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Abstract

Reference is regularly made to the power of new genomic sequencing approaches.

Using powerful technology, however, is not the same as having the necessary power to

address a research question with statistical robustness. In the rush to adopt new and

improved genomic research methods, limitations of technology and experimental

design may be initially neglected. Here, we review these issues with regard to RNA

sequencing (RNA-seq). RNA-seq adds large-scale transcriptomics to the toolkit of eco-

logical and evolutionary biologists, enabling differential gene expression (DE) studies

in nonmodel species without the need for prior genomic resources. High biological

variance is typical of field-based gene expression studies and means that larger sample

sizes are often needed to achieve the same degree of statistical power as clinical stud-

ies based on data from cell lines or inbred animal models. Sequencing costs have

plummeted, yet RNA-seq studies still underutilize biological replication. Finite

research budgets force a trade-off between sequencing effort and replication in RNA-

seq experimental design. However, clear guidelines for negotiating this trade-off, while

taking into account study-specific factors affecting power, are currently lacking. Study

designs that prioritize sequencing depth over replication fail to capitalize on the power

of RNA-seq technology for DE inference. Significant recent research effort has gone

into developing statistical frameworks and software tools for power analysis and

sample size calculation in the context of RNA-seq DE analysis. We synthesize progress

in this area and derive an accessible rule-of-thumb guide for designing powerful

RNA-seq experiments relevant in eco-evolutionary and clinical settings alike.
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The rise of RNA-seq

RNA sequencing (RNA-seq) (Wang et al. 2009) has dri-

ven the rapid expansion of transcriptomics beyond clin-

ical biology and into the fields of ecology and evolution

(Ekblom & Galindo 2011; Alvarez et al. 2015) (Box 1).

Quickly surpassing microarrays as the high-throughput

method of choice to study differential expression (DE)

in nonmodel species, RNA-seq promised unprecedented

sensitivity for detecting expression differences among

rare transcripts, splice variants and microRNAs (Ozso-

lak & Milos 2011). However, in the slipstream of signifi-

cant technological advancement, careful experimental

design is frequently overlooked and the power of new

technologies is sometimes overstated. The true sensitiv-

ity of RNA-seq for detecting subtle expression differ-

ences has been questioned as its wide dynamic range

also makes RNA-seq data potentially very noisy (McIn-

tyre et al. 2011; Tarazona et al. 2011).

With whole-transcriptome analysis now possible in

almost any organism, biologists have quickly adopted

RNA-seq to address big questions in ecology and

evolution. Where microarrays suffer strain- or species-

specific probe biases, RNA-seq permits studying the

evolutionary forces shaping gene expression at the
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Box 1. RNA-seq in ecology and evolution: the state of play

RNA-seq technology has rapidly become an important tool in ecological and evolutionary research (Box Fig. 1A),

mirroring an exponential rise in the number of studies using RNA-seq in empirical research more broadly, albeit

on a smaller scale. Searching the Web of Science (Thomson Reuters) database for the terms ‘RNA-seq OR RNAseq’

returns 5630 articles published 2008–2014, with 2475 published in 2014. Refining this search to include only those

studies from the Web of Science research areas ‘Evolutionary Biology’ and ‘Environmental Sciences Ecology’, and

including five early studies from 2008/2009 published prior to widespread use of the term ‘RNA-seq’, returns 430

articles, with 190 published in 2014 (Box Fig. 1A). In a recent decadal review of the development of transcriptomics

in ecological and evolutionary research (2004–2013), Alvarez et al. (2015) report 45% of transcriptomic studies in

these fields used RNA-seq over microarrays (256 of 575 studies).

We reviewed biological replicate usage by eco-evolutionary studies using RNA-seq data for DE analysis, building

on the review by Alvarez et al. (2015). We considered 256 RNA-seq studies from their review, published 2008–2013,
and used the same search criteria to include 190 additional articles published in 2014. We searched the Web of

Science database for the wildcard ‘transcriptom*’ and filtered articles within the research areas ‘Evolutionary

Biology’ and ‘Environmental Sciences Ecology’, before retaining records sharing the term ‘RNA-seq OR RNAseq’.

References referring primarily to toxicology or agriculture without an obvious ecological context were excluded.

We defined true biological replication as requiring independent library preparations. Pooling multiple independent

biological samples into a single RNA-seq library for sequencing is a common cost-saving strategy, but provides

only an average of the expression states across samples such that a single pooled library cannot be considered true

biological replication. Therefore, pooled libraries are counted as one biological replicate in Box Fig. 1B. However,

as a single pooled library captures greater biological variation than a single sample, pooled designs are also consid-

ered separately. Sample pooling for RNA-seq DE analysis is discussed as a separate experimental design issue in

Box 2. An aliquot from a culture of microorganisms was not considered a pooled sample, but a single true biologi-

cal replicate. Such samples may comprise many (genetically identical/similar) individual organisms, but provide

the most relevant approximation of the within-group variance when comparing differences between strains (not

individual cells). This can be considered analogous to comparing expression states among samples of a given tissue

type (comprising many individual cells) taken from a large multicellular organism.

Biological replicate usage was low, regardless of whether pooled libraries were counted as one biological repli-

cate. Of 158 eco-evolutionary studies reporting statistical DE analysis from RNA-seq data (Appendix S1, Support-

ing information), 89 (56%) sequenced a single library per treatment. Therefore, true biological replication (counting

pooled libraries as one replicate) was absent in the majority of cases (Box Fig. 1B). Most single-replicate studies did

use libraries constructed from pooled biological samples, and so did include some level of biological replication

(Box Fig. 1C). However, 20 single-replicate studies appeared to sequence a single biological sample per treatment,

meaning that 13% of all studies surveyed lack any form of biological replication. Only 23 studies (15%) report

using more than three replicate libraries per treatment, and there was only a weak trend suggesting greater repli-

cate usage in more recent articles: average number of replicates used was lowest in 2011 (1.2, 15 studies) and high-

est in 2014 (2.4, 67 studies).

