
FlowSifter: A Counting Automata Approach to

Layer 7 Field Extraction for Deep Flow Inspection

Chad Meiners Eric Norige Alex X. Liu Eric Torng

Dept. of Computer Science and Engineering

Michigan State University

East Lansing, MI 48824-1266, U.S.A.

{meinersc, norigeer, alexliu, torng}@cse.msu.edu

Abstract—In this paper, we introduce FlowSifter, a system-
atic framework for online application protocol field extraction.
FlowSifter introduces a new grammar model Counting Regular
Grammars (CRG) and a corresponding automata model Counting
Automata (CA). The CRG and CA models add counters with
update functions and transition guards to regular grammars
and finite state automata. These additions give CRGs and CAs
the ability to parse and extract fields from context sensitive
application protocols. These additions also facilitate fast and
stackless approximate parsing of recursive structures. These
new grammar models enable FlowSifter to generate optimized
Layer 7 field extractors from simple extraction specifications. In
our experiments, we compare FlowSifter against both BinPAC
and UltraPAC, which are the freely available state of the art
field extractors. Our experiments show that when compared to
UltraPAC parsers, FlowSifter extractors run 84% faster and use
12% of the memory.

I. INTRODUCTION

In the past, most network devices were content-unaware;

such devices extracted only transportation information con-

tained in Layer 3 (L3) and Layer 4 (L4) headers such as

source IP address and destination port number instead of

Layer 7 (L7) packet payload content to manage network traffic

and implement network security. The main reason for using

content-unaware networking devices is that it is much cheaper

and easier to extract L3 and L4 packet header information than

it is to extract L7 packet payload content.

However, modern network management now requires net-

working devices that can extract specific content from within

packet payloads. A typical application will require these

content-aware devices to extract particular L7 fields. For

example, data loss prevention tools (DLP) [1], [2] often extract

HTTP fields to detect covert data channels. Intrustion detection

systems [3]–[6] rely on L7 field extraction as a primitive

operation. Load balancing devices may extract method names

and parameters from flows carrying SOAP [7] and XML-RPC

[8] traffic and then route the request to the appropriate server

that is best able to respond to the request. Finally, existing

network monitoring tools such as SNORT [9] and BRO [10]

extract L7 fields for behavioral analysis.

A. Problem Statement

We address the problem of online L7 field extraction that

occurs within content-aware networking devices. To do this

well, we need to support automatic translation from grammar

representations to automata implementations and automated

optimization of the resulting automata implementations. Un-

fortunately, such automated translation and optimization is

difficult because network protocols include features that are

not easily represented using standard parsing models such as

context-free grammars (CFGs) or regular expressions (REs).

For example, the HTTP header field, “Content-Length”, speci-

fies the length of the HTTP body. Unaugmented, a CFG would

require a new rule for each legitimate field length, which

makes them impractical for L7 parsing [11], [12].

Online L7 field extraction in a content-aware networking

device is fundamentally different than end host protocol pars-

ing because the content-aware network devices must han-

dle millions of concurrent multiplexed network flows. This

difference has several technical implications. First, buffering

a flow before parsing should be avoided; thus parsing and

field extraction should occur incrementally. Second, online L7

field extraction must support efficient context-switching; this

requires minimizing the parsing state size of flows. Third, the

online L7 field extraction must occur at line-speed.

B. Limitations of Prior Art

Prior online L7 field extraction solutions suffer from one

of two drawbacks. They are either hand optimized for better

performance [5], or they are derived from an unoptimizable

parsing model: recursive descent parsing with code execution

[11], [12]. Hand optimized solutions suffer from a high pro-

duction cost and are prone to errors [11], [12]. The recursive

descent solutions offer an excessively rich parsing model that

can not be automatically optimized.

To the best of our knowledge, there is no existing solu-

tion for online L7 field extraction that supports automated

translation from a grammar-based extraction specification to

an automata implementation with automated optimization. To

illustrate one dimension where previous solutions struggle,

we highlight the conflict between automated translation and

optimization with line-speed extraction. One technique that

can be exploited to achieve line-speed extraction is to ig-

nore (not parse) unnecessary data [5]; we refer to this as

selective parsing. Previous selective parsing work achieves

higher throughput through hand pruning rather than automated

translation and optimization [5], [13].



2

Fig. 1. FlowSifter architecture

C. Proposed Approach: FlowSifter

We propose FlowSifter, a systematic, online L7 field extrac-

tion solution, which uses Counting Context-Free Grammars

(CCFG), Counting Regular Grammars (CRG) and Counting

Automata (CA) to facilitate the automated translation and

optimization of L7 field extractors. The architecture of Flow-

Sifter is illustrated in Figure 1. The input to FlowSifter is

an extraction specification that specifies the relevant protocol

fields. The extraction specification can be a partial specifi-

cation that uses a corresponding complete protocol grammar

from FlowSifter’s built-in library of protocol grammars to

complete its specification. If the corresponding L7 grammar

is not in the library, the user can provide a complete extrac-

tion specification. FlowSifter has three modules: a grammar

optimizer, an automata generator, and a field extractor.

The grammar optimizer module takes the extraction speci-

fication and the corresponding protocol grammar as its input

and outputs an optimized extraction grammar. The automata

generator module takes the optimized extraction grammar as

its input and outputs a CA, which is a special type of finite

automaton that is augmented with counters. The field extractor

module uses the counting automaton to extract relevant fields

from data flows. In essence, the counting automaton serves as

an L7 protocol configuration for the field extractor module.

Our work recognizes that the automated translation and

optimization of an online L7 field extractor requires grammar

and automata models that are weaker than standard automata

augmented with inline code but richer than finite state au-

tomata. CRGs and CA satisfy this requirement and address the

other technical challenges. Because CA are state machines,

they may be efficiently implemented in either software or

hardware. CA have a fixed number of counters rather than

a stack, so the parsing state size of any extractor is small and

bounded. CRG based extractors are automatically derived from

grammar specifications. By using CCFGs to define protocols

and extractor specifications, FlowSifter automatically trans-

forms grammar specifications into CRGs, which are executed

as CA. For protocols that contain recursively nested fields,

FlowSifter uses an approximation method to generate a CRG

that navigates the recursive structures of the protocol to locate

and extract the desired L7 fields.

