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Abstract
Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of
disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical
mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use
single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by
probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic
Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two
different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces.
Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET)

*To whom correspondence should be addressed. raulpjc@biology.columbia.edu and jfernandez@columbia.edu.
Author Contributions R.P.-J., J.L. and J.M.F designed the research. R.P.-J., J.L., P.K., I. S.-R. and A.P.W. carried out the
experiments. R.P.-J., J.L., P.K., I. S.-R. and J.M.F. conducted the data analysis. D. R.-L. and J.M.S.-R. provided Trx from E. coli;
A.C. provided Trxm from pea; A.H. provided human Trx1; A.M.-V. provided human Trx2; K.B. provided Trx1 from P. falciparum;
S.-H. C. and J. B. provided Trx2 from E. coli; E.G. and J.P.J. provided Trxh1 and Trxh3 from poplar. R.P.-J. and E.G. performed the
phylogenetic analysis. J.-L. and B.J.B. performed computational analysis and molecular dynamics simulations. R.P.-J., J.-L., P.K. and
J.M.F. wrote the paper. All authors have actively participated in revising the manuscript.

NIH Public Access
Author Manuscript
Nat Struct Mol Biol. Author manuscript; available in PMC 2010 February 01.

Published in final edited form as:
Nat Struct Mol Biol. 2009 August ; 16(8): 890–896. doi:10.1038/nsmb.1627.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



whereas bacterial-origin Trxs exhibit both nucleophilic substitution (SN2) and SET reactions. A
computational analysis of Trx structures identifies the evolution of the binding groove as an
important factor controlling the chemistry of Trx catalysis.

Enzymes are exceptional catalysts able to accelerate reaction rates by several orders of
magnitude1. However, little is known about how enzymes developed their chemical
mechanisms to obtain high reaction rates and specificity. The mechanisms of numerous
enzymatic reactions have been studied using protein biochemistry and structural biological
techniques such as X-ray and NMR2,3. These studies have been useful in identifying many
structural features and conformational changes necessary for the catalytic activity of
enzymes. Nonetheless, the dynamic subÅngström scale rearrangements of the participating
atoms necessary for catalysis cannot be detected by these techniques. Recently developed
single molecule techniques have shown promise in uncovering the dynamics of enzymatic
activity at a length scale that was previously impossible to observe. For example, both
optical tweezers and fluorescence techniques have been used extensively to detect the
motions of molecular motors, a large class of ATP-consuming force generating enzymes4,5.

In this work, we use single molecule force-clamp spectroscopy techniques to investigate the
chemical mechanisms of catalysis of disulfide reducing enzymes called thioredoxins (Trx).
These oxido-reductases are present in all known organisms from bacteria to human. Trxs
posses a highly conserved active site (CXXC) that catalyzes the reduction of target disulfide
bonds being involved in a multitude of cellular processes6,7. Several methods based on
spectrophotometry have been widely used to determine the activity of Trx such as
monitoring of oxidation of NADPH in the presence of Trx reductase or ribonucleotide
reductase8,9; the observation of the turbidity of solutions containing insulin, which readily
aggregates after reduction of its disulfide bonds9 or the use of Ellman's reagent (DTNB),
where upon reduction by thiol groups generates products that can be easily detected with a
spectrophotometer6. The change in tryptophan fluorescence has also been used to measure
rates of Trx oxidation and reduction10. While highly effective in monitoring the overall
activity of Trx enzymes, these methods do not probe the chemical mechanisms underlying
the catalytic activity of these enzymes.

Recent single molecule force-spectroscopy experiments have demonstrated that the
application of a mechanical force to a substrate disulfide bond can regulate the catalytic
activity of thioredoxins11, revealing different chemical mechanisms of reduction that could
be readily distinguished by their sensitivity to an applied force. A simple form of catalysis in
E. coli Trx corresponded to a straightforward SN2 type chemical reaction characterized by
an exponential increase of the rate of reduction with the pulling force12,13. This SN2 type
reaction was absent in human Trx. Instead, a force-independent disulfide reduction
mechanism was observed. An additional chemical mechanism of reduction was
characterized by its rapid inhibition by a force applied to the substrate disulfide bond. This
chemical mechanism is unique to disulfide bond reduction catalyzed by Trx enzymes and
was explained by a Michaelis-Menten type reaction where the binding of the enzyme to the
stretched polyprotein and the subsequent structural organization of the participating sulfur
atoms precede the chemical reaction.

