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Abstract

Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however,

there are few studies on the associations of cardiovascular genes with COPD.

We assessed the association of lung function with 2,100 genes selected for cardiovascular diseases

among 20,077 European-Americans and 6,900 African-Americans. We performed replication of

significant loci in the other racial group and an independent consortium of Europeans, tested the

associations of significant loci with percent emphysema, and examined gene expression in an

independent sample. We then tested the association of a related lipid biomarker with FEV1/FVC

and percent emphysema.

We identified one new polymorphism for FEV1/FVC (rs805301) in European-Americans

(p=1.3×10−6) and a second (rs707974) in the combined European-American and African-

American analysis (p=1.38×10−7). Both SNPs flank the gene for apolipoprotein M (apoM), a

component of HDL. Both replicated in an independent cohort. SNPs in a second gene related to
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apoM and HDL, PCSK9, were associated with FEV1/FVC among African-Americans. rs707974

was associated with percent emphysema among European-Americans and African-Americans, and

APOM expression was related to FEV1/FVC and percent emphysema. Higher HDL levels were

associated with lower FEV1/FVC and greater percent emphysema.

These findings suggest a novel role for the APOM/HDL pathway in the pathogenesis of COPD

and emphysema.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a leading cause of death globally[1] and

is characterized by persistent airflow obstruction.[2,3] Emphysema is defined anatomically

by permanent enlargement of airspaces distal to terminal bronchioles with destruction of

alveolar walls.[4]

Familial studies suggest a genetic influence on COPD.[5-7] Recent genome-wide

association studies (GWAS) have identified loci associated with the ratio of forced

expiratory volume in one second to forced vital capacity (FEV1/FVC) among participants of

European ancestry.[8-13] Many of these genes have been shown to influence susceptibility

to COPD;[14-16] however, they explained little more than 3% of the variance in lung

function.

Emphysema also has a familial predisposition.[17] However, understanding of the genetic

basis for emphysema, beyond alpha1-antirypsin deficiency, is more limited. A GWAS

identified one genetic locus for radiologist-defined emphysema on computed tomography

(CT) but none for quantitatively assessed emphysema.[18] Candidate gene association

studies have identified additional genes for emphysema.[19-24]

Complimentary genotyping strategies to better delineate the genetic basis of COPD and

emphysema are therefore warranted. One such strategy is a “gene-centric” genotyping chip,

which includes a large panel of candidate genes and often better gene coverage than GWAS

chips. No such chips have been designed specifically for lung disease; however, the ITMAT/

Broad/CARe (IBC) chip[25] includes 2,100 candidate genes primarily selected for

cardiovascular disease.

Respiratory and cardiac function are tightly linked at cellular,[26,27] physiologic,[28]

structural,[29] and anatomic levels. For example, endothelial dysfunction is implicated in

the pathogenesis of atherosclerosis[30] and emphysema in animal models[31-34] and

humans,[35] the later via ceramide-mediated endothelial cell apoptosis.[36-38] High-density

lipoprotein (HDL) may also be relevant to COPD and emphysema, as HDL increases in

vitro ceramide levels.[39] HDL levels and function are affected by apolipoprotein M

(apoM).[40-42]
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We examined associations of FEV1/FVC on the IBC chip in European-American and

African-American participants in the Candidate-gene Association Resource (CARe)

consortium.[43] Findings were replicated in the SpiroMeta consortium.[11] We performed

additional analyses of identified genes with the percentage of emphysema-like lung (percent

emphysema), of gene expression, and of HDL with lung function and percent emphysema in

the Multi-Ethnic Study of Atherosclerosis (MESA) SNP Health Association Resource

(SHARe) and MESA COPD Study.