D. Key Contributions

In this paper, we make five key contributions in addition

to addressing the technical challenges: (1) We propose CRG

and CA, a grammar and automata model for selective parsing

of L7 protocols with field length descriptors. (2) We propose

efficient algorithms for optimizing extraction grammars. (3)

We propose automatic generation of stackless parsers from

non-regular grammars. (4) We implemented our algorithms

and performed experiments on a suite of extraction specifica-

tions using real network traces. (5) We compare our algorithms

against the state of the art algorithms [10], [13]. In these

comparisons, we show that FlowSifter extractors run 85%

faster than UltraPAC extractors and four times as fast as

BinPAC extractors. We also show that FlowSifter extractors

have very small parsing state memory requirements. In our

comparisons, the size of a FlowSifter extractor’s parsing state

is on average eight times smaller than that of the corresponding

UltraPAC extractor’s parsing state and sixteen times smaller

than that of the corresponding BinPAC extractor’s parsing

state.
II. RELATED WORK

Hand-coded parsing: Although L7 parsers are still predom-

inantly hand coded [11], hand-coded protocol parsing has

two major weaknesses in comparison with automated protocol

parsing. First, hand-coded protocol parsers are hard to reuse

as they are tightly coupled with specific systems and deeply

embedded into their working environment [11]. For example,

Wireshark has a large collection of protocol parsers, but none

can be easily reused outside of Wireshark. Second, such

parsers tend to be error-prone and lack robustness [11]. For

example, severe vulnerabilities have been discovered in several

hand-coded protocol parsers [14]–[19]. Writing an efficient

and robust parser is a surprisingly difficult and error-prone

process because of the many protocol specific issues and the

increasing complexity of modern protocols [11]. For example,

the NetWare Core Protocol used for remote file access has

about 400 request types, each with its own syntax [11].

Full protocol parsing is not necessary for many applications.

For example, Schear et al. observed that full protocol parsing

is not necessary for detecting vulnerability-based signatures

because many protocol fields are not referenced in vulnerabil-

ity signatures [5]. Spending scarce CPU and memory resources

for parsing useless fields should be avoided for Intrusion

Prevention Systems, which are resource constrained. Based

on such observations, Schear et al. showed that hand-coded

selective protocol parsers [5] can run 3 times faster than

binpac.

Parsing Generators: Recognizing the increasing demand for

L7 parsers and the difficulty in developing robust protocol

parsers, three L7 parser generators have been proposed: binpac

[11], GAPA [12], and UltraPAC [13]. Pang et al., motivated

by the fact that the programming language community has

benefited from higher levels of abstraction for many years

using parser generation tools such as yacc [20] and ANTLR

[21], developed the network protocol parser generator binpac.

GAPA, developed by Borisov et al., focuses on providing a

protocol specification that guarantees that the generated parser

is type-safe and free of infinite loops. The similarity between

binpac and GAPA is that they both use recursive grammars and

embedded code to generate context sensitive protocol parsers.

The difference between binpac and GAPA is that binpac favors

parsing efficiency and GAPA favors parsing safety.



3

Most network protocols are designed to be easily parsed by

hand, but this often means their formal definitions turn out

complex in terms of standard parsing representations. Binpac

uses C++ to specify code blocks and compiles the entire parser

into C++ whereas GAPA uses an interpreted language. Ultra-

PAC improves on BinPAC by replacing BinPAC’s tree parser

with a stream parser implemented using a state machine to

avoid constructing the tree representation of a flow. UltraPAC

inherits from BinPAC a low-level protocol field extraction

language that allows additional grammar expressiveness using

embedded C++ code. In contrast, FlowSifter uses high-level

CA grammars without any inline code, which facilitates the

automated optimization of protocol field extraction speci-

fications. When parsing HTTP, for example, BinPAC and

UltraPAC need inline C++ code to detect and extract the

Content-Length field’s value whereas FlowSifter’s grammar

can represent this operation directly. In addition, FlowSifter

can automatically regularize non-regular grammars to produce

a stackless approximate parser whereas an UltraPAC parser for

the same extraction specification must be converted manually

to a stackless form using C++ to embed the approximation.

III. CCFG GRAMMARS

Given the difficultly of optimizing in-lined code segments,

we define a parsing model that augments rules for context-

free grammars and regular grammars with counters, guards,

and actions. These augmentations increase grammar expres-

siveness, but the grammars are still amenable to automatic

simplification and optimization.

FlowSifter produces an L7 field extractor from two inputs: a

protocol specification, and an extraction specification. Protocol

specifications are CCFGs that precisely specify how to parse

the network protocol. Protocol specifications are generic for

any desired extraction and are kept in the protocol library.

Extraction specifications specify in detail the exact L7 fields

to be extracted. They are written as annotated partial CCFGs,

and reference a protocol specification for parts of the grammar

that need no special handling.

We next formally define the grammar model for precisely

expressing L7 grammars. We then describe FlowSifter’s re-

quirements for a user-friendly extraction specification.

A. Formal Definition

Formally, a counting context-free grammar is a five-tuple

Γ = (N,Σ,C,R, S) where N,Σ,C, and R are finite sets

of nonterminals, terminals, counters, and production rules,

respectively, and S is the start nonterminal. The terminal

symbols are those symbols that will be seen in strings to be

parsed. For L7 field extraction, this is usually a single octet. A

counter is a variable with an integer value, initialized to zero.

The counters store parsing information such as the value of

length fields. In parsing an HTTP flow, a counter stores the

value of the “Content-Length” field. Counters also provide a

mechanism for eliminating parsing stacks.