Thus, the single molecule reduction assay that we have previously developed is able to
distinguish the chemistry of a simple SN2 reaction from more elaborate pathways for the
reduction of disulfide bonds which are unique to Trx enzymes. It is of interest then to
consider the application of these sensitive single molecule techniques to study the evolution
of chemical mechanisms in this family of enzymes. The simplest evolutionary hypothesis is
that the ancient forms of Trx had capabilities that were only comparable to those of simple
reducing agents. Evolutionary pressures then drove the enzymes towards developing unique
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and more efficient mechanisms of reduction. As a first step towards understanding the
evolution of Trx chemistry, we have applied the single molecule assay to examine the
chemical mechanisms of reduction of a sample of eight extant Trx enzymes covering four
kingdoms of life. From this analysis we report several new advances. First, we demonstrate
that the differences in the chemical mechanisms of reduction between E. coli Trx and human
TRX (also known as TXN) that we had reported previously, can now be generalized to
enzymes of bacterial vs. eukaryotic-origin. We also demonstrate a third mechanism for
disulfide bond reduction that corresponds to a single-electron transfer reaction and that is
present in all Thioredoxin enzymes. Finally, through a computational analysis of Trx
structures, we show that the changes in the catalytic chemistry correlate well with a
deepening of the binding grove observed in Trxs of eukaryotic origin. These latter results
identify the evolution of the binding groove as an important structural adaptation controlling
the disulfide reduction chemistry in the Trx family of enzymes.

RESULTS
Selection of thioredoxins from different species

In order to investigate the variety of catalytic mechanisms developed by Trx we have
selected of a set of Trxs belonging to a representative group of species from different
kingdoms, i.e., animalia, bacteria, protista and plant (covering two domains of life: bacteria
and eukaryotes). Trx is widely distributed in all living organisms from bacteria to mammals.
In addition, the existence of a second paralogous Trx gene (TXN2) seems to be common in
animals, protists and Gram-negative bacteria 14-18. In protists and animals, Trx1 is located
in the cytoplasm whereas Trx2 is present in mitochondria18,19. Interestingly, mitochondrial
Trx2 from mammals has been shown to have higher similarity with E. coli Trx1 than with
cytosolic Trx1 from mammals16. In the case of plants, a rich variety of Trx genes can be
found encoding more than 20 different types of Trxs20 that are classified into six isoforms:
Trxf, h, m, x, y and o. The f, m, x and y forms are plastidic Trxs; h forms are mainly
cytosolic and o forms are found in mitochondria21. In this study, we have included both
human cytosolic and mitochondrial Trxs from animals; poplar Trxh1 (featuring a CPPC
active site instead of the canonical CGPC), poplar Trxh3 and pea chloroplastic Trxm from
plants; E. coli Trx1 and Trx2 from bacteria, and finally we have chosen Plasmodium
falciparum (malaria parasite) Trx1 from protists.

A sequence alignment of the Trxs of interest shows that the residues around the active site
are highly conserved (Supplementary Fig. 1). The construction of a phylogenetic tree (Fig.
1), incorporating additional Trxs from the three domains of life, classifies E. coli Trx1 and
Trx2, human Trx2 and pea Trxm as “bacterial type” Trxs (top branches in Fig.1) and human
Trx1, poplar Trxh1 and h3 and P. falciparum Trx1 as “eukaryotic-like” Trxs (botton
branches in Fig.1). The construction of a larger tree incorporating over 200 Trx sequences
(not shown) corroborates that the sequences used are widely distributed and that they are
representative for the entire Trx family.

Force-dependent chemical kinetics of disulfide reduction
Similar to our previous work, we have used an atomic force microscope in its force-clamp
mode to study the chemistry of disulfide reduction by Trx11,22. Briefly, we have used as a
substrate a polyprotein composed of eight domains of the 27th module of human cardiac titin
in which each module contains an engineered disulfide bond between the 32nd and 75th

positions (I27G32C-A75C)8 11. A first pulse of force (175 pN, 0.3 s) is applied to the
polyprotein which allows the rapid unfolding of the I27G32C-A75C modules up to the
disulfide bond. The individual unfolding can be registered as steps of ~10.5 nm per module.
After the first pulse, the disulfide bonds become exposed to the solvent where the Trx
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molecules are present in the reduced form due to the presence of Trx reductase and NADPH
(Trx system)6. A second pulse of force is applied to monitor single disulfide reductions by
Trx enzymes that are recorded as a second series of steps of ~13.5 nm per domain (Fig.2A
and B). We have accumulated several traces per force (15-50) which have been averaged
and fitted with a single exponential with a time constant τ (Fig.2C and D). We thus obtain
the reduction rate at a given force (r = 1/τ).