Pooled study designs were common overall, with 100 studies (63%) sequencing libraries representing pools of

biological samples. However, the vast majority of these sequenced a single replicate pool per treatment (69 articles).

Only 31 studies employing a pooled design included replicate libraries per treatment.

Much of the current RNA-seq literature appears under-replicated. While DE analysis was often used primarily

for hypothesis discovery (e.g. to identify potential candidate genes for further detailed study), many studies also

derived broader biological conclusions from data with little or no true biological replication. Interpreting the results

from RNA-seq studies based on limited replication and/or subtle fold changes requires caution. With limited bio-

logical replication, not only will power and precision to detect true differences be low (see main text), but signifi-

cant results may reflect biological (or uncontrolled technical) variation and may not be reproducible or biologically

relevant when generalized to the study populations (Hansen et al. 2011).

It was often difficult to discern key details of the experimental design for the studies we reviewed. This includes

the number of true biological replicates per treatment, whether or not library preparation involved pooled samples,

and if so, how many samples were pooled per library. This raises general concerns regarding adequate reporting

of methods and the reproducibility of genomics research.
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whole-transcriptome level (Busby et al. 2011; Romero

et al. 2012). In ecological contexts, RNA-seq enables the

examination of expression differences underlying

interindividual or interpopulation variation in ecologi-

cally important traits such as disease resistance (Bon-

neaud et al. 2011) and mating behaviour (Fraser et al.

2014; Schunter et al. 2014), and the identification of

genes of potential adaptive significance in changing

environments (Meyer et al. 2011; Smith et al. 2013; Veil-

leux et al. 2015). RNA-seq is a key technology facilitat-

ing the recent push towards using integrative biology

to understand molecular mechanisms of phenotypic

and behavioural plasticity in wild populations (Aubin-

Horth & Renn 2009; Harris & Hofmann 2014). For

example, integrating RNA-seq DE analysis with quanti-

tative PCR (qPCR) and information on transcription

Although we did not review sequencing effort, the number of mapped reads used per sample will impact power

of DE tests in the studies we reviewed. Comparing sequencing efforts across studies is difficult due to substantial

differences (and continuous improvements) in sequencing efficiency and read length of the different technologies,

and the many ways that sequencing effort is reported (e.g. raw reads, trimmed reads, mapped reads, either in total

or by sample).
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Box Fig. 1 (A) Number of studies published each year using RNA-seq data in ecological and evolutionary research.

(B) Biological replicate usage by published eco-evolutionary studies using RNA-seq data for differential expression

analysis. True biological replicates were considered to require independent library preparations, where pooling of

multiple biological samples into a single library for sequencing was counted as one biological replicate. Where the

number of biological replicates used differed across conditions, the smaller number is represented. (C) Proportion

of 89 single-replicate studies using libraries representing single or pools of biological samples.

Box 1. Continued
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factor binding sites permitted identification of gene reg-

ulatory networks underlying development of alternative

jaw phenotypes in a cichlid fish (Gunter et al. 2013;

Schneider et al. 2014).

Measuring gene expression in wild populations and

natural settings still presents big challenges. Not least is

that gene expression measurements made for nonmodel

species in natural settings are subject to high biological

and technical variance (Box 3). Regardless of the tech-

nology applied, transcription is by nature an inherently

stochastic process and biological variability must be

taken into account during experimental design. The

power of any test of statistical significance is the proba-

bility of correctly rejecting the null hypothesis, which in

the context of RNA-seq, is the likelihood of correctly

identifying a gene or transcript differentially expressed

between conditions. When it comes to establishing the

statistical significance of DE tests, biological replication

is as necessary for RNA-seq as it ever was for microar-

rays (Hansen et al. 2011). Despite more restrictive bud-

gets, ecological and evolutionary studies will often

require larger sample sizes to achieve the same power

as their clinical counterparts for data sets representing

cell lines or inbred strains (Fig. 1). Given finite financial

resources, the acceptable minimum number of biologi-

cal replicates in a given experimental situation is a key

experimental design question.

When designing RNA-seq DE experiments, research

budgets force a trade-off between increasing the

sequencing depth and increasing the sample size. How

to distribute sequencing effort between sequencing

depth and sample size is a major decision affording

considerable flexibility to RNA-seq experimental design,

but one that lacks clear guidelines in the literature.

Sequencing depths in published RNA-seq studies vary

over several orders of magnitude compared to other

NGS approaches that have more standardized read

depths, such as whole-exome and whole-genome

sequencing (Sims et al. 2014). Despite precipitous drops

in the cost of sequencing, the cost of individual library

preparation makes biological replicates expensive

(Fig. 2). For complex multifactorial designs (e.g. time-

series experiments), increasing the sample size quickly

escalates total project costs. We find that biological

replicate usage by eco-evolutionary studies using RNA-

seq data for DE analysis is low (Box 1). Sequencing

fewer replicates more deeply is the more popular

(cheaper) strategy, but is unlikely to provide optimal

power for DE tests.

Here, we synthesize recent research effort addressing

the depth–replication trade-off in RNA-seq experimen-

tal design and derive a rule-of-thumb guide for opti-

mizing statistical power of RNA-seq DE experiments.

While we focus on aspects relevant to studying gene
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Fig. 1 Power in RNA-seq differential expression analysis depends on replication, biological variance and effect size. Expected statisti-

cal power is plotted for detecting different effect sizes of expression difference (as fold change) given different sample sizes in hypo-

thetical cases of low biological variance (e.g. an inbred zebrafish line, CV = 0.2) and high biological variance (e.g. a wild reef fish

population, CV = 0.6). Calculations were performed in the RNASEQPOWER package (Hart et al. 2013) in R, assuming 10 reads average

sequencing depth and a 5% false positive rate. CV: coefficient of variation. A fold change of 2 is equivalent to a log2 fold change of 1.
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expression in wild populations, our discussion is rele-

vant to anyone using RNA-seq data for DE inference.