A production rule is written as 〈guard〉 : 〈nonterminal〉 →
〈body〉. The guard is a conjunction of unary predicates over

the counters in C, i.e. expressions of a single counter that

return true or false. An example guard is (c1 > 2; c2 > 2),
which checks counters c1 and c2, and evaluates to true if

both are greater than 2. If a counter is not included in a guard,

then its predicate evaluates to true, and its value does not

affect the evaluation of the guard. Guards are used to guide

the parsing based on computed values.

The nonterminal following the guard is called the head of

the rule. Following it, the body is an ordered sequence of

terminals and nonterminals, any of which can have associated

actions. An empty body is written ǫ. An action is a set of unary

update expressions, each updating the value of one counter,

and is associated with a specific terminal or nonterminal

in a rule. The action is run after parsing the associated

terminal or nonterminal. An example action in CCFG is

(c1 := c1 ∗ 2; c2 := c2 + 1). If a counter is not included in an

action, then the value of that counter is unchanged.

Producing a language from a CCFG works in the same

way as a leftmost derivation for a CFG. The derivation starts

with the start symbol and with all counters initialized to

zero and produces a string of nonterminals by application

of the production rules. Each of the following simplifications

applies to the leftmost item in the derivation that is not a

terminal symbol. If that item is an action, it is removed from

the derivation by applying it to the counters. If that item is

a nonterminal, it is expanded by replacing it by the body

of any of its production rules for which the guard of that

rule evaluates to true. Whenever the result of repeating this

procedure results in a string of terminals, that string is in

the language of the CCFG. This leftmost derivation procedure

matches the parsing semantics we will use.

1) Protocol Specification in CCFG: The Varstring CCFG

in Figure 2 illustrates how FlowSifter can easily specify an

application protocol feature that is difficult for CFGs. The

Varstring language consists of strings with two fields separated

by a space: a length field, B, and a data field, V, where the

binary encoded value of B specifies the length of V. We also

present a Dyck language CCFG; the Dyck language is the

set of strings of balanced parentheses ‘[’ and ‘]’. We adopt

the convention that the head of the first rule is the start

nonterminal.

1 S →B V

2 B → ‘0’ (c := c ∗ 2)B

3 B → ‘1’ (c := c ∗ 2 + 1)B

4 B → ‘ ’

5 (c > 0) V→Σ(c := c− 1)V

6 (c = 0) V→ ǫ

examples: “1 a”, “10 ba”, “101 xyzab”

(a) Varstring Γv

1 S→ ǫ

2 S→ I S

3 I → ‘[’ S ‘]’

“[[]]”, “[][[][]]”

(b) Dyck Γd

Fig. 2. Two protocol specifications in CCFG

We now demonstrate how the Varstring grammar can pro-

duce the string “10 ba”. Each row of the table in Figure 3 is

a step in the derivation. The c column shows the value of the

variable c at each step. The number in parentheses is the rule

from Figure 2(a) that is applied to get to the next derivation.

Starting with the Varstring’s start symbol, S, we derive the



4

target string by replacing the leftmost nonterminal with the

body of one of its production rules. When applying rule 5, the

symbol Σ is shorthand for any character, so it can produce ‘a’

or ‘b’ or any other character.

Derivation c Rule # Note

S 0 (1) Decompose into len and body
B V 0 (3) Produce ‘1’, c = 0 ∗ 2 + 1
1 B V 1 (2) Produce ‘0’, c = 1 ∗ 2
10 B V 2 (4) Eliminate B, c is the length of body
10 V 2 (5) Produce ’b’, decrement c
10 b V 1 (5) Produce ’a’, decrement c
10 ba V 0 (6) c = 0, so eliminate V
10 ba 0 No nonterminals left, done

Fig. 3. Derivation of “10 ba” in Varstring

2) Counting Regular Grammars: Just as parsing with

CFGs is expensive, plain CCFGs shouldn’t be used

for this kind of parsing, as the whole derivation must

be tracked. To resolve this, we will convert them to

Counting Regular Grammars (CRGs), analogous to Regu-

lar Grammars, those grammars parsable without a stack.

For CRGs, all rules in the grammar must use one of

the following two forms: (1) 〈guard〉 : X → α〈action〉Y or

(2) 〈guard〉 : X → α〈action〉 where X and Y are nontermi-

nals and α ∈ Σ. CRG rules that fit equation (1) are the

nonterminating rules whereas those that fit equation (2) are

the terminating production rules as derivations end when they

are applied. CCFG rules that fit either equation are regular

rules; other rules are non-regular rules. The details of this

conversion are given in section IV.

B. Extraction Specification Requirements

FlowSifter’s design imposes some requirements on the

extraction specification, but also gives it additional free-

doms. The extraction specification is a CCFG Γx =
(Nx,Σ,Cx,Rx, Sx), but is not required to be complete. It can

refer to nonterminals specified in the protocol grammar for

its L7 protocol, denoted Γp = (Np,Σ,Cp,Rp, Sp). However,

Γx is not allowed to modify Γp; its rules must not add new

derivations for nonterminals defined in Γp. This ensures that

we can approximate Γp without changing the semantics of Γx.

The largest restriction on the extraction grammar is that it must

be normal; that is, it must be convertible into an equivalent

CRG. In practice, this restriction turns out to be minor, and

when a violation is detected, our tool will give feedback to

aid the user in revising the grammar.

1) Extraction Annotations: The purpose of FlowSifter is to

call application processing functions on user-specified fields.

Based on the extracted field values that they receive, these

application processing functions will take application specific

actions such as stopping the flow for security purposes or

routing the flow to a particular server for load balancing

purposes. FlowSifter allows calls to these functions in the

actions of a rule. Application processing functions can also

return a value back into the extractor to affect the remaining

parsing. Since the application processing functions are part

1 X→B vstr{V}
(a) Varstring Γxv

1 X→ ‘[’ parameter{S} ‘]’ S

(b) Dyck Γxd

Fig. 4. Two extraction CCFGs Γxv and Γxd

of the layer above FlowSifter, their specification is beyond

the scope of this paper. Further, we include a shorthand for

calling an application processing function f on a piece of the

grammar: f{〈body〉} where 〈body〉 is a rule body that makes

up the field to be extracted.

