the
process of pattern discovery. That is why we have studied the
impact of these three parameters.

First, performances were evaluated with random configu-
ration (Figure 3(a)) for different network size as shown in
Figure 4. Then we analyzed the impact of the population size
on both random and uniform (Figure 3(b)) configuration as
show in Figure 5.
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Figure 4 shows the correct detection rate of the two patterns
when the sensors number varies with a population of 20
individuals. We notice that when the number of sensors
is increasing, the detection rate is improving too. This is
because the area is rather wide and when the sensors number
increases, the surface coverage becomes more important and
the detection of the two patterns is improved. From a certain
threshold, we can observe a plateau for which improved
detection becomes insignificant. We also notice that the results
are better for Periodic pattern than for α−Flock pattern.

We are aware that a major issue related to such an ar-
chitecture is the probability of song occurrence. Indeed, the
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song and its location are the only data that sensors can
currently collect. However, we know that birds do not sing
all the time. To study the impact of this phenomenon, we
have chosen to make the population size vary, rather than the
probability of singing. Thus if we increase the size of the
population, we increase the probability that several individuals
sing. These results are shown in Figure 5 for an area of 1000m
x 1000m divided in 100 regions where two configurations of
900 sensors are compared: random and uniform sensors layer.
Indeed, the assumption of random placement of sensors is the
most realistic, but this method produces unbalanced sensor
distribution over regions and some sensors may overlap several
regions (Figure 3).

On Figure 5 Flock(R) and Periodic(R) are the results
obtained for a random configuration and Flock(U) and Pe-
riodic(U) are the results obtained for a uniform configuration.

Figure 5 shows that for both configurations, when the bird
population increases, the detection rate decreases. Indeed,
when the number of birds is increasing, the probability that
several birds sing at the same time on the same region is more
important. This phenomenon generates noise in the sensors
neighboring. In [24], we showed that this problem could be
partly solved by adding sensors.

Although a uniform placement is not conceivable in prac-
tice, we can compare these results with those obtained in
the same conditions for the random placement. First, we
can notice that the Flock pattern detection is very close for
the two configurations. However, Periodic Pattern detection
is improved. Indeed, we obtain rates higher than 90 % for
populations under 50 individuals.

In conclusion, these results highlight the dependency of
the proposed method efficiency on these different factors: the
region size, the probability of singing, the population size and
the number of sensors. However, these results seem to show
that an optimal configuration must be studied as a function of
the population size. The population size appears to be the most
relevant factor that influences results. So it would be possible,
if the population size is known or approximated, to adjust the
placement of sensors in order to achieve optimal detection of
bird movements.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented a new framework based
on sensors fitted with microphone for collecting data on
collective bird movements. Unlike methods that use devices
grafted to each animal, our solution not only preserve bird
communities but is able to provide relevant information on
collective behavior too. Our contribution can be summarized
as follows :

• We have discussed the problem of studying collective
movement patterns and the main techniques currently
used.

• Then we have proposed an architecture of sensors fitted
with microphone to collect data on bird movements.
We have presented the challenges related to such an
architecture and solutions to optimize exchanges and
processing of data on the network.

• Thereafter we have shown how collected data can be
exploited to search for patterns in birds movement.

• Finally, we have studied experimental results obtained by
simulation and the impact of different parameters on the
results.

This work is a preliminary and mandatory step in this
project which will consist on studying and modeling animal
behavior, by means of wireless sensor technologies. In the
short term we plan to adapt the framework to the real envi-
ronment. In the long term we want to improve the detection
of movement by fitting sensors with other devices such as
cameras.
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