COMMUNICATION

ITERATIVE BEHAVIOUR OF ONE-DIMENSIONAL THRESHOLD AUTOMATA

E. GOLES
Depto. de Mathematicas, Univ. de Chile, Casilla 5272, Correo 3, Santiago, Chile and CNRS, TIM3, Grenoble, France

M. TCHUENTE
CNRS, TIM3, Institut I.M.A.G., BP 68, 38402 Saint Martin d'Hères Cédex, France

Communicated by C. Benzaken
Received 6 March 1984

This paper presents two results on the dynamical behaviour of some finite binary one-dimensional threshold automata, where the interaction coefficient between two cells \(i, j \) is a decreasing function of \(|i-j|\).

1. Introduction

A finite binary one-dimensional threshold automaton is a 5-tuple \((L, n, \{0, 1\}, b, a)\) where

- \(L \in \mathbb{N}^*\) is the number of cells in the one-dimensional array. Hereafter, the cells are denoted by integers \(i \in \{1, 2, \ldots, L\}\).
- \(n \in \mathbb{N}^*\) is the neighborhood size which means that any cell \(i\) is connected to \(u = \text{Max}\{1, i-n\}, u+1, \ldots, \text{Min}\{L, i+n\}\).
- \(\{0, 1\}\) is the set of states that can be assumed by any cell.
- \(b = (b_1, \ldots, b_L) \in \mathbb{N}^L\) is the threshold vector.
- \(a = (a_{-n}, \ldots, a_0, \ldots, a_n) \in \mathbb{N}^{2n+1}\), where \(a_k, -n \leq k \leq n\) is the interaction coefficient between two cells \(i\) and \(i + k\).

Starting from a configuration \(x^{(0)} = (x_1^{(0)}, \ldots, x_L^{(0)}) \in \{0, 1\}^L\) at time \(t = 0\), where \(x_i^{(0)}\) is the initial state of cell \(i\), the system evolves in a parallel and synchronous manner. The configuration \(x^{(t+1)}\) at time \(t + 1\) is the image of \(x^{(t)}\) under the global transition function \(F\) and it is denoted by \(x^{(t+1)} = F(x^{(t)})\) where

\[
 x_i^{(t+1)} = \begin{cases}
 1 & \text{if } \sum_{k=-n}^{n} a_k x_{i+k}^{(t)} \geq b_i, \\
 0 & \text{otherwise},
 \end{cases}
\]
We assume the following boundary conditions:

\[0 = x_{-n+1}^{(t)} = \cdots = x_0^{(t)} = x_{L+1}^{(t)} = \cdots = x_{L-n}^{(t)} \text{ for any } t \geq 0. \]

2. The Results

Several authors [1, 3, 4, 5, 6, 7, 8] have studied the dynamical behaviour of such structures for particular choices of the interaction coefficients \(a_k, -n \leq k \leq n \). Here we are interested in the context where the interaction coefficient between two cells \(i, j \) is a decreasing function of \(|i-j| \), i.e.

\[a_0 \geq a_1 \geq a_2 = a_{-2} \geq \cdots \geq a_n = a_{-n} \geq 0. \]

Since \(\{0, 1\}^L \) is finite, any sequence \(\{F^r(x) : r \geq 0\} \) is ultimately periodic of period \(T(x) \geq 1 \), that is to say that \(F^{r+k}(x) \neq F^r(x) \) for \(0 < k < T(x) \), and there exists \(p(x) \geq 0 \) such that \(F^{r+p(x)}(x) = F^r(x) \) for any \(r \geq p(x) \).

Since the interaction coefficients satisfy the symmetry condition \(a_k = a_{-k} \) for any \(k \), in the automata studied here, we know from [1] that \(T(x) \leq 2 \) for any \(x \in \{0, 1\}^L \). Here we try to discriminate between threshold automata satisfying \(T(x) = 1 \) for any \(x \), and those for which there exists a configuration \(x \) with \(T(x) = 2 \).

Theorem 1. Let \(a_0, a \in \mathbb{N}^* \) and \(a_k = 1 \) for \(1 \leq |k| \leq n \).

(i) If \(n < \frac{3a - 2}{2} \), then \(\max_x T(x) = 1 \) for any \(L \in \mathbb{N}^* \) and \(b \in \mathbb{N}^L \).