We next show two user-friendly extraction specifications

that are annotated partial CCFGs. The first, Γxv in Figure 4(a),

specifies the extraction of the variable-length field V for the

Varstring CCFG in Figure 2(a). This field is passed to an

application processing function vstr. For example, given

input stream “101 Hello”, the field “Hello” will be ex-

tracted. This example illustrates several features. First, it shows

how FlowSifter can handle variable-length field extractions.

Second, it shows how the user can leverage the protocol

library to simplify writing the extraction specification. While

the Varstring protocol CCFG is not large, it is much easier to

write a one production, incomplete CCFG Γxv rather than a

complete extraction grammar. The second extraction specifi-

cation, Γxd in Figure 4(b), is associated with the Dyck CCFG

in Figure 2(b) and specifies the extraction of the contents of

the first pair of square parentheses; this field is passed to

an application processing function named parameter. For

example, given the input stream [[[]]][[][]], the [[]]

will be extracted. This example illustrates how FlowSifter can

extract specific fields within a recursive protocol by referring

to the protocol grammar.

IV. GRAMMAR OPERATIONS

Given protocol and extraction specifications, FlowSifter

automatically produces an optimized CRG extraction gram-

mar. This process is accomplished using three techniques:

normal identification, regularization, and counting approxi-

mation. Normal identification identifies the nonterminals we

will approximate. Regularization converts normal rules into

equivalent regular rules. Counting approximation converts the

remaining non-regular rules into regular rules that approx-

imately parse recursive L7 field structures. After applying

all these processes and inlining rules that do not consume

any input, the input CCFGs are converted into a CCFG with

regular rules (a CRG), which is suitable for conversion into a

CA.

FlowSifter takes the potentially incomplete extraction

CCFG Γx and the L7 grammar Γp and turns them into a com-

plete extraction CRG Γf = (Nf ,Σ,Cf ,Rf , Sf ). Recall that

Nx and Np are disjoint and that Rx may include nonterminals

from Np only in the result of a production rule. Furthermore,

the nonterminals in Nx do not appear in any production rules

in Rp. We refer to Nx as the extraction nonterminals and Np

as the protocol nonterminals.

For a given CCFG Γ = (N,Σ,C,R, S), we let Γ(X) for

X ∈ N denote the grammar (N,Σ,C,R, X); that is, X is

the start nonterminal, and we say that X is normal if Γ(X)



5

is normal. If we treat all protocol nonterminals Y ∈ Np as

terminals in Γx, then we assume that Γx is normal. It follows

that for each X ∈ Nx, X is normal if we treat all protocol

nonterminals as terminals. However, it is possible that some

protocol nonterminal Y ∈ Np that is reachable from Sx is

not normal. For example, Γp(Y ) may define a feature such

as nesting of balanced opening and closing parentheses that

require unlimited memory to precisely parse.

FlowSifter combines Γx with Γp to produce a CRG as

follows. It creates a new CCFG Γf = (Nx ∪ Np,Σ,Cx ∪
Cp,Rx ∪ Rp, Sx) and prunes any unreachable nonterminals

from this composite. We then partition the nonterminals in

Np into those we can guarantee to be normal and those we

cannot. FlowSifter regularizes normal nonterminals and does

counting approximation on those not identified as normal.

After FlowSifter replaces each parsing nonterminal using ei-

ther regularization or counting approximation, FlowSifter then

regularizes the extraction nonterminals. If FlowSifter is unable

to regularize any extraction nonterminal, it reports that the

extraction specification Γx needs to be changed and provides

appropriate debugging information.

A. Normal Identification

Determining if a context-free grammar describes a regular

language is undecidable. Thus, we cannot precisely identify

normal nonterminals. FlowSifter identifies nonterminals in Np

that are guaranteed to be normal using the following sufficient

but not necessary condition. Each nonterminal X ∈ Np is

normal if

1) Γf (X) is regular OR

2) For all rules with head X ,

a) X only appears last in the body AND

b) for every Y that is reachable from X

• Y is normal AND X is not reachable from Y .

That is, FlowSifter first checks to see if Γf (X) is regular. If

so, it stops and returns that X is normal. Otherwise, it checks

each production rule with head X to confirm that if X appears,

X is the last symbol in the body. If X appears in a non-final

position, FlowSifter decides that it is not normal, even though

it may be. Otherwise, FlowSifter finally recursively performs

the normal check on any other nonterminals that are reached.

When performing these recursive checks, if FlowSifter reaches

X again, FlowSifter decides that X is not normal, even though

it might be. If any nonterminal that is checked in the process

is determined to be not normal, FlowSifter decides that X is

not normal, even though it might be. Otherwise, FlowSifter

decides that X is normal.

Once FlowSifter has identified each nonterminal as normal

or not, we regularize the normal nonterminals as described in

Section IV-B and approximate the rest as described in Section

IV-C. Since our process for identifying nonterminals is not

accurate, we may misidentify a normal nonterminal as not

normal. Fortunately, as we will see in Section IV-C, the cost

of such a mistake is relatively low; it is only one counter in

memory and some unnecessary predicate checks.

B. Regularization

Regularization replaces a normal nonterminal’s rules with a

collection of equivalent regular rules. The basic idea behind

regularization is to use standard decomposition techniques to

turn nonregular rules into a collection of equivalent regular

rules. Consider an arbitrary nonregular rule 〈guard〉 : X →
〈body〉. We first express the body as Y1 · · · Yn where

Yi, 1 ≤ i ≤ n is either a terminal (possibly with an action)

or a nonterminal. Because this is a nonregular rule, either Y1

is a nonterminal or n > 2 (or both). We handle the cases as

follows.

• If Y1 is a non-normal nonterminal, Γx was incorrectly

written and needs to be reformulated.