Complexities of RNA-seq power analysis

The unique count-based nature of RNA-seq data (Fig. 2;

Box 3) introduces complexities into DE analysis and

power assessment not encountered for microarrays,

which measure expression by fluorescence intensity (a

continuous measurement). The tens of thousands of

transcripts measured in a typical RNA-seq data set will

be represented by a highly skewed distribution of read

counts, such that detection probability and power to

infer DE will vary considerably across transcripts. Tran-

script detection and the relative importance of technical

sampling error depends on read coverage, which itself

depends on expression level, transcript length and

sequencing effort (McIntyre et al. 2011). This results in

an inherent power bias in RNA-seq towards longer

transcripts and transcripts with higher expression

(Anders & Huber 2010; Tarazona et al. 2011). Therefore,

DE tests for lowly expressed and short transcripts suffer

Box 2. Pooling biological samples in RNA-seq experiments – when is it a good idea for DE analysis?

Sample pooling is widespread in transcriptomic analysis. Here, several independent biological samples (e.g. from

separate individuals or cultures) are combined into single libraries for sequencing to reduce costs while still

attempting to represent biological variation within the data. The impact of this practice on microarray studies is

well researched, but is not yet well understood for RNA-seq.

For microarrays, the estimation of gene expression levels does not appear to be overly affected by pooling, and

pooling is often recommended when ‘fewer than three arrays are used in each condition’ (Kendziorski et al. 2005).

However, probe-based microarray technology does not force low-abundance genes to compete with more highly

expressed genes for detection. In the case of RNA-seq, pooling may make the detection of low-abundance reads

more difficult. Limited research into the utility of sample pooling for RNA-seq DE analysis suggests that while dif-

ferentially expressed genes can be identified from pooled designs, sample pooling results in lower precision and

higher false positive rates relative to analyses performed on samples sequenced separately (Biswas et al. 2013;

Rajkumar et al. 2015). Rajkumar et al. (2015) found poor agreement between DE results obtained for sample pools

compared to corresponding samples sequenced separately, but this experiment was compromised by the use of

technical rather than biological replicates for each pool. The utility of using pooled data for RNA-seq DE analysis

warrants further research. Our survey of the literature suggests this issue needs urgent attention, with 100 of 158

studies using pooled designs (Box 1).

For now, where only a few RNA-seq libraries are affordable, sample pooling offers the clear advantage of incor-

porating information from more individuals into the analysis. From a statistical perspective, each pool is simply

treated as a single sample. When working with samples that may exhibit a large amount of biological variation,

analysing several sample pools, rather than a few single samples per condition, will also lessen the impact of single

aberrant samples (Kendziorski et al. 2005). Including larger numbers of samples per pool should help to prevent

bias caused by a nonrepresentative sample. In analysing pooled data, a more stringent false discovery correction

may be necessary to counter the potentially lower precision of pooled designs.

It is important to separate the issue of pooling from that of replication – creating multiple pools of biologically

distinct samples per experimental condition still allows for the estimation of biological variability, whereas an

absence of replication (regardless of whether pools or individual samples are being used) does not. If no replicates

are available, the count-based nature of RNA-seq data means that the negative-binomial distribution can still be

used to model biological variation, using the relationship between the mean and variance to estimate the likelihood

that a gene is differentially expressed (Anders & Huber 2010; Robinson et al. 2010). In this setting, although results

are likely to ‘lead to conclusions of limited reliability’ (DESEQ BIOCONDUCTOR vignette, http://bioconductor.org/pack-

ages/release/bioc/vignettes/DESeq/inst/doc/DESeq.pdf), analysing nonreplicated pooled samples is still more

appropriate than comparing a single sample from each condition. However, without true biological replication (i.e.

multiple libraries representing biologically distinct samples from each condition), there is still no way to accurately

determine the amount of variation inherent within an experimental group, and thus reliably identify changes in

gene expression between conditions. Therefore, sufficient biological replicates sequenced independently provide

the most statistically robust data for variance estimation and DE inference, and should be prioritized in RNA-seq

experimental designs. However, when budgets restrict the number of affordable library preparations much more

than the number of individual samples that can be collected, pooled designs may be beneficial.

© 2016 John Wiley & Sons Ltd
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Box 3. Sources of noise in RNA-seq experiments

Statistical power to detect meaningful expression differences reflects our ability to distinguish true differential

expression (i.e. due to treatment effect) from background noise. Three sources of noise contribute different degrees

of uncertainty to gene expression measurements derived from RNA-seq data: (i) Poisson counting error, (ii) non-

Poisson technical variance and (iii) biological variance (Busby et al. 2011, 2013 Supplementary data). How effec-

tively these sources of noise are controlled and accounted for during RNA-seq experimental design and data analy-

sis will significantly impact the accuracy of DE calls, the reliability of conclusions and the reproducibility of results

(Busby et al. 2011; McIntyre et al. 2011; Soneson & Delorenzi 2013). Avoiding additional sources of variance

through careful design will improve the power of the final experiment.

Poisson counting error is the uncertainty inherent in any count-based measurement. Poisson noise is dispropor-

tionately large for low count data and dominates the variance for counts below 10 (e.g. see Fig. S7 of Busby et al.

2013). This is because the variance of the Poisson distribution is equal to its mean, which increases the impact of

the error for low counts. For RNA-seq data, where the number of reads mapping to transcripts serves as a proxy

for relative expression level, there will be high uncertainty that low counts accurately reflect the true expression

level. As a simple example: we can be less certain about a twofold expression difference represented by 1 vs. 2

counts, than the same difference represented by 100 vs. 200 counts. An effective minimum sequencing depth will

be one that minimizes bias caused by many genes being measured with low read counts and high Poisson noise

(see main text).