METHODS

Study Samples

Analyses of Lung Function—The association of genes and lung function were assessed

in the seven CARe cohorts that measured spirometry: Atherosclerosis Risk in Communities

(ARIC), Coronary Artery Risk Development in young Adults (CARDIA), Cleveland Family

Study (CFS), Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), Jackson

Heart Study (JHS) and the subset of MESA with spirometry. These cohorts have been

previously described[44-53] and are summarized in the supplement. Exclusion criteria were

lack of valid spirometric or genetic data, age less than 23 years and a restrictive pattern of

spirometry, defined as FVC less than the lower limit of normal[54] and FEV1/FVC of

greater than 0.70.

Replication of Lung Function SNPs—Replication for FEV1/FVC was performed in

the SpiroMeta consortium, a large independent sample of 14 GWAS studies.[11] Replication

in airflow obstruction was performed using publically available data from the SpiroMeta and

CHARGE consortia,[9] which partly overlaps with European-American participants in the

CARe consortium. Details are provided in the supplement.

Analyses of Percent Emphysema—Percent emphysema was examined among all

participants in MESA SHARe, which comprises all participants who consented to genetic

analyses in MESA,[44] MESA Family[55] and MESA Air Pollution[56] studies. Spirometry

was not required.

Gene Expression Analyses—mRNA expression was examined in peripheral blood

mononuclear cells in MESA COPD Study, an independent sample described in the

supplement.

Appropriate Institutional Review Boards approved study protocols and written informed

consent was obtained from all participants.

Phenotypic Measures

Spirometry—Pre-bronchodilator spirometry was performed by trained and certified

spirometry technicians in accordance with the American Thoracic Society guidelines.

Spirometry methods and equipment were highly standardized and in some cases identical

across cohorts, as described in the supplement.
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Percent emphysema—Percent emphysema was assessed in MESA SHARe on lung

fields of cardiac CT scans, which image approximately 70% of lung volume from the carina

to the lung bases, at a single center by trained readers, as previously described and validated

compared to full-lung scans.[57] Percent emphysema was defined as percentage of total

voxels in the lung less than −950 Hounsfield Units (HU). The MESA COPD Study used the

same approach on full-lung scans using Apollo (Vida Diagnostics) software.

HDL—HDL was measured in EDTA plasma using the cholesterol oxidase method (Roche

Diagnostics Corporation, Indianapolis, IN) after precipitation of non-HDL with magnesium/

dextran.[58]

Genotyping

All CARe participants were genotyped with the IBC Illumina iSELECT array, a 50,000

gene-centric SNP array.[25] All genotyping was performed at a single center. Quality

control methods are described in the supplement.

MESA SHARe participants were genotyped using the Affymetrix Genome-Wide Human

SNP Array 6.0 platform at a single center.

Statistical Analyses

Analyses of candidate genes with FEV1/FVC employed linear regression, stratified by race

and adjusted for age, age2, height, height2, sex, smoking status, pack-years, pack-years2, site

(if applicable), and the first 10 principal components (PCs) for ancestry. Association testing

of rank-normalized residuals was performed under an additive genetic model.[59-61]

Cohort-specific association results were meta-analyzed, again stratified by race, using

inverse variance weighting in METAL[62] with cohort-specific and overall genomic control.

A priori, we planned to replicate our top loci identified among European-Americans in the

African-American cohorts and vice-versa as distinct cohorts. Race-specific results were then

meta-analyzed in METAL[62] for the combined European-American and African-American

analyses. The Bonferroni-adjusted thresholds for statistical significance in CARe were

1.31×10−6 in European-Americans and 1.13×10−6 in African-Americans and combined

analyses, which are exceedingly conservative for the IBC chip.

Analyses for log-transformed percent emphysema used the same analytical approach

supplemented with a linear mixed effects model for family-based-data,[60] and adjustment

for age, sex, site, scanner, height, weight, tube current, cigarettes per day, pack-years,

asthma and PCs.

Analysis details for gene expression and HDL association studies with lung function and

percent emphysema are provided in the supplement.