• If Y1 is a normal nonterminal, we use the assumed CRG

Γ′ = (N′,Σ,C′,R′, S′) that is equivalent to Γf (Y1) to

replace the rule as follows. First, we add rule 〈guard〉 :
X → S

′. Next, for each terminating rule r ∈ R′, we

append Y2 · · · Yn to the body of r and the resulting

rule to the regularized rule set. Finally, we add all the

nonterminating rules r ∈ R′ to the regularized rule set.

• If Y1 is a terminal and n > 2, the rule is decomposed into

two rules: 〈guard〉 : X → Y1 X ′ and X ′ → Y2 · · · Yn

where X ′ is a new nonterminal.

1 S→B′

2 B′ → 0 (c := c ∗ 2)B′

3 B′ → 1 (c := 1 + c ∗ 2)B′

4 B′ → V
5 (c = 0) V→ ǫ

6 (c > 0) V→Σ (c := c− 1)V

Fig. 5. Varstring after decomposition of rule S → B V.

For example, consider the Varstring CCFG Γv with non-

regular rule S→B V. Both Γv(B) and Γv(V ) are CRGs.

Decomposition regularizes Γv(S) by replacing S→B V by

S→B′ and B → by B′ → V. We also add copies of all

other rules where we use B′ in place of B. Figure 5 illustrates

this complete result. Note that the nonterminal B is no longer

referenced by any rule in the new grammar. For efficiency, we

remove unreferenced nonterminals and their rules after each

application of decomposition.

C. Counting Approximation

We use counting approximation to produce regular rules

for L7 protocol structures that are not normal. We can do this

for nonregular subgrammars that have such balanced nesting

structures with computable start and end terminals. The basic

idea is to parse only the start and end terminals for Γ(X)
ignoring any other parsing information contained within this

subgrammar. By using the counters to track nesting depth,

we can approximate the parsing stack for nonterminals in our

protocol grammar. We only apply this to nonterminals from

Np, so we don’t affect extraction on grammatical streams.

Given a CCFG Γf with a nonterminal X ∈ Np that does not

identify as normal, FlowSifter computes a counting approxi-

mation of Γf (X) as follows. First, FlowSifter computes the

sets of start and end terminals for Γf (X) which are denoted



6

as start and stop. These are the terminals that mark the start

and end of a string that can be produced by Γ(X). The

remaining terminals we denote as other. For example, in the

Dyck extraction grammar Γxd in Figure 4(b), the set of start

and end terminals of Γxd(S) are {‘[’} and {‘]’}, respectively,

and other has no elements. FlowSifter replaces all rules with

head X with the following rules that use a new counter cnt:

1 (cnt = 0) X→ ǫ

2 (cnt ≥ 0) X→ start (cnt := cnt+ 1)X
3 (cnt > 0) X→ stop (cnt := cnt− 1)X
4 (cnt > 0) X→ other X

Fig. 6. General Approximation Structure

The first rule allows exiting X when the recursion level is zero.

The second and third increase and decrease the recursion level

when matching start and stop terminals. The final production

rule consumes the other terminals, approximating the grammar

while cnt > 0.

For example, if we apply counting approximation to the

nonterminal S from the Dyck extraction grammar Γxd in

Figure 4(b), we get the new production rules in Figure 7.

1 (cnt = 0) S→ ǫ

2 (cnt ≥ 0) S→ ’[’ (cnt := cnt+ 1) S
3 (cnt > 0) S→ ’]’ (cnt := cnt− 1) S

Fig. 7. Approximation of Dyck S

We can apply counting approximation to any subgrammar

Γf (X) with unambiguous starting and stopping terminals.

Ignoring all parsing information other than nesting depth of

start and end terminals in the flow leads to potentially faster

flow processing and fixed memory cost. Most importantly, the

errors introduced do not interfere with field extraction because

we do not approximate extraction specification nonterminals.

V. AUTOMATA GENERATOR

The automata generator module in FlowSifter takes an

optimized extraction grammar as its input and generates an

equivalent counting automaton, which will serve as the data

structure (or say the “configuration”) of the field extractor

module. Counting Automata (CA) allow efficient use of CRGs

in online field extraction by leveraging Deterministic Finite

State Automata (DFA) for matching flow data. Much work

has been done on efficient implementation of DFAs on network

and security devices [22]–[29]. We build on this work by using

Regular Expressions as the terminal symbols in our CCFGs

and CRGs. This implies that each transition in the resulting

CA uses its own DFA to process the flow payload, determine

the next CA state, and update the CA counters.

A. Counting Automata

We first define a DFA with labeled decisions. A Labeled

DFA is a 5-tuple DFA(Σ, D) = (Q,Σ, δ, q0, DF ) where Q

is a set of states, Σ is an alphabet, q0 is the initial state,

δ : Q × Σ → Q is the transition function and DF : Q → D

is a partial function assigning a subset of the states a decision

from the decision set D. The notation DFA(Σ, D) denotes

the set of DFA over an alphabet Σ and a decision set D.

A Counting Automata (CA) is a 5-tuple (Q,Σ, C, δ, q0, c0)

where Qc is a set of states, Σ is an alphabet, C is a set of

possible counter configurations, q0 is the initial state, and c0
is the initial counter configuration. The transition function is

δ : Q×C → DFA(Σ, (Q×(C → C)); that is, given the current

state qi and counter configuration ci, the transition function δ

specifies a DFA over alphabet Σ whose decision is a state

qj ∈ Q and an action function acti that updates the counter

configuration.

FlowSifter generates a CA (Q,Σ, C, δ, q0) from a CRG

Γ = (N,Σg, Cg, R, S) as follows. Some components of the

grammar are directly inherited by the CA. The states of the CA

are exactly the set of nonterminals of the CRG, and the initial

state is also the start nonterminal, so Q = N and q0 = S. The

CA works over the same alphabet as the Grammar, so Σ = Σg .