We have applied our single molecule assay to obtain the force dependency of the rate of
reduction by the selected Trxs (Fig.3). From these data we can readily distinguish three
different types of force-dependencies. First, all tested Trx enzymes showed a negative force
dependency in the range 30-200 pN. Second, all Trx enzymes from bacterial origin show
that after reaching a minimum rate at around 200 pN, the rate of reduction increases
exponentially at higher forces. Third, at forces higher than 200 pN, enzymes from
eukaryotic origin show a rate of reduction that becomes force independent. Therefore, our
previous observations in E. coli and human Trxs can now be generalized to bacterial and
eukaryotic-origin Trxs.

We have previously proposed that the reduction mechanism observed when the substrate is
stretched at low forces (30-200 pN) is similar to a Michaelis-Menten (MM-SN2) reaction in
which the formation of an enzyme-substrate complex is determinant11. Upon binding, the
substrate disulfide bond needs to rotate in order to achieve the correct geometry necessary
for an SN2 reaction to occur, i.e. the three involved sulfur atoms forming a ~180°
angle11,22,23. This rotation causes the shortening of the substrate polypeptide along the
stretching force axis determined by the negative value of Δx12 in our kinetic model (Table
1, Fig.4 and Supplementary Fig. 2). This mechanism is rapidly inhibited as the force
increases generating the negative dependence of the reduction rate with the pulling force in
all Trx enzymes (Fig.3). Here we demonstrate that, while the absolute rate of reduction
varies from enzyme to enzyme, the general characteristics of this mechanism of reduction
are apparent in all of them.

According to the parameters obtained from the fitting to a simple MM-SN2 type kinetic
model (Table 1), we found that an extrapolation to zero force predicts rate constants ranging
from 1.2 × 105 M-1·s-1 for poplar Trxh3 to 6.5 × 105 M-1·s-1 for human Trx2. These values
are remarkably similar to those previously obtained using insulin disulfides as substrates and
E. coli Trx8. The value of Δx12, remains below 1 Å except for E. coli Trx2 and poplar
Trxh3 with values over 1 Å (Table 1). These high values of Δx12 represent a higher rotation
angle of the substrate disulfide bond for the SN2 reaction22. This mechanism is unique to
Trx enzymes and it seems to be the result of evolutionary pressure toward developing an
efficient mechanism of disulfide reduction not possible with simple chemical reagents12.

When forces over 200 pN are applied to the substrate, the MM-SN2 mechanism is blocked
and a second force-dependent mechanism of reduction becomes dominant. This is true in all
types of Trx enzymes. In enzymes of bacterial origin this high force mechanism (Fig. 3A)
appears to be analogous to that of simple chemical compounds such as cysteine, glutathione
or dithiotreitol (DTT) which reduce disulfide bonds through a force-dependent SN2 thiol/
disulfide exchange reaction with bond elongation at the transition state12,13. We have
incorporated this reaction in our kinetic model (k02), obtaining a value for the elongation of
the disulfide bond at the transition state of ~0.18 Å (Δx02 in Table 1), similar to the values
obtained when using cysteine as a nucleophile (~0.2 Å)12. The absence of the SN2 like
mechanism seems to be common to all eukaryotic-origin Trx. Instead, the rate of the
reaction becomes force-independent at higher forces (Fig. 3B). This force-independent
mechanism gives a constant rate of reduction that ranges from 0.2 to 0.4s-1 (inset in Fig.3B).
We speculate that in enzymes of bacterial origin, the minimum value of the reduction rate is

Perez-Jimenez et al. Page 4

Nat Struct Mol Biol. Author manuscript; available in PMC 2010 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



also limited by this force-independent “floor” in the rate of reduction which varies in the
range 0.2 to 0.4s-1 (inset in Fig.3A). We have incorporated this mechanism into our kinetic
model in the form of a constant parameter λ (see kinetic model in supplementary
information and Supplementary Fig. 2), which contributes equally to the reduction rate
throughout the entire range of forces (Table 1).