To address multiple comparisons, we considered analysis of percent emphysema to be

analogous to a modified Holm’s procedure[63] on the pathway of apoM. We hypothesized

that SNPs rs805301 and rs707974 are in linkage disequilibrium (LD) with causative APOM

variant that affects percent emphysema, which affects FEV1/FVC, thus the Holm-
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Bonferonni corrected threshold for statistical significance for subsequent analyses was set at

0.025.

RESULTS

The mean age of the 26,977 CARe participants with spirometry was 54+/−13 years, 52%

ever-smoked, with median pack-years of 20. Additional characteristics of the 20,077

European-American and 6,900 African-American participants are shown by cohort and race

in table 1.

Association Study of 2,100 Candidate Genes with Lung Function in CARe

Among European-Americans, we identified one new SNP (rs805301) for FEV1/FVC (figure

1a). Among African-Americans, no SNPs were significantly associated with FEV1/FVC

using the Bonferroni cutoff; however, three SNPs were significant with the less conservative

cutoff (p<x10−5; figure 1b). In the combined European-American and African-American

analysis, we identified a second new SNP (rs707974) for FEV1/FVC (figure 1c; table 2).

The new SNP (rs805301) identified in European-Americans was selected for the IBC chip as

a variant in APOM based upon Genome Build 36 and is annotated in BAG6 on Genome

Build 37.3, which is the upstream flanking gene of APOM. It replicated among African-

Americans (p=0.036) and remained significant in the combined meta-analysis (table 2). The

risk allele (C) was associated with a decrease in FEV1/FVC in both racial groups.

The new SNP identified in the combined European-American and African-American

analysis, rs707974, was the second most significant SNP in African-Americans (table 2) and

would have been significant with less stringent Bonferroni cutoff. It was also selected as an

APOM variant and is now annotated in GPANK1, the downstream flanking gene of APOM

separated by an open-reading frame, C6orf47. It was not significant for FEV1/FVC in

European-Americans (p=2.84×10−5).

SNPs rs805301 and rs707974 were not in high LD in European-Americans or African-

Americans (r2=0.07 and r2=0.03, respectively), suggesting that they are separate loci (Figure

2). They were also not in high LD with the previously described AGER SNP rs2070600 in

European-Americans[11,12] (r2=0.035 and r2=0.37, respectively). In addition, rs805301

remained associated with FEV1/FVC after adjustment for rs2070600 (p=6.82×10−4) and

rs2070600 was only nominally associated with FEV1/FVC among African-Americans

(p=0.009). These findings suggest that associations of rs805301and rs707974 with lung

function are unrelated to AGER.

Sensitivity analyses restricted to participants free of clinical cardiovascular disease, age 55

years or less, and free of asthma yielded similar results, as did analyses additionally adjusted

for diabetes, hypertension and asthma (supplement). Analyses stratified by smoking status

yielded similar results (supplement).

The other top loci in African-Americans were in NFKBIA and PCSK9 (table 2). PCSK9 is

related to apoM[64] and six of the top 30 SNPs for FEV1/FVC in African-Americans were
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in PCSK9 (figure 2). SNPs in neither gene replicated in European-Americans. Regional

association plots for additional loci are displayed in supplementary figure 3.

Results for the FEV1 are displayed in supplementary figures 4, 5 and 6. Top SNPs

associated with FEV1/FVC and FEV1 are presented in supplementary tables 1 and 2.

Replication of SNPs Flanking APOM in SpiroMeta

Both rs805301 and rs707974 replicated for FEV1/FVC in 20,288 European participants in

the SpiroMeta consortium in a consistent direction (β=−0.03, p=0.02 and β=0.05, p=0.02,

respectively).

We reviewed publically available results from the SpiroMeta-CHARGE GWAS meta-

analysis of airflow obstruction.[9] SNP rs805301 was associated with airflow obstruction

(p=0.004) and rs707974 was nominally associated with airflow obstruction in individuals

without asthma (p=0.026; supplement).