(ii) If \(n \geq 5a - 2 \), then for an appropriate choice of \(L \in \mathbb{N} \) and \(b \in \mathbb{N}^L \), \(\max_x T(x) = 2 \).

Comment. For a fixed \(a_0 \in \mathbb{N}^* \), this theorem gives a localization of a critical neighborhood size \(n \), for which the dynamics of the system can change from a stable to an oscillating behaviour.

Outline of the Proof. (i) Let \(x, y \in \{0, 1\}^L \) be such that \(x \neq y \), \(F(x) = y \) and \(F(y) = x \), and let us denote \(u = x - y \). It can be shown that [8]:

\[u_i \neq 0 = u_i (au_i + \sum_{k=1}^a (u_{i-k} + u_{i+k})) < 0. \]

Thus, if \(S(i) = \sum_{k=-n}^a u_{i+k} \), then

\[u_i = 1 \Rightarrow S(i) \leq -a, \]

\[u_i = -1 \Rightarrow S(i) \geq a. \]

Since, for \(i < j \),

\[S(j) - S(i) = (S(i+1) - S(i)) + (S(i+2) - S(i+1)) + \cdots + (S(j) - S(j-1)) = (u_{i+1+n} - u_{i-n}) + (u_{i+2+n} - u_{i+1-n}) + \cdots + (u_{j+n} - u_{j-1-n}). \]
it follows from (2) and (3) that:

(4) \(i < j \) and \(u_i \cdot u_j = -1 \Rightarrow j - i \geq a, \)

(5) \(i < j, \ u_i \cdot u_j = -1 \) and \(u_{i-n} - u_{i+1-n} - \cdots - u_{j-1-n} - 0 \Rightarrow j - i \geq 2a. \)

By successive application of properties (1) to (5), it can be shown that \(n \geq \frac{3}{2}a - 2. \) The details can be found in [2].

(ii) For \(a = 2r, \ r > 0, \) and \(n = 5a - 2 = 10r - 2, \) let us take \(L = 37r - 5 \) and let us denote by \(c_{u,v} \) the \(L \)-vector defined by the two parameters \(u, v \) as shown in the following Table 1. Clearly, \(c_{0,1} \neq c_{1,0} \) and \(F(c_{0,1}) - c_{1,0}, F(c_{1,0}) = c_{0,1}. \)

The case \(a = 2r + 1 \) can be treated in a similar way [2].

<table>
<thead>
<tr>
<th>Partial length</th>
<th>6r-1</th>
<th>3r</th>
<th>3r-1</th>
<th>4r</th>
<th>3r-1</th>
<th>4r</th>
<th>3r-1</th>
<th>3r-1</th>
<th>3r-1</th>
<th>4r-1</th>
<th>r</th>
</tr>
</thead>
</table>

Table 1

<table>
<thead>
<tr>
<th>Threshold component</th>
<th>3r-5r</th>
<th>5r</th>
<th>>7r</th>
<th>6r</th>
<th>>7r</th>
<th>6r</th>
<th>>7r</th>
<th>5r</th>
<th>>7r</th>
<th>3r-3r</th>
</tr>
</thead>
</table>

Theorem 2. If \(a_k = n - |k| \) for \(k = -n, \ldots, 0, \ldots, n, \) then \(\text{Max}_x T(x) = 1 \) for any \(L \in \mathbb{N} \) and \(b \in \mathbb{N}^L. \)

Proof. Let \(C \in M_{L \times L}(R) \) be the matrix defined by

\[
c_{ij} = \begin{cases} a_k & \text{if } -n \leq i - j = k \leq n, \\ 0 & \text{otherwise}. \end{cases}
\]

Let \(x, y \in \{0, 1\}^L \) be such that \(F(x) = y \) and \(F(y) = x, \ x \neq y, \) and let \(u = x - y. \) It follows from Property 1 (see the proof of Theorem 1) that

\[
u_i \neq 0 \Rightarrow u_i \cdot (Cu)_i < 0.
\]

Hence \(u^t C u < 0, \) and this contradicts the fact that \(C \) is positive definite.

Comment. Some extensions of Theorems 1,2 to finite two-dimensional structures have been studied in [2].

References