An interesting possibility that may explain this force-independent chemical mechanism is a
single-electron transfer reaction (SET) via tunneling, a process that has been observed in
enzymes containing metallic complexes3,24. In addition, it has been suggested that SET are
highly favored when steric hindrance occurs25. To test whether an electron transfer mode of
reduction would be force independent, we have investigated the kinetics of disulfide
reduction under force by a metal. Some metals participate in oxidation/reduction processes
in proteins via electron-transfer reactions governed by the reduction potential26,27.
Concretely, we have studied the reduction of disulfide bonds by Zn nanoparticles (diameter
<50 nm)28. In sharp contrast to all other reducing agents that we have studied, the rate of
reduction of disulfide bonds by Zn is force-independent (Fig. 4A). Due to the experimental
difficulty of working at low forces with Zn nanoparticles, we only include experiments at
forces over 200 pN. Our results support the idea that the force-independent mechanism is a
barrier free electron tunneling reaction that does not require the precise orientation for the
SN2 reaction.

Another piece of evidence in support of the SET mechanism can be obtained from the
analysis of the concentration dependencies of the MM-SN2 and SET reduction mechanisms.
We have obtained data for reduction kinetics by human Trx at different forces and
concentrations (50-600 pN and 2-15 μM of Trx) showing that the low force MM-SN2
mechanism (50-200 pN) is clearly dependent on the concentration of the enzyme, whereas
the high force SET mechanism (>300 pN) is essentially concentration independent
(Supplementary Fig. 3). As expected for first-order MM-SN2 mechanism where substrate
binding to the groove is determinant, the rate of reduction shows linear concentration
dependence when working below saturating concentrations of Trx enzyme (<15 μM)11. On
the other hand, considering that the Trx/NADPH system is in equilibrium due to the
presence of TrxR29,30, the redox potential of Trx will remain constant (from the Nernst
equation). Therefore, the potential difference between Trx and substrate, and thus the rate of
electron transfer31, will be also constant in this Trx concentration range. Hence, the SET
mechanism should be essentially independent of the enzyme concentration32,33; this is
verified in Supplementary Fig. 3.

Our results suggest that there are three distinct mechanisms of reduction that operate
simultaneously in a Trx enzyme. These mechanisms are identified by their force-
dependency as illustrated in Figure 4. The most complex mechanism is characterized by a
negative force dependency and is unique to enzymatic catalysis by Trx (Fig. 4A, B). This
enzymatic mechanism of reduction is characterized by a MM-SN2 reaction between the
substrate polypeptide and the binding groove of the enzyme, followed by a rotation of the
substrate disulfide bond to gain position for the SN2 reduction mechanism 11,22 (Fig. 4A,
B). A much simpler mechanism is that of a regular SN2 reaction, characterized by a rate of
reduction that increases exponentially with the applied force. This mechanism is well
represented by nucleophiles such as L-cysteine (Fig. 4A), glutathione and DTT11,12. In this
mechanism the substrate disulfide bond and the catalytic cysteine of the enzyme orient
themselves with the pulling force, without needing a rotation of the substrate disulfide bond
(Fig. 4C). We suspected that this mechanism would be possible only if the Trx enzyme had
a shallow binding grove that allowed many other orientations of the substrate-enzyme
complex. Finally, the third mechanism is the force-independent barrier-free electron
tunneling transfer mechanism illustrated by the action of metallic zinc (Fig. 4D). It is
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inevitable that if the disulfide bond gets close enough to the thiolate anion of the catalytic
cysteine, the electron tunneling will occur, albeit at a very low rate.

Thus, comparing the data of Figures 3 and 4, it is clear that the main difference between
enzymes of bacterial and eukaryotic origin is the elimination of the high force simple SN2-
like mechanism of reduction. We speculate that this drastic change in the catalytic chemistry
would be caused by changes in the structure of the enzyme as it evolved. The most salient
feature in the structure of Trx enzymes is the binding groove into which the target
polypeptide first binds, to be subsequently reduced by the exposed thiol of the catalytic
cysteine (Fig. 5A).