Association of SNPs Flanking APOM with Percent Emphysema in MESA

SNP rs707974 was significantly associated with percent emphysema among 2,551

European-Americans and 2,457 African-Americans (p=4.74×10−4 and p=0.009,

respectively) and in combined analyses (p=1.67×10−5; table 3) in MESA. The characteristics

of these participants are shown in supplementary table 3. The direction of the association of

rs707974 with percent emphysema and lung function was consistent: risk allele (A) was

associated with greater percent emphysema and a lower FEV1/FVC.

The association with percent emphysema persisted in an independent sample of 1,138

European-American and 1,563 African-American MESA participants who did not have

spirometry measures and who were therefore excluded from the lung function analysis

(p=0.02 and p=0.003; respectively). Additional adjustment for socioeconomic status yielded

similar results whereas restriction to 418 European-Americans and 209 African-Americans

with FEV1/FVC < 0.70 yielded non-significant results; however, the effect size was greater

in African-Americans and similar in European-Americans in these groups compared to the

overall MESA sample (supplement). SNP rs805301 was not significantly associated with

percent emphysema.

PCSK9 was nominally associated with percent emphysema in European-Americans (p=0.04)

but not African-Americans. AGER SNP rs2070600 was significantly associated with percent

emphysema among European-Americans and African-Americans (p=2.54×10−4 and

p=0.001, respectively).

Gene Expression of SNPs Flanking APOM in MESA COPD

APOM expression was significantly, inversely associated with FEV1/FVC (table 4) in an

independent sample of 101 participants in the MESA COPD Study, the characteristics of

which is described in the supplement.. We secondarily examined expression of GPANK1,

BAG6 and PCSK9. GPANK1 expression was associated with FEV1/FVC (β=−0.096; 95%CI

−0.175,−0.017; p=0.02) whereas BAG6 and PCSK9 expression were not associated with

FEV1/FVC.

Burkart et al. Page 7

Eur Respir J. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



APOM expression was positively associated with percent emphysema in minimally adjusted

models and after adjustment for BAG6 (table 4). BAG6 expression was not associated with

percent emphysema except after adjustment for APOM (p=0.01). PCSK9 was significantly

associated with percent emphysema (β=1.150; 95%CI 1.0, 1.32; p=0.016).

Association of HDL with Lung Function and Percent Emphysema in MESA

Among 3,044 participants with spirometry, higher HDL levels were independently

associated with a lower FEV1/FVC (−0.24% per 10 mg/dl HDL; 95%CI:−0.45, −0.03;

p=0.027).

Among 8,367 participants with percent emphysema, higher HDL levels were independently

associated with greater percent emphysema (0.53% increase in percent emphysema per 10

mg/dl HDL; 95% CI: 0.34, 0.73; p<0.001). Figure 3 shows the multivariate relationship of

HDL to percent emphysema, which was non-linear (p<0.001) with a plateau at HDL levels

greater than 60 mg/dL.

To assess for potential survival bias among older participants, we repeated the HDL-

emphysema analysis among 5,241 participants 45-65 years old and found consistent results.

Findings were also consistent within strata of gender, race and smoking history

(supplement).

DISCUSSION

This large, biracial study identified two new SNPs for FEV1/FVC, one in European-

Americans (rs805301) and one in the combined European-American and African-American

analysis (rs707974). Both SNPs were originally selected as APOM polymorphisms and are

now annotated in genes flanking APOM. Both replicated in an independent sample. In

addition, rs707974 was significantly associated with percent emphysema in both European-

Americans and African-Americans, APOM gene expression was associated with FEV1/FVC

and percent emphysema and HDL was associated with FEV1/FVC and percent emphysema.

The identified SNPs flanking APOM are unlikely to be causative variants but might be

linked with a functional APOM variant. Consistent with this thinking, the APOM promoter

SNP rs805297 alters APOM expression[65] and is in weak linkage disequilibrium with

rs707974 among African-Americans and European-Americans (r2=0.36 and r2=0.32,

respectively) and rs805301 among European-Americans (r2=0.23; supplementary figure 7).