Non-Poisson technical variance is the imprecision observed between repeat measurements of the same sample (e.g.

duplicate samples prepared and sequenced as separate RNA-seq libraries, or aliquots of the same library prepara-

tion sequenced on separate lanes). RNA-seq technology has been shown to be highly replicable (Marioni et al.

2008) and technical replicates are no longer considered necessary for standard RNA-seq experiments. However,

technical variance can arise from multiple sources in RNA-seq experiments, and is not so low that it can be ignored

(McIntyre et al. 2011).

Shotgun sequencing captures only a small fraction of the RNA molecules in a typical sample (e.g. <0.01% for

30 M reads, McIntyre et al. 2011) and random sampling noise, like Poisson noise, is a source of measurement error

common to all RNA-seq data. Random noise due to the very small sampling fraction in RNA-seq data causes

variability in expression estimates at all levels of coverage, but has been shown to be especially dramatic below

average 5 mapped reads per nucleotide, where exon detection is highly inconsistent (McIntyre et al. 2011).

Sample collection, storage and processing are all sources of potentially confounding technical variance. RNA

degrades quickly and RNA-seq expression profiling is extremely sensitive to inconsistencies in RNA quality (e.g.

through reduced library complexity) (Romero et al. 2014). This presents a particular challenge for archived tissues,

and for field-based studies where tissue can neither be processed immediately or stored under ideal conditions for

RNA stability (i.e. cryopreservation). RNA-stabilizing reagents such as RNAlater help circumvent the problem for

field-collected tissues, but are not always ideal (Camacho-Sanchez et al. 2013). The RNA integrity number (RIN) is

a useful standardized metric of RNA quality (Schroeder et al. 2006; Romero et al. 2014), but is not valid for all sam-

ples (e.g. those with nontypical RNA profiles, Diaz de Cerio et al. 2012), and there is no threshold for deciding a

sample is too degraded for whole-transcriptome analysis. Specific library preparation techniques and analytical cor-

rections are available to help optimize the biological signal from degraded but valuable samples whose exclusion

would otherwise compromise overall power (Adiconis et al. 2013; Romero et al. 2014; Cieslik et al. 2015).

Other well-known sources of technical variance in RNA-seq data are library preparation (e.g. sample handling and

PCR biases; Bullard et al. 2010), and flow cell and lane effects during Illumina sequencing (Bullard et al. 2010;

McIntyre et al. 2011). Sample barcoding facilitates multiplexed sequencing of many libraries over one or multiple

lanes of the sequencer and is an effective strategy to reduce cost and avoid confounding lane effects in RNA-seq

experiments.

Biological variance is the natural variation in gene expression measurements observed among samples of the same

condition due to environmental or genetic differences. Biological variance will represent the greatest source of

within-group variance for most RNA-seq data sets; it is usually low for data sets from cell lines and inbred animal

strains (biological coefficient of variation, CV, typically ≤0.2), but can be appreciably larger for data sets represent-

ing unrelated individuals (CV >0.3). Therefore, as eco-evolutionary studies are typically based on wild populations

and nonmodel species, high biological variance can be expected to add considerable uncertainty to gene expression

measurements regardless of the technology applied (qPCR, microarray or RNA-seq).
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low power due to lower detection probability and

higher measurement uncertainty (McIntyre et al. 2011;

Robinson et al. 2015). For example, noncoding RNAs

typically have lower expression levels relative to coding

sequences, and a given RNA-seq data set will have

lower power to identify significant DE in the former

(Busby et al. 2011; Tarazona et al. 2011; Ching et al.

2014).

The highly dynamic nature of gene expression means

that transcriptional landscapes captured by RNA-seq

data will vary widely depending on the sampling con-

text. Because power is affected by baseline expression

level, expression landscape (i.e. the magnitude and pro-

portion of expression differences among samples) will

influence statistical power in a highly study-specific

manner (Box 4). For example, if a few highly expressed

It is important to note that with larger sample sizes, technical and biological variation can become harder to con-

trol. The experimental design should include measures for constraining potential sources of variance as much as

possible. Overall, the fundamental principles of randomization, replication and blocking (Fisher 1935) still apply

and should be followed during RNA-seq study design (Auer & Doerge 2010).

Fig. 2 A typical experimental workflow

for differential expression inference from

RNA-seq data, including approximate costs

of library preparation and sequencing.

Box 3. Continued
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transcripts contribute the majority of reads, remaining

transcripts may be left with low coverage and low

power. Similarly, where expression landscapes are shal-

low and most meaningful expression differences are

subtle, low signal-to-noise ratio will limit the resolution

of DE tests (Box 4). Low signal-to-noise ratio may also

limit power in cross-species comparisons of gene

expression (Busby et al. 2011; Romero et al. 2012).

The complex nature of RNA-seq data, including tran-

script- and sample-specific factors influencing power,

plus the need to control for multiple hypothesis testing

[i.e. false discovery rate (FDR)], makes power assess-

ment in RNA-seq DE studies especially challenging.

The power equation in RNA-seq includes factors both

under the control of the investigator (sample size,

sequencing depth, choice of Type 1 error rate), as well

as those determined largely by the data itself (expres-

sion landscape, degree of biological and technical varia-

tion). A further consideration is the minimum effect

size (i.e. fold change) of expression difference that is

deemed to be biologically interesting. There is no con-

sensus on what defines a biologically meaningful

expression difference, and the chosen cut-off will

depend on both the transcriptome being assayed and

the study question. It is only in the past 1–2 years that

statistical frameworks have been formalized into soft-

Box 4. Pilot sequencing – an example in a wild population: the bluehead wrasse

In the experimental design phase of an RNA-seq study, it is important to know what power is realistically achiev-

able for detecting different degrees of DE under alternative experimental configurations (of sample size and

sequencing depth). Because the power-sample size equation in RNA-seq is influenced by study-specific factors that

cannot be reliably known beforehand (such as the amount of biological variance present within groups, the land-

scape of expression differences among groups, and transcriptome size and complexity), pilot sequencing and pre-

liminary power analysis can be invaluable for optimizing experimental designs that maximize power while

limiting cost.