Structural analysis and molecular dynamics simulations
In order to study the role of the structure in the chemical behavior of Trxs, we have analyzed
the structure of the binding groove of a set of bacterial and eukaryotic-origin Trxs. We have
studied three eukaryotic-origin enzymes: human Trx1, A. thaliana Trxh1 and spinach Trxf,
and three bacterial-origin enzymes: human mitochondrial Trx2, E. coli Trx1 and C.
reinhardtii Trxm. From the X-ray or NMR structures we have defined structural axes which
allow us to calculate the depth and width of the binding groove in the region surrounding the
catalytic cysteine (see Fig. 5A and supplementary information for details). We found that
eukaryotic Trx enzymes have binding grooves that are several Å deeper than those of
bacterial origin (Fig.5B). By contrast, the width of the binding groove remained the same
(Supplementary Fig. 4). We explored the consequences of a deepening binding groove using
molecular dynamics (MD) simulations to probe the mobility of a bound polypeptide (see
supplementary information for procedures). For the MD simulations we have considered a
set of enzyme structures obtained with mixed disulfide intermediates between the catalytic
cysteine and a cysteine in the bound substrate. Such structures capture the general
disposition of the substrate in the catalytic site of the Trx enzyme. We have used three
eukaryotic complexes: human Trx1 with the substrate REF-1, human Trx1 with NF-κB and
barley Trxh2 with protein BASI, and two bacterial complexes: E. coli Trx1 with Trx
reductase and B. subtilis Trx with ArsC complex.In order to compare these structures, 13
residues of the substrates are taken into account, with the binding cysteine always set to be
the 7th residue. For the MD simulations we have removed the substrate-enzyme disulfide
bond to allow substrate mobility. Fig. 5C shows that the shallow binding groove of bacterial
Trxs allows the substrate to be mobile. By contrast, the deeper groove found in Trx enzymes
of eukaryotic origin tends to freeze the substrate into a much smaller range of
conformations. Similarly, the measured distribution of the distances between the reacting
sulfur atoms is smaller and more narrowly distributed in the deeper binding groove of Trx
enzymes of eukaryotic origin than in those with the shallower grooves found in enzymes of
bacterial origin (Fig. 5D).

As an additional test, we have carried out MD simulations in which the substrate has been
removed from the pdb file for two thioredoxin complexes; one from eukaryotic origin,
barley Trxh2 with protein BASI (2iwt), and the other from bacterial origin, B. subtilis Trx
with ArsC complex (2ipa). As shown in Supplementary Fig. 5, there is no significant
difference in the dynamics of the groove between the bacterial and the eukaryotic
thioredoxins. In fact, the averaged value of the RMSD difference is 0.035±0.028 for 2iwt
and 0.023±0.031 for 2ipa (the error is given by the S.D.). These results corroborate that the
large differences in the mobility of the substrate that we report (Fig.5C and D) are due to the
different binding constraints of the groove.

Finally, we have compared the B-factor distribution of the substrate from the pdb files. The
B-factors of protein crystal structures reflect the fluctuation of atoms around their average
positions and provide information about protein dynamics. In particular we have compared
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the B-factor distribution of eukaryotic barley Trxh2 bound to protein BASI (2iwt) with the
one from E. coli Trx bound to Trx reductase (1f6m) both from X-ray experiments
(Supplementary Fig. 6). Consistent with our simulation results (Fig. 5C), the substrate in
1f6m (bacterial-origin thioredoxin) has larger B-factor than that of eukaryotic thioredoxin
2iwt.

These structural observations suggest that a major feature in the evolution of thioredoxin
enzymes has been an increase in the depth of the binding groove, increasing the efficiency
of the MM-SN2 mechanism and eliminating the simple SN2 mechanism of catalysis.

DISCUSSION
Over the past 4 billion years the chemistry of living organisms has changed continuously in
response to changes in atmospheric conditions and biological phenomena. For example, the
large increase in the level of atmospheric oxygen that occurred about ~2.5 billion years ago
is thought to have triggered a chemical expansion34,35 that had a large impact on the
chemistry of enzymatic reactions, especially those involving redox transformations35,36.
However, understanding how enzymes have adapted their chemical mechanisms to
evolutionary pressures remains a challenge in molecular biology.