APOM encodes apoM, a lipoprotein-associated plasma protein.[66] The majority of apoM is

found in HDL.[67] In murine models, modifying APOM gene expression changes apoM

plasma concentration, which affects HDL levels, pre-β-HDL formation, reverse cholesterol

transport and remodels plasma HDL.[40,67] Hence APOM gene expression alters the

function and quality of HDL.

ApoM and HDL are relevant to the pathogenesis of COPD, particularly emphysema, via

three related pathways. First, HDL inhibits tumor necrosis factor-stimulated sphingosine

kinase activity in human endothelial cells thereby increasing ceramide and decreasing

sphingosine-1-phosphate (S1P) cellular levels.[39,68] Ceramide, a second messenger
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molecule, modulates endothelial cell apoptosis and is implicated in emphysema

pathogenesis.[37,38]

Second, HDL-associated-apoM is the plasma carrier for S1P and this HDL-apoM subclass

presents S1P to the S1P1 endothelial cell receptor which is endothelium-protective.[42, 69]

S1P has an essential role in maintaining endothelial barrier integrity in the lung and is

implicated in emphysema pathogenesis.[42,70]

Third, HDL binds and incorporates alpha-1-antitrypsin. HDL-bound alpha-1-antitrypsin

inhibits extracellular matrix degradation and apoptosis in vascular smooth muscle.[71,72]

The relevance of APOM and HDL to COPD pathogenesis is further reinforced by our

findings that PCSK9 polymorphisms were associated with FEV1/FVC and, nominally,

percent emphysema and that PCSK9 gene expression was associated with percent

emphysema. PCSK9 augments the degradation of low density lipoprotein receptors[73] and

gain-of-function mutations in PCSK9 cause familial hypercholesterolemia[74]. HDL levels

in patients with PCSK9 mutations are generally increased[75-77] and most placebo-

controlled trials of PCSK9 inhibitors have shown modest increases in HDL levels.[78-82]

Furthermore, plasma levels of PCSK9 are associated with plasma apoM levels.[64]

The association of apoM and HDL with FEV1/FVC and emphysema are probably distinct

from their relationships to cardiovascular disease and we speculate that the roles of HDL

and apoM in the lungs are different from their roles in atherosclerosis. Although HDL has

long been thought to be atheroprotective, the definitive epidemiologic study on HDL and

cardiovascular disease suggested no benefit[83] and large-scale randomized clinical trials of

cholesterol ester transfer proteins, which raise HDL levels, have yet to show a benefit on

clinical cardiovascular events[84,85]. The literature on apoM in cardiovascular disease is

relatively small and mixed, with animal studies suggesting atheroprotective effects [40,41];

however, in humans, plasma apoM levels were not associated with atherosclerotic

disease[86].

Despite the strong mechanistic support implicating APOM in COPD, the latest genome build

annotates the new SNPs in genes neighboring APOM, which raises the possibility that they

are unrelated to APOM. GPANK1 may be involved in immunity[87] and BAG6 is implicated

in apoptosis;[87] both are associated with lung cancer[88,89] and neither have been

associated with cardiovascular disease. Given that genome builds change over time, the

identification of the two new SNPs in the same region in separate racial groups, the gene

expression findings, and the HDL associations all suggest that APOM rather than the other

genes are implicated in COPD pathogenesis.

Prior studies of genetic risk for emphysema include one GWAS[18] and candidate gene

association studies.[19-24] The GWAS identified BICD1 as associated with severe

emphysema on radiologist interpretation but no loci for percent emphysema.[18] The

candidate gene association studies did not include rs707974 or rs805301.

Two small studies found increased levels of HDL in severe COPD defined by spirometry.

[90,91] Conversely, lower HDL was associated with lower FEV1 in a population-based
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study (which did not report the association for FEV1/FVC[92] and advanced COPD and

emphysema patients from the Evaluation of COPD Longitudinally to Identify Predictive

Surrogate End-points Study.[93]

The study has several potential limitations. The genomic inflation factor for the meta-

analysis in European-Americans was 1.080, suggesting possible population stratification.