The following example uses pilot RNA-seq data and newly available software to evaluate power to detect sex-

biased gene expression in the bluehead wrasse (Thalassoma bifasciatum). Bluehead wrasse are common on tropical

reefs of the Caribbean and, as protogynous hermaphrodites, undergo female-to-male sex change as adults in

response to social cues (Godwin 2009). Here, pilot data represents gonad and forebrain transcriptomes for three

female and three sex-reversed male fish, sequenced separately to a depth of 6.7 to 8.0 million mapped reads per

replicate. These data form part of a larger experiment investigating gene expression changes underlying protogy-

nous sex change in this species. Power analyses were performed using the R/BIOCONDUCTOR package PROPER (Wu

et al. 2015). PROPER simulates count data from a negative-binomial model, using biological variance and baseline

expression estimates from pilot data (estimated via the DSS package, Wu et al. 2013) (see Appendix S2, Supporting

information for R code and simulation parameters). DE analysis was then performed on the simulated data using

inbuilt DE software (e.g. DESEQ) and a range of power metrics calculated.

Box Fig. 2 (top) contrasts power to detect sex-biased gene expression in the gonad (left) and forebrain (right) (as-

suming a 1.5-fold change in expression, equivalent to a difference of 0.58 on the log2 scale). Stratifying transcripts

by average read count reveals how relative expression level impacts power for different groups of transcripts in

the data set. For gonad, five replicates per condition are predicted to achieve reasonable power (>80%) to detect

differentially expressed transcripts with average counts above 10. In the forebrain analysis, five replicates would

achieve sufficient power only for transcripts with average counts above 80 mapped reads. For most RNA-seq data

sets, the majority of transcripts fall in the lowest count strata (counts <10).
The observed difference in power between the two data sets is due largely to their vastly different expression

landscapes (Box Fig. 2, bottom). Both data sets have high biological variance (mean CV 0.5 and 0.3 for gonad and

forebrain, respectively) and similar baseline expression (mean log2 of counts 3.9 and 4.2 for gonad and forebrain,

respectively). However, a much broader distribution of effect sizes describes the much more varied expression

landscape between male and female gonad, compared to the shallow expression landscape of the brain, where very

few genes show sex-specific expression differences. In bluehead wrasse gonad, tens of thousands of transcripts

show significant sex-biased expression, while fewer than 10 transcripts are significantly differentially expressed

between male and female forebrain (Liu et al. 2015). Where expression landscapes are shallow and most meaning-

ful expression differences are subtle, DE tests will have lower power and study designs will require more biologi-

cal replicates. Taking a stratified view of power can be useful in defining fold change and expression thresholds

above which DE calls have acceptable confidence.
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ware packages for evaluating the complex relationship

among these variables on a study-specific basis

(Table 1). The considerable recent research effort

addressing the interaction between read depth, sample

size and statistical power in RNA-seq DE analysis rep-

resents an important step forward in the field (Busby

et al. 2013; Hart et al. 2013; Li et al. 2013; Ching et al.

2014; Liu et al. 2014; Robinson & Storey 2014).
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Box Fig. 2 Power and transcription landscape differ between gonad (left) and forebrain (right) pilot RNA-seq

experiments examining sex-biased expression in bluehead wrasse. Top: Power to detect DE for transcripts stratified

by average count, with different sample sizes (number of biological replicates per condition, i.e. sex). DE is defined

as a 1.5-fold change difference in expression. Results are averaged over 100 simulations, with proportion of DE

simulated at 0.25 for gonad and 0.01 for forebrain, based on observations from real data.

Middle: Histogram of transcripts stratified by average count, based on the simulated data. Open bars are for the

total number of transcripts, with blue bars representing the number of transcripts differentially expressed.

Bottom: Distribution of effect sizes (log2 fold change) for sex-biased gene expression describes the deep vs. shallow

transcription landscapes of the gonad (left) and forebrain (right).

Box 4. Continued
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More sequence or more replication? The depth–
replication trade-off in RNA-seq experimental
design

Research budgets impose limits on how much sequenc-

ing can be performed: forcing a trade-off between

sequencing fewer samples more deeply, or including

more samples at the cost of per-sample read depth.

Current generic guidelines for RNA-seq experimental

design ignore study-specific factors influencing power,

like individual research goals and underlying biology.

The Encyclopedia of DNA Elements Consortium

(ENCODE) guidelines recommend at least two biologi-

cal replicates and 30 million (M) paired-end reads for

gene expression estimation from human RNA-seq data.

For DE inference, these guidelines are likely inadequate

in most cases, as two replicates would provide <20%
power to detect a twofold expression difference (Fig. 1).

The following sections summarize recent statistical

research that shows investment in sample size, rather

than sequencing depth, provides the greatest power for

differential expression analysis from RNA-seq data.

More sequence is not necessarily better

With deeper sequencing, Poisson noise and random

sampling error are reduced across the data set and tran-

scripts with lower expression, lower fold changes and

higher variance become more detectable (Tarazona et al.

2011). However, recent work demonstrates diminishing

returns on power for DE detection with deeper

sequencing and reaches a clear consensus on two

important points regarding RNA-seq experimental

design. (i) Power gains quickly plateau once average

read depth reaches ~10 mapped reads per transcript

(Busby et al. 2011; Hart et al. 2013; Wu et al. 2015). At

this depth, bias arising from random sampling and

Poisson counting error is overcome (see Box 3). As

these sources of variance derive from the count itself

and are thus not experiment-specific, 10 reads average

depth serves as a generalizable rule across studies

regarding a suitable minimum sequencing depth for DE

analysis. (ii) Sequencing efforts in the range of 5–20 M

mapped reads per sample provide sufficient depth to

accurately quantify gene expression across a broad

range of expression levels in diverse eukaryotic tran-

scriptomes (Tarazona et al. 2011; Wang et al. 2011; Hart

et al. 2013; Vijay et al. 2013; Ching et al. 2014; Liu et al.