For the set of possible counter configurations C, we assume

each counter from Cg has some maximum size, typically

2sizeof(int) − 1. We could reduce the size of each counter

to reduce the final parsing state size of the CA. Formally,

C = {(c1, c2, . . . , c|Cg|) : |ci| < 2sizeof(int), 1 ≤ i ≤ |Cg|}.

The most complex assignment is the transition function δ. For

each state q, consider the corresponding nonterminal X . For

each possible counter configuration c ∈ C, we identify the

set of production rules r(c) ∈ R with head X whose guards

are satisfied by c. The body of each rule ri ∈ r(c) consists

of a regular expression rxi (the terminals in the CRG are

regular expressions), an action acti which updates some of

the counters, and possibly a next nonterminal nti. For this q

and c, we construct a DFA built from the rxi of the rules

ri ∈ r(c). The decision for each rxi is (acti, nti).
To apply a CA to a flow, we first identify δ(q0, c0) = dfa0

and run this DFA on the flow until it returns a decision

(q1, act0). If the DFA does not return any decision, the flow

does not match the grammar, and we can stop processing.

We apply the action function act0 to get the new counter

configuration c1 = act0(c0). We then identify the appropriate

DFA δ(q1, c1) = dfa1 which resumes processing the flow. The

CA continues in this fashion alternating between CA states

where counters are updated and predicates computed and DFA

states where flow input is consumed until the entire flow is

processed. The parsing state of the CA consists of a DFA state,

a counter configuration, plus some flow state variables such

as the flow offset that the next DFA should start at.

A CA reports extraction events by having its actions call

application processing functions which are defined in the

extraction specification. The CA waits for a return value from

the called application processing function so it can complete

updating the counters before it continues processing the input

flow. In many cases, the application processing function never

needs to return an actual value to the CA, so it can immediately

return a null value so that the CA can immediately resume

processing the input flow.

The text above has assumed that only one regular expression

from the rules in r(c) will match the flow data at a time.

However, multiple regular expressions may match the same

flow data and have different actions. We address this by

assigning priorities to the different rules in r(c) and take



7

these priorities into account when constructing the DFA that

corresponds to δ(X, c). For example, we use
HEADER -> /(?i:Content-Length):\s*/

[bodylength := getnum()];

HEADER 99 -> TOKEN /:/ VALUE;

as part of our protocol specification for processing HTTP

headers. We give the first rule higher priority which allows

us to easily differentiate the special case of TOKEN where the

header name is “Content-Length” so we can act differently.

VI. EXPERIMENTAL EVALUATION

We evaluate field extractor performance in three areas:

speed, memory and extractor definition complexity. Speed

is important to keep up with incoming packets. Because

memory bandwidth is limited and saving and loading extractor

state to DRAM is necessary when parsing a large number

of simultaneous flows, memory use is also a critical aspect

of field extraction. Lastly, the complexity of writing field

extractors determines the rate at which new protocol field

extractors can be deployed.

A. Methods

1) Traces: Tests are performed using two types of traces,

HTTP and SOAP. We use HTTP traffic in our comparative

tests because the majority of non-P2P traffic is HTTP and

because HTTP field extraction is critical for L7 load balancing.

We use a SOAP-like protocol to demonstrate FlowSifter’s

ability to perform field extraction on flows with recursive

structure. SOAP is a very common protocol for RPC in

business applications, and SOAP is the successor of XML-

RPC. Parsing SOAP at the firewall is important for detecting

parameter overflows.

Our trace data format is interleaved packets from multiple

flows. In contrast, previous work has used traces that consist

of pre-assembled complete flows. We use the interleaved

packet format because it is impractical for a network device

to pre-assemble each flow before passing it to the parser.

Specifically, the memory costs of this pre-assembly would be

very large and the resulting delays in flow transmission would

be unacceptably long.

Our HTTP packet data comes from the MIT Lincoln Lab’s

(LL) DARPA intrusion detection data sets [30]. This LL data

set has 12 total weeks of data from 1998 and 1999. We

obtained the HTTP packet data by pre-filtering for traffic on

port 80 with elimination of TCP retransmissions and delaying

out-of-order packets. Each day’s traffic became one test case.

We eliminated the unusually small traces (< 25MB) from our

test data sets to improve timing accuracy. This left 45 test

traces, with between 0.16 and 2.5 Gbits of data and between

27K and 566K packets per trace.

2) Field Extractors: Our FlowSifter implementation is

written in 1900 lines of Objective Caml (excluding DFA

generation) and runs on a desktop PC running Linux 2.6.35

on an AMD Phenom X4 945 with 4GB RAM. It generates

the CA from protocol and extraction grammars and simulates

it on trace payloads. The implementation includes a few

optimizations not documented here for space reasons.

We constructed HTTP field extractors using FlowSifter,

BinPAC from version 1.5.1 of Bro, and UltraPAC from Net-

Shield’s SVN r1928. The basic method for field extractor

construction with all three systems is identical. First, a base

parser is constructed from an HTTP protocol grammar. Next,

a field extractor is constructed by compiling an extraction

specification with the base parser. Each system provides its

own method for melding a base parser with an extraction

specification to construct a field extractor. We used UltraPAC’s

default HTTP field extractor which extracts the following

HTTP fields: method, URI, header name, and header

value. We modified BinPAC’s default HTTP field extractor

to extract these same fields by adding extraction actions.

FlowSifter’s base HTTP parser was written from the HTTP

protocol spec. We then wrote an extraction specification to

extract these same HTTP fields.

For SOAP traffic, we can only test FlowSifter. We again

wrote a base SOAP parser using a simplified SOAP protocol

spec. We then made an extraction specification to extract some

specific SOAP fields and formed the SOAP field extractor

by compiling the extraction specification with the base SOAP

parser. We attempted to develop field extractors for BinPAC

and UltraPAC, but they seem incapable of easily parsing

XML-style recursive structures. BinPAC assumes it can buffer

enough flow data to be able to generate a parse node at

once. UltraPAC’s Parsing State Machine can’t represent the

recursive structure of the stack, so it would require generating

the counting approximation by hand.