Here we show that single molecule force-clamp spectroscopy can be a valuable tool to
examine the evolution of Trx catalysis by studying the chemistry of eight Trx enzymes from
four different kingdoms. We show that three different chemical mechanisms for disulfide
reduction can be distinguished in Trx enzymes by their sensitivity to a mechanical force
applied to their substrate. Common to all Trx enzymes is a highly efficient Michaelis-
Menten type mechanism of disulfide bond reduction, characterized by a negative force
dependency (Fig. 4A and 4B). Common to all enzymes is also a low rate force-independent
mechanism of reduction that, owing to its similarity to metallic zinc, may be due to a barrier
free electron tunneling mechanism (Fig. 4A and 4D). Finally, enzymes of bacterial-origin
show an additional mechanism of reduction, comparable to that of a simple SN2 reaction,
showing a force dependency similar to that of glutathione or cysteine12,13 (Fig. 4A and
4C). This simple SN2 mechanism appears to have been eliminated from Trx enzymes that
have a eukaryotic origin, suggesting that the mechanism of disulfide bond reduction by Trx
enzymes was altered at an early stage of eukaryotic evolution.

We identify the physical characteristics of the binding groove as important factors in the
evolution of Trx catalysis. The appearance of the hydrophobic binding groove allowed Trxs
to bind the substrate in a specific fashion, generating a stabilizing interaction that made the
enzyme capable of regulating the geometry and orientation of the substrate disulfide bond in
the catalytic site of the enzyme. This binding mechanism results in the Michaelis-Menten
type kinetics of reduction observed in all Trx. Noteworthy is the fact that as the binding
groove deepens in enzymes of eukaryotic origin, the SN2-like mechanism of reduction
disappears. These observations are in agreement with the view that the SN2-like mechanism
of reduction observed in bacterial Trx enzymes results from less specific enzyme-substrate
interactions (Fig. 4C). The emergence of eukaryotes gave rise to vastly more complex
biological systems bringing a palette of new functions and targets37. It is tempting to
speculate that the deepening of the binding groove in eukaryotic Trx (Fig.5) may have been
an important structural adaptation that improved the specificity of substrate-enzyme
interactions.

However, evolutionary optimization of Trx activity is clearly a much more complex multi-
parameter function involving other structural features and cofactors. Most importantly,
thioredoxins work in concert with another enzyme named thioredoxin reductase (TrxR),
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which converts oxidized Trx to its active dithiol form. There are major differences in the
structure and mechanism of TrxR across the evolutionary tree, and it is reasonable to
consider that the evolution of the chemical mechanisms in Trx has been tightly associated
with the evolution of TrxR. In our experiments we have used generic bacterial and
eukaryotic TrxR to keep the thioredoxin enzymes in the reduced state. We anticipate that our
assay can be expanded by contrasting the effect of different TrxR enzymes in the observed
chemistry of Trx.

From a biological point of view, an interesting hypothesis is that the simple SN2 like
mechanism present in bacterial Trxs might be related to their ability to live in extreme
environments where elevated mechanical forces might result as a consequence of high
pressures or extreme salinity that cause cells to swell or shrink38-40. As we have shown
here, under such conditions the enzymatic Michaelis-Menten type mechanism of reduction
would become inoperative. In support of this view, Trx has been shown to promote high-
pressure resistance in E. coli 41.

Our work generally demonstrates the usefulness of combining single molecule force
spectroscopy together with molecular dynamics simulations in probing enzymatic chemistry.
We observe significant differences in the chemical mechanisms of extant Trx enzymes. Of
great interest would be to track the evolution of these chemical mechanisms using
resurrected ancient Trx enzymes. Owing to an extensive sequence database and the
development of sophisticated maximum likelihood algorithms for the reconstruction of
ancient DNA sequences42, reconstructing the evolution of chemical mechanisms in this
class of important enzymes now seems entirely plausible. We anticipate that the enzymatic
studies carried out on Trx at the single-molecule level, can serve as a starting point to
investigate the chemistry of other enzymes such as C-S lyases43 or proteases44 where the
catalyzed rupture of covalent bonds is the fundamental process.

METHODS
Protein expression and purification

Preparation of (I27G32S-A75C)8 polyprotein has been extensively described11,22. The
expression and purification of the different Trxs used have also been described elsewhere: P.
falciparum45, drosophila Trx146, poplar Trxh47 and Trxh348, pea Trxm49, E. coli Trx150,
E. coli Trx217 and human Trx214.

Sequence analysis
We carried out sequence alignment using ClustalW and modified by hand. Tree topology
and branch lengths of the tree were estimated using Mr. Bayes (v. 3.5) with rate variation
modeled according to a gamma distribution. The following GI numbers were accessed from
GenBank: Bacteria E. coli Trx1 (67005950), Salmonella Trx1 (16767191), E. coli Trx2
(16130507), Salmonella Trx2 (16765969), human Trx2 mitochondria (