2014; Williams et al. 2014). For example, Hart et al.

(2013) examined expression distributions for 127 RNA-

seq experiments (six replicated studies; human and zeb-

rafish), finding that 10 M mapped reads were sufficient

to cover approximately 90% of transcripts with >10

reads in a range of biosamples (cell lines, tissue/organ

and population comparisons). Larger, more complex

transcriptomes, and data sets with higher dispersion or

lower fold changes, will require more reads to reach

power saturation (Ching et al. 2014).

We focus our discussion on the analysis of large,

complex eukaryotic transcriptomes (>17 000 genes)

most often studied by molecular ecologists. Obviously,

less sequencing effort will be required for RNA-seq

analysis of prokaryote transcriptomes. For bacteria,

Haas et al. (2012) suggest 2–3 M mapped reads per

replicate enable statistically robust DE inference above

a twofold expression difference. As described for

eukaryotes above, further substantial increases in read

depth gave diminishing returns on gene detection.

Power derives from sample size

Biological replication improves estimates for all sources

of variance and is the only way of quantifying biological

variation; thus, increasing the sample size has a more

potent effect on power than increasing the sequencing

depth. For example, Liu et al. (2014) examined the impact

of increasing the sample size or sequencing depth on the

number of genes found significantly differentially

expressed in a human MCF7 cell line comparison (17b-
estradiol treated vs. control). Increasing read depth from

10 M to 15 M reads for each of two replicates (i.e. from

20 M to 30 M total reads) resulted in only a 6% increase

in the number of genes detected as differentially

expressed (for a 50% increase in reads). Using the same

number of total reads to sequence an additional replicate

per group (three replicates, 30 M total reads) increased

DE detection by 35%. Going from six to seven replicates

resulted in a further 26% increase in DE detection.

Reducing per-sample read depth in favour of larger

sample sizes may sacrifice some technical precision

(although mainly for low-abundance RNAs), but

achieves overall higher power through improved bio-

logical variance estimation (Soneson & Delorenzi 2013;

Sims et al. 2014). Parametric methods typically used for

DE analysis, for example DESEQ (Anders & Huber 2010)

and EDGER (Robinson et al. 2010), depend on accurately

modelling biological variance. When sample sizes are

small (≤3 replicates per condition), these methods suffer

high false positive rates that can widely exceed the

desired FDR threshold (Tarazona et al. 2011; Soneson &

Delorenzi 2013). Therefore, when budgets are limiting

and sample sizes are necessarily small, even a small

increase in sample size (e.g. from 2 to 3, or 4 to 5

replicates per condition) can significantly improve

experimental power and the accuracy of DE calls from

RNA-seq data (Soneson & Delorenzi 2013; Liu et al.

© 2016 John Wiley & Sons Ltd
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2014) (Fig. 1). By contrast, incorporating more reads per

sample has been shown to progressively introduce

more false positives (primarily genes of shorter length,

lower expression level and smaller fold changes, as well

as off-target RNA species) (Tarazona et al. 2011). There-

fore, in the context of RNA-seq DE analysis, deep

sequencing equates to wasted effort and can in fact

prove counterproductive.

For a given RNA-seq DE study, an effective mini-

mum sample size that achieves acceptable power (e.g.

>80%) will depend most critically on the magnitude of

biological variance and the scale of expression differ-

ences of interest (Hart et al. 2013; Ching et al. 2014; Wu

et al. 2015). A well designed RNA-seq study can detect

expression levels that are difficult to assess using qPCR

or microarrays, due to its superior dynamic range.

Figure 1 provides a general guide to statistical power

for detecting different effect sizes of expression differ-

ence (i.e. fold change) given different sample sizes, for

hypothetical RNA-seq data sets with low vs. high bio-

logical variance. Overall, large expression differences

(≥fourfold) can be reliably detected with modest biolog-

ical replication (i.e. 3–5 replicates per condition) in most

data sets (Fig. 1). However, data sets with high variance

or small fold changes require much larger sample sizes

to achieve suitable power. For example, for low-var-

iance data (e.g. an inbred zebrafish strain), detecting at

least a twofold expression difference with at least 80%

power is achievable with three or more biological repli-

cates. For high-variance data (e.g. a wild reef fish popu-

lation), detecting a twofold change with 80% power

requires at least 10 replicates per condition. In either

example, detecting subtle fold changes (<twofold) with

confidence requires very large sample sizes (>10)

Box 5. Rules-of-thumb for designing powerful RNA-seq experiments

Unguided decisions regarding key aspects of RNA-seq experimental design can lead to underpowered experi-

ments, wasted resources and an inability to address primary research goals. Based on recent research effort

addressing the trade-off between sequencing depth and sample size in RNA-seq, we derive the following ‘rules-of-

thumb’ as general experimental design guidelines for optimizing power for DE inference from RNA-seq data.

1 Sequence more replicates rather than increasing read depth. The most efficient approach to the depth–replication trade-off in

RNA-seq experimental design is to sequence more replicates rather than obtaining high read depth on a small number

of samples. As further depth is added, the majority of additional reads will map to transcripts that are already rela-

tively well covered (i.e. >10 reads), whereas using additional replication achieves overall higher power through

improved biological variance estimation.