3) Metrics: For any trace, there are two basic metrics for

measuring a field extractor’s performance: parsing speed and

memory used. We define a third metric, efficiency, which we

define as the parsing speed divided by the log10 of the memory

needed. Higher efficiency indicates higher speed with less

memory needed.

We use the term speedup to indicate the ratio of FlowSifter’s

parsing speed on a trace divided by another field extractor’s

parsing speed on the same trace. We use the term memory

compression to indicate the ratio of another parser’s memory

used on a trace divided by FlowSifter’s memory used on

the same trace. The average speedup or average memory

compression of FlowSifter for a set of traces is the average of

the speedups or memory compressions for each trace. Parser

Complexity is measured by comparing the definitions of the

base HTTP protocol parsers. We could only compare the

HTTP protocol parsers since we failed to construct SOAP field

extractors for either BinPAC or UltraPAC.

We measure parsing speed as the number of bits parsed

divided by the time spent parsing. We use Linux process

counters to measure the user plus system time needed to parse

a trace.

We measure the memory taken by a field extractor on a

trace by measuring the memory use of the extractor before

and right at the end of processing the given trace and taking

the difference. BinPAC and UltraPAC use manual memory

management, so we measure memory use by using tcmalloc’s

[31] generic.current_allocated_bytes parameter.



8

S
p

e
e

d
u

p

1x

2x

3x

4x

5x

Sifter/
BinPAC

Sifter/
UltraPAC

Fig. 12. Boxplots of speedup on 45 LL traces

This allows us to precisely identify the exact amount of

memory allocated to the extractor and not yet freed. Since

FlowSifter runs in a garbage collected environment, its envi-

ronment provides an equivalent measure of live heap data.

B. Experimental Results

We show empirical CDFs for all three field extractors’

memory usage, parsing speed and efficiency on the 45 Lincoln

Labs traces in Figure 8. By all three metrics of memory use,

parsing speed, and efficiency, FlowSifter clearly outperforms

both BinPAC and UltraPAC.

1) Parsing Speed: As shown in Figure 12, FlowSifter

parses the input faster than either BinPAC or UltraPAC. On

average, FlowSifter runs 4.1 times faster than BinPAC and

1.84 times faster than UltraPAC.

FlowSifter’s optimal DFA parsing speed is 1.8Gbps. We

determined this by running a simple DFA on a simple input

flow. As shown in Figure 8, FlowSifter can run both faster and

slower than 1.8Gbps. FlowSifter can traverse flows faster by

using the CA to perform selective parsing. For example, for an

HTTP flow, the CA can process the ContentLength field

into a number and skip the entire body by ignoring that number

of bytes from the input. BinPAC and UltraPAC improve their

performance similarly through their &restofflow flag.

However, the CA introduces two factors that can lead to

slower parsing: evaluating expressions and context switching.

In our current implementation, both predicates and actions are

interpreted. A more efficient implementation could compile

these so they run at the speed of the processor. Each CA

transition also leads to potentially a new DFA that will

process the next piece of the flow. FlowSifter suffers a context

switching cost with each such DFA change.

To test FlowSifter’s approximation performance, we made

a SOAP field extractor that extracts a single field two levels

deep and then ran it on our 10 traces for each value of n

ranging from 0 to 16. The resulting average parsing speeds

with 95% confidence intervals for each value of n are shown

in Figure 9. As we expected, FlowSifter’s SOAP field extractor

had a slower parsing speed than FlowSifter’s HTTP field

extractor. There are two main reasons for the slowdown.

First, there are fewer opportunities for selective parsing. For

example, FlowSifter cannot skip any fields such as the HTTP

body. Second, as the recursion level increases, the number

of CA transitions per DFA transition increases. This causes

FlowSifter to check and modify counters more often, slowing

execution.

2) Memory Use: Each point in Figure 10 shows the total

memory used divided by the number of flows in progress when

the capture was made. This shows FlowSifter uses much less

memory per flow (and thus per trace) than either BinPAC or

UltraPAC. On average over our 45 LL traces, FlowSifter uses

16 times less memory per flow (or trace) than BinPAC and 8

times less memory per flow (or trace) than UltraPAC.

FlowSifter’s memory usage is consistently 344 bytes per

flow. This is due to FlowSifter’s use of a fixed-size array

of counters to store almost all of the parsing state. BinPAC

and UltraPAC use much more memory respectively averaging

5.5KB and 2.7KB per flow. This is mainly due to their

buffering requirements, as they must parse an entire record

at once. For HTTP traffic, this means an entire line must

be buffered before they parse it. When matching a regular

expression against flow content, if there is not enough flow

to finish, they buffer additional content before trying to match

again.

3) Parser Definition Complexity: The final point of com-

parison is less scientific than the others, but is relevant for

practical use of parser generators. The complexity of writing

a base protocol parser for each of these systems can be approx-

imated by the size of the parser file. We exclude comments

and blank lines for this comparison, but even doing this, the

results should be taken as a very rough estimate of complexity.

Figure 11 shows a DNS and HTTP parser size for BinPAC

and FlowSifter and HTTP parser size for UltraPAC. UltraPAC

has not released a DNS parser. The FlowSifter parsers are

the smallest of all three, with FlowSifter’s DNS parser being

especially small. This indicates that CCFG grammars are a

good match for application protocol parsing.

VII. CONCLUSIONS

In this work, we performed a rigorous study of the on-

line L7 field extraction problem. We propose FlowSifter, the

first systematic framework that generates optimized L7 field

extractors. Besides the importance of the subject itself and

its potential transformative impact on networking and security

services, the significance of this work lies in the theoretical

foundation that we lay for future work on this subject, which

is based on well-established automata theory.