However, we adjusted our analysis with 10 PCs and with cohort-specific and overall

genomic control to address population stratification. Furthermore, we replicated the new

APOM SNP identified in European-Americans (rs805301) in African-Americans and both

SNPs replicated in an independent cohort and with gene expression, all of which makes

population stratification less of a concern.

Although we analyzed two phenotypes of COPD in general population samples, these traits

do not capture the entire phenotypic complexity of clinical COPD. Results for the two

phenotypes, however, were consistent with each other, similar among patients with airflow

limitation, and supported by gene expression in a study of clinical disease. Furthermore,

multiple prior genes identified for lung function in population-based samples have been

replicated in studies of clinical COPD.[14-16] Hence it is likely that the current findings

apply to clinical COPD.

The association between HDL and percent emphysema may be subject to confounding and

reverse causation, a small study suggested that HDL levels decrease in COPD patients

undergoing lung transplantation.[94] However, we adjusted for multiple potential

confounders in this well-phenotyped cohort and the genetic studies are unlikely to be subject

to reverse causation.

Similar to other population-based GWAS, we used pre-bronchodilator spirometry for lung

function measurement. Percent emphysema was measured on partial-lung CT scans

however; we previously validated percent emphysema on partial-lung scans compared to

full-lung scans in this cohort and have confirmed multiple prior hypotheses using them.

[28,57] Percent emphysema, like lung function, is related to gender, body size, ancestry and

socioeconomic status,[95] in addition to current smoking.[96] We adjusted, however, for all

of these variables in the analyses.

In conclusion, we identified one new SNP related to FEV1/FVC among European-

Americans and a second new SNP in the combined European-American and African-

American analysis that was also associated with percent emphysema. Both new SNPs flank

APOM, and APOM expression was associated with FEV1/FVC and percent emphysema.

APOM encodes apoM, which is primarily bound to HDL, and higher levels of HDL were

associated with lower FEV1/FVC and greater percent emphysema. Together, these findings

suggest a novel effect of the APOM/HDL-cholesterol pathway in the pathogenesis of COPD

and emphysema. Further examination of this pathway is warranted to determine if it is

targetable to treat or prevent COPD, and ongoing clinical trials of PCSK9-inhibitors[78-82]

and other medications that raise HDL levels[85] may consider monitoring for pulmonary

effects.
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Figure 1.
Manhattan Plots of association results for FEV1/FVC stratified by race and combined.

Manhattan Plots ordered by chromosome position of association results for FEV1/FVC. Top

3 loci are labeled with arrows. (A) Meta-analysis of 38,294 SNPs among 20,077 European-

American participants. The solid black line represents 1 × 10−6. (B) Meta-analysis of 44,416

SNPs among 6,900 African-American participants. The solid black line represents 1 × 10−6.

(C) Meta-analysis of SNPs among combined European-American & African-American

participants. The solid black line represents 1 × 10−6.

Abbreviations: FEV1/FVC = ratio of forced expiratory volume in one second over forced

vital capacity.
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Figure 2.
Regional Association Plots of top SNPs flanking APOM (rs805301, rs707974) and PCSK9

SNPs for FEV1/FVC

The selected SNPs with the lowest p value are illustrated by the purple diamond. The

correlations (r2) of surrounding SNPs in the region are indicated by the colors shown on the

graph. For the SNPs flanking APOM(rs805301 and rs707974), a 600kb flanking size was

selected to include the AGER SNP on the plot whereas 500kb flanking size was selected for

the PCSK9 SNP. Plots were generated using LocusZoom.[97] The Genome builds/LD

populations implemented were hg 18/HapMap Phase II CEU and hg/19 1000 Genomes Nov

2010 AFR for European-American and for African-American participants, respectively.

Abbreviations: SNPs = single nucleotide polymorphisms, APOM = apolipoprotein M,

PCSK9 = proprotein convertase subtilisin/kexin type 9, FEV1/FVC = ratio of forced

expiratory volume in one second over forced vital capacity.
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Figure 3.
Multivariate association between HDL and percent emphysema