2 Sequence each sample to a depth that ensures the majority of transcripts are covered by >10 reads. For eukaryotic transcrip-

tomes, aim for ~10 M mapped reads/sample. Beyond 10 reads average depth, bias caused by sampling noise and Pois-

son counting error is minimized and resources are better spent on increasing the sample size. Sequencing efforts

producing 10–20 M mapped reads per sample should achieve this for most eukaryotic transcriptomes. Accurately esti-

mating expression for rare transcripts, and robust DE analysis at the isoform level will require greater sequencing

effort.

3 Sequence at least three biological replicates per condition, more when biological variance is high and/or when the research question

includes small expression differences. We advocate three biological replicates per condition as an absolute minimum for

DE analysis from RNA-seq data because this provides some ability to identify outliers. However, three replicates will

often only be sufficient to detect large expression differences (≥fourfold). A minimum number of replicates required to

achieve acceptable power (e.g. >80%) for DE inference in a given study will depend critically on the within-group bio-

logical variance and fold change of expression differences (Fig. 1 main text). A well-defined research question must

drive the entire experimental design process to establish a minimum biologically meaningful level of expression differ-

ence and, therefore, the required power.

4 Conduct a pilot sequencing experiment. Large-scale RNA-seq experiments, with full replication, remain costly. It is there-

fore imperative to know, for a particular study system, what sample size and read depth is sufficient to achieve a

desired level of power for detecting the expression differences of interest. A pilot sequencing experiment is the only

sure way to evaluate the feasibility of larger experiments and assess their likely benefits vs. costs. Specifically, a good

pilot experiment should answer two key questions: ‘What is the best (most powerful) experiment that I can afford to

do?’ and ‘What is the smallest fold change I can reliably detect?’ A pilot sequencing experiment might consist of a few

biological replicates representing each of the main conditions of interest, multiplexed over one lane of sequencing. Such

an experiment may cost a few thousand dollars, but will provide the necessary data for estimating biological variance

and baseline expression levels and, using newly available tools (Table 1; Box 4), for calculating sample sizes and

sequencing efforts needed in a larger experiment. Sequencing pilot samples more deeply than in a larger DE experi-

ment also provides the additional depth necessary for de novo transcriptome assembly.

POWER AND PROMISE OF RNA- SEQ 13
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because of the difficulty in differentiating true expres-

sion differences from background noise. Box 4 describes

a pilot sequencing experiment that evaluates power to

infer DE in two real RNA-seq data sets from a wild reef

fish population, and demonstrates how the expression

landscape can vary by tissue type and impact the

power of DE tests.

Designing better RNA-seq experiments

Designing RNA-seq DE experiments that optimize

power while limiting cost is now easier. Recent work,

summarized above, convincingly demonstrates that pri-

oritizing replication over sequencing depth achieves the

greatest power for DE inference from RNA-seq data. This

work is synthesized into four rules-of-thumb for design-

ing powerful RNA-seq experiments (Box 5), which are

complimented by a summary of available software tools

for evaluating statistical power and calculating appropri-

ate sample sizes and sequencing depths for RNA-seq DE

experiments within definable budgetary limits (Table 1).

Currently, most software tools only consider single-fac-

tor (two-condition) designs; power assessment for more

complex multifactorial RNA-seq experiments should be

a focus of future work.

Generalizable rules-of-thumb are helpful, but striking

the right balance between read depth and sample size

in RNA-seq experimental design must be carefully con-

sidered on a study-specific basis, taking into account

the research question as much as budget and biology. If

the scientific aims of the experiment include rare tran-

scripts, subtle fold changes and/or an isoform-level

analysis, both deeper sequencing and greater replication

will be necessary. Robust analysis of rare transcripts

(e.g. noncoding RNAs or rare splice isoforms) may ben-

efit from using RNA-capture techniques enriching for

low-abundance RNAs (Halvardson et al. 2013), as well

as technical replication in addition to more extensive

biological replication (McIntyre et al. 2011). By contrast,

fewer reads may be necessary to characterize gene

expression for low-complexity libraries, as is often the

case for degraded samples. Because expression land-

scape, library complexity and the distribution of read

counts in RNA-seq data will also be tissue-specific,

experimental designs will potentially vary even among

tissues of the same organism (Attolini et al. 2015)

(Box 4). We advocate a pilot sequencing approach

(Box 5), for evaluating suitable sequencing depths and

sample sizes to achieve optimal power to address the

research question of interest given the data (and bud-

get) at hand. In addition, greater sequencing depths are

necessary in instances where de novo transcriptome

assembly is required to provide a mapping reference

for transcript quantification (Fig. 2). Here, given the

relatively low cost of sequencing, pilot work can be

expanded to obtain ~100 M paired-end reads (>100 bp),

recommended in the current literature as sufficient to

capture the majority of RNAs expressed in eukaryotic

samples (Wang et al. 2011; Francis et al. 2013; Vijay et al.

2013; Wolf 2013).

Choice of mapping reference matters

Success of downstream DE inference also hinges on the

quality and completeness of the mapping reference used

for transcript quantification (Busby et al. 2011; Vijay

et al. 2013). As annotated genome sequences become

available for an ever-widening diversity of taxa (Koepfli

et al. 2015), the option of mapping to a genome from a

related species will increasingly become an option for

many nonmodel species. Using a genomic reference

achieves more accurate isoform counts, because isoform

recovery by de novo transcriptome assembly is more

error prone (Vijay et al. 2013). However, genomic diver-

gence together with the accuracy and completeness of

the genome assembly is crucial to the success of this

strategy. Simulations show that a genomic mapping

approach produces more accurate gene expression esti-

mates for DE inference, at up to 15% sequence diver-

gence from the study species, but that at 30%

divergence, incorrect mapping makes a de novo assem-

bled transcriptome the better choice of reference (Vijay

et al. 2013). Unfortunately, many current genome assem-

blies are incomplete or inaccurately assembled. As a

consequence, genes expressed in RNA-seq data but

missing (or misassembled) in the reference genome will

not be counted. Assembling a de novo transcriptome

from the same data used for DE analysis largely circum-

vents this issue (Haas et al. 2013) and the best current

rule-of-thumb we can provide is to encourage investiga-

tors to pursue both approaches if available to them.