With this solid theoretical underpinning, FlowSifter gener-

ates high-speed and stackless L7 field extractors. These field

extractors run faster than comparable state of the art parsers,

use much less memory, and allow more complex protocols

to be represented. The parsing specifications are even by

some measures simpler than previous works. There are further

improvements to be made to make our field extractor even

more selective and efficient by further relaxing the original

grammar.
REFERENCES

[1] K. Borders and A. Prakash, “Web tap: Detecting covert web traffic,” in
Proc. CCS, 2004.

[2] ——, “Towards quantification of netword-based information leaks via
HTTP,” in Proc. USENIX Hotsec, 2008.



9

Memory Used (MB)

C
D

F

0.2

0.4

0.6

0.8

1.0

3 10 30 100 300 1000

Parsing speed(Gbps)

C
D

F

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

Efficiency (Gbps/log10(Mem))

C
D

F

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4

Parser

Sifter

BinPAC

UltraPAC

Fig. 8. CDF comparison of HTTP Field Extractors on 45 LL traces

n

G
b
p
s

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15

Fig. 9. Average parsing speed for SOAP-
like flows versus recursion depth n

M
e
m

o
ry

 p
e
r 

F
lo

w

300B

1KB

3KB

10KB

30KB

BinPAC Sifter UltraPAC

Fig. 10. Memory per flow on LL traces

C
o
u
n
t

0
20
40
60
80

100
120

0
100
200
300
400

0

1000

2000

3000

4000

BinPAC FlowSifter UltraPAC

L
in

e
s

W
o
rd

s
C

h
a

rs

protocol

dns

http

Fig. 11. Complexity of base protocol parsers

[3] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier, “Shield:
vulnerability-driven network filters for preventing known vulnerability
exploits,” in Proc. SIGCOMM, 2004.

[4] Z. Li, L. Wang, Y. Chen, and Z. Fu, “Network-based and attack-resilient
length signature generation for zero-day polymorphic worms,” IEEE Int.

Conf. Network Prorocols (ICNP), pp. 164–173, 2007.

[5] N. Schear, D. R. Albrecht, and N. Borisov, “High-speed matching of
vulnerability signatures,” in Proc. Int. Symposium on Recent Advances

in Intrusion Detection (RAID), 2008.

[6] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards au-
tomatic generation of vulnerability-based signatures,” IEEE Symposium

Security and Privacy, 2007.

[7] “Simple object access protocol (soap), www.w3.org/tr/soap/.”

[8] “XML-RPC, http://www.xmlrpc.com/spec.”

[9] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in
Proc. 13th Systems Administration Conference (LISA), USENIX Associ-

ation, November 1999, pp. 229–238.

[10] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999. [Online].
Available: citeseer.ist.psu.edu/paxson98bro.html

[11] R. Pang, V. Paxson, R. Sommer, and L. Peterson, “binpac: a yacc for
writing application protocol parsers,” in Proc. ACM Internet Measure-

ment Conference (IMC), 2006.

[12] N. Borisov, D. J. Brumley, and H. J. Wang, “A generic application-level
protocol analyzer and its language,” in Proc. Network and Distributed

System Security Symposium (NDSS), 2007.

[13] Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu, J. Jiang, and Y. Lv,
“NetShield: Massive semantics-based vulnerability signature matching
for high-speed networks,” in Proc. SigCOMM, 2010.

[14] “Ethereal OSPF protocol dissector buffer overflow vulnerability. http:
//www.idefense.com/intelligence/vulnerabilities/display.php?id=349.”

[15] “Snort TCP stream reassembly integer overflow exploit,
http://www.securiteam.com/exploits/5bp0o209ps.html.”

[16] “tcpdump ISAKMP packet delete payload buffer overflow.
http://xforce.iss.net/xforce/xfdb/15680.”

[17] “Symantec multiple firewall NBNS response processing stack overflow.
http://research.eeye.com/html/advisories/published/AD20040512A.
html.”

[18] C. Shannon and D. Moore, “The spread of the witty worm.
http://www.caida.org/research/security/witty/.”

[19] A. Kumar, V. Paxson, and N. Weaver, “Exploiting underlying structure
for detailed reconstruction of an internet-scale event,” in Proc. ACM

Internet Measurement Conference (IMC), 2005.
[20] S. C. Johnson, “Yacc - yet another compiler-compiler,” Bell Laborato-

ries, Technical Report 32, 1975.
[21] T. T. J. Parr and R. R. W. Quong, “Antlr: A predicated-ll(k) parser

generator,” Software, Practice and Experience, vol. 25, 1995.
[22] M. Becchi and S. Cadambi, “Memory-efficient regular expression search

using state merging,” in Proc. INFOCOM. IEEE, 2007.
[23] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular

expression evaluation,” in Proc. ACM/IEEE Symposium on Architecture

for Networking and Communications Systems (ANCS), 2007.
[24] C. R. Clark and D. E. Schimmel, “Scalable pattern matching for high

speed networks,” in Proc. 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), Washington, DC,
2004.

[25] S. Dharmapurikar and J. W. Lockwood, “Fast and scalable pattern
matching for network intrusion detection systems,” IEEE Journal on

Selected Areas in Communications, vol. 24, pp. 1781 – 1792, 2006.
[26] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing

regular expressions matching algorithms from insomnia, amnesia, and
acalculia,” in Proc. ACM/IEEE Symposium on Architecture for Network-

ing and Communications Systems (ANCS), 2007, pp. 155–164.
[27] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-

gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” in Proc. SIGCOMM, 2006, pp. 339–350.

[28] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast
and scalable deep packet inspection with extended finite automata,” in
Proc. SIGCOMM, 2008, pp. 207–218.

[29] S. Kong, R. Smith, and C. Estan, “Efficient signature matching with
multiple alphabet compression tables,” in Proc. SecureComm, 2008.

[30] “Darpa intrusion detection evaluation data set,” www.ll.mit.edu/mission/
communications/ist/corpora/ideval/data/1998data.html, 1998.

[31] “Tcmalloc,” http://goog-perftools.sourceforge.net/doc/tcmalloc.html,
2011.