Results of multivariate analyses of the relationship between percent emphysema and plasma

HDL among 8,367 MESA SHARe participants are shown. The solid line indicates smoothed

regression line adjusted for age, sex, race/ethnicity, height, weight, educational attainment,

scanner, tube current, total cholesterol, exercise, pack-years, cigarettes per day, alcohol use,

inhaled steroids and use of statins. Figure and p value was produced using a loess smoothing

function in a generalized additive model in R/GAM (R version 2.13.0).Dashed lines

indicated 95% confidence intervals.
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Table 2

Top five SNPS associated with the FEV1/FVC ratio among European-American and African-American

participants in the Candidate-gene Association Resource (CARe) cohorts

European-American Participants (n=20,077)

SNP ID

(function
#
)

Chr. Gene
¶ Coded

allele
Allele

freq.
+ β

§
 (SE) p-value

rs2070600
(ns) 6 AGER/RNF5 T 0.05 0.162 (0.026) 2.19 × 10−10

rs805301
(intron) 6 BAG6/APOM C 0.37 − 0.054 (0.011) 1.32 × 10−6

rs1286664
(intron) 3 RARB T 0.17 0.067 (0.014) 2.07 × 10−6

rs6941112
(intron) 6 STK19/C4B A 0.33 0.053 (0.011) 2.90 × 10−6

rs3117582
(upstream) 6 BAG6 T 0.89 0.081 (0.018) 5.23 × 10−6

African-American Participants (n=6,900)

SNP ID

(function
#
)

Chr. Gene
¶ Coded

allele
Allele

freq.
+ β

§
 (SE) p-value

rs1951269
(unknown) 14 NG/ NFKBIA A 0.78 −0.097 (0.021) 4.08 × 10−6

rs707974
(3′UTR) 6 GPANK1/APOM G 0.02 0.291 (0.064) 5.17 × 10−6

rs565436
(intron) 1 PCSK9 A 0.60 0.08 (0.018) 9.32 × 10−6

rs533375
(intron) 1 PCSK9 A 0.25 −0.083 (0.021) 5.29 × 10−5

rs7156874
(intron) 14 PSMA6 A 0.02 0.271 (0.068) 7.33 × 10−5

Combined European-American and African-American Participants (n=26,977)

SNP ID

(function
#
)

Chr. Gene
¶ Coded

allele
Allele

freq.
+ β

§
 (SE) p-value

rs2070600
(ns) 6 AGER/RNF5 T 0.04 0.168 (0.025) 8.37 × 10−12

rs1286664
(intron) 3 RARB T 0.18 0.067 (0.014) 1.60 × 10−8

rs805301
(intron) 6 BAG6/ APOM C 0.43 −0.050 (0.009) 1.26 × 10−7

rs707974
(3′UTR) 6 GPANK1/ APOM G 0.10 0.088 (0.016) 1.38 × 10−7

rs6941112
(intron) 6 STK19/C4B A 0.30 0.052 (0.011) 1.22 × 10−6

The European-Americans SNPs represent five loci (r2 range; 0.005-0.20).

Abbreviations: SNP= single nucleotide polymorphism, FEV1/FVC= ratio of forced expiratory volume in one second over forced vital capacity,

Chr = chromosome, Ref = reference, β = effect estimate, SE = standard error, ns=non-synonymous coding SNP, UTR = untranslated.

Gene abbreviations: AGER = advanced glycosylation end product-specific receptor (also known as RAGE), RNF5 = ring finger protein 5, BAG6=
BCL2-associated athanogene 6 (also known as BAT3), APOM = apolipoprotein M, RARB = retinoic acid receptor, beta, STK19 = serine/threonine
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kinase 19, C4B = complement component 4B (Chido blood group), NG = near gene, NFKBIA = nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha, GPANK1 = G patch domain and ankyrin repeats 1, PCSK9 = proprotein convertase subtilisin/kexin type 9,
PSMA6 = proteasome (prosome, macropain) subunit, alpha type, 6.

#
Function reported is reported dbSNP Genome Build 37.3 (http://www.ncbi.nlm.nih.gov/projects/SNP/)

¶
If two genes are listed for the SNP, the first gene listed was annotated using dbSNP (Genome Build 37.3) and the second gene was annotated

using the IBC chip (annotation from Genome Build 36). If there is only one gene listed, there was no discrepancy between Genome Builds 37.3 and
Build 36.

+
Frequency of allele labeled in table as “coded allele”

§
rank-normalized residuals of FEV1/FVC adjusted for age, age2, height, height2, sex, smoking status, pack-years, pack-years2 the first 10

principal components (PCs) for ancestry, genomic control at the cohort and meta-analysis level. A cohort-specific site covariate was included in the
regression model for cohorts with multiple sites (ARIC, CARDIA, CHS, and MESA).
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Table 3

Association of SNPs flanking APOM with percent emphysema among European-American and African-

American participants in MESA.

European-American Participants (n = 2,552)

SNP Ref. allele Allele freq.
#

β
¶
 (SE) p-value

rs805301 C 0.37 +0.019 (0.018) 0.29

rs707974 G 0.10 −0.098 (0.028) 4.74 × 10−4

African-American Participants (n = 2,483)

SNP Ref. allele Allele freq.
#

β
¶
 (SE) p-value

rs805301 C 0.58 + 0.013 (0.018) 0.46

rs707974 G 0.02 −0.160 (0.061) 0.009

Combined European-American and African-American Participants (n = 5,035)

SNP Ref. allele Allele freq.
+

β
¶
 (SE) p-value

rs805301 C +0.015 (0.001) 0.14

rs707974 G −0.094 (0.022) 1.67 × 10−5

Abbreviations: SNP= single nucleotide polymorphism, No = number of participants, β = effect estimate, SE = standard error, HDL = high density
lipoprotein cholesterol, PCs = principal components for ancestry

We performed association testing under an additive genetic model stratified by race and subsequently in the combined population controlling for

race/ethnicity for each quantitative phenotype. Genome-wide significant set at 10×−6 using Bonferonni correction. The SNPs are not in tight LD

(r2 = 0.059)

#
Reference allele frequency

¶
Log transformed percent emphysema-950 adjusted for adjusted for age, sex, site, CT scanner, height, weight, weight greater than 220 pounds,

cigarettes per day, pack-years, asthma, and PCs.

+
Not reported, combined across races
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Table 4
Association of APOM gene expression with the FEV1/FVC and CT percent

emphysema in 101 participants in the MESA COPD Study

Mean difference in
FEV1/FVC per increase in

APOM gene expression
#

(95% CI)

p-value

Mean difference in

Percent Emphysema
¶
 per

increase in APOM gene

expression
#
 (95% CI)

p-value

Model 1 −0.091 (−0.178, −0.003) 0.04 1.05 (0.10, 2.0) 0.03

Model 2 −0.092 (−0.178, −0.003) 0.04 1.04 (0.13, 1.95) 0.03

Model 3 0.76 (−0.14, 1.67) 0.10

Model 4 1.14 (0.20, 2.09) 0.02

Abbreviations: FEV1/FVC= ratio of forced expiratory volume in one second over forced vital capacity, APOM = apolipoprotein M

Model 1: Adjusted for age, gender, cohort and race/ethnicity

Model 2: Additionally adjusted for smoking status, and pack-years

Model 3: Additionally adjusted for height, and weight

Model 4: Additionally adjusted BAG6 (probe-set 210208)

We tested the association of gene expression with FEV1/FVC and with percent emphysema in the MESA COPD Study implementing linear

regression models weighted to account for the sampling schema as described in the supplement.

#
APOM probe-set 214910_s_at

¶
Log-transformed CT percent emphysema below −950 HU
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