Transcriptome assembly and quality assessment are

active areas of research (Haas et al. 2013; O’Neil &

Emrich 2013; Vijay et al. 2013; Yang & Smith 2013; Li

et al. 2014), but how transcriptome assembly and the

choice of mapping reference influences success of

downstream DE inference is an aspect of RNA-seq

experimental design that warrants further study.

Ongoing challenges and prospects for RNA-seq
in ecology and evolution

Ultimately, gleaning meaningful biological insights

from lists of genes found differentially expressed in

RNA-seq data depends crucially on the availability of

accurate gene annotation information. Reliably inferring

functionally relevant information is a major challenge in

ecological and evolutionary genomics research generally

© 2016 John Wiley & Sons Ltd
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(Primmer et al. 2013). Gene name assignments come for

free when a well-annotated genomic reference is avail-

able for transcript quantification. But this is still rarely

the case in eco-evolutionary research, and contigs in a

de novo transcriptome assembly come with no informa-

tion on their potential biological function. The Gene

Ontology (GO) database (Harris et al. 2004) provides

the largest organized resource for transferring func-

tional gene annotations from genetic model organisms

to nonmodel species based on inferred sequence homol-

ogy (Primmer et al. 2013). Unfortunately, often only a

small proportion of DE contigs can be matched to

known proteins [e.g. <20% in the bluehead wrasse (Liu

et al. 2015), 31% in Acropora coral (Meyer et al. 2011)].

There will be many (e.g. taxon-specific) transcripts for

which a physiologically relevant context cannot be

determined. Many factors can also lead to erroneous

orthology assignment, and the assumption that ortholo-

gous genes retain the same function across species will

not always hold true. As gene annotation databases

grow to include yet greater molecular and taxonomic

diversity, so will the depth of biological insight possible

through RNA-seq analysis in nonmodel species.

Caveats discussed herein do not undermine RNA-seq

technology as a practical tool in eco-evolutionary

research when used within the bounds of current exper-

imental design limitations. The strength of RNA-seq is

that it provides unprecedented access to transcriptome-

wide gene expression data in any species. For non-

model species, which typically lack extensive existing

genomic resources (e.g. a suitable microarray platform),

or when novel transcripts are of interest, RNA-seq is an

extremely efficient and cost-effective tool for exploring

transcript diversity. When extensive replication is unaf-

fordable, integrating RNA-seq with established tech-

nologies, such as qPCR and pre-existing microarrays,

remains a robust strategy to study gene expression in

eco-evolutionary contexts and nonmodel species. In a

recent review of ecological transcriptomics research

over the last decade, Alvarez et al. (2015) suggest lever-

aging RNA-seq as an exploratory tool to first establish

whether genes of interest are active under given experi-

mental conditions and to discover novel candidate

genes, both of which can be followed up with further

research using targeted technologies such as qPCR.

The nascent use of biological replication in RNA-seq

is typical of a maturing research field. The major limita-

tion currently preventing larger sample sizes and more

powerful RNA-seq study designs is the expense of per-

sample library preparation. High-throughput library

preparation protocols are being developed, as too are

library protocols that work with increasingly small

quantities of RNA, such as that obtained from a single

cell (scRNA-seq, reviewed by Kolodziejczyk et al. 2015;

Hicks et al. 2015). Such approaches further empower

RNA-seq. Shishkin et al. (2015) recently reported RNA-

tag-Seq, a method for generating single RNA-seq

libraries containing many RNA samples, which are indi-

vidually barcoded and pooled before library construc-

tion and should significantly reduce costs. Increased use

of robotics and other forms of automation should also

reduce overall costs as well as technical variance intro-

duced during high-throughput library preparation.

Looking to the future, integrating RNA-seq data

with other omics technologies will soon bring a truly

multidimensional approach to systems biology and to

quantifying the link between genotype and phenotype.

Whole-genome scans of DNA methylation via bisulphite

sequencing and protein–DNA interaction sites via chro-

matin immunoprecipitation sequencing (ChIP-seq), are

bridging the gap between observed mRNA abundances

and epigenetic regulation of gene expression. High-

throughput proteomics data can likewise place gene

expression into a direct functional context (Diz et al.

2012). If cost barriers can be overcome, and with appro-

priate experimental designs, the combination of new

RNA-seq approaches and integrated omics seems set to

usher in a new era of science that can investigate patterns

of change from the most fundamental building block, the

single cell, through to higher levels of complexity.

Conclusions

RNA-seq holds great promise for whole-transcriptome

gene expression analysis in ecology and evolution, but

considerable challenges remain. The rapid rise in popu-

larity of RNA-seq in published research follows dra-

matic falls in the cost of sequencing and significant

improvements in the efficiency of sequencing technolo-

gies. However, this has not yet translated into clear

improvements in experimental design when it comes to

biological replication. Hypothesis-driven RNA-seq

requires careful experimental design that considers

desired power in the context of study aims. The inher-

ent sensitivity of gene expression to environmental

stimulus means that while field-based RNA-seq

experiments on wild populations can be valuable for

generating hypotheses, drawing robust conclusions

regarding processes underlying observed expression

differences may be challenging without high levels of

replication. The guidelines and software tools presented

here in should assist investigators in designing RNA-

seq experiments that optimize statistical power while

limiting cost. Adoption of these approaches should lead

to further strengthening of the experimental basis of a

field still in its infancy. We have no doubt that as RNA-

seq data are integrated with other omics technologies

and as available genomic resources for nonmodel

© 2016 John Wiley & Sons Ltd
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species expand, so too will the range of biological

insights possible from RNA-seq analysis in the ecologi-

cal and evolutionary sciences.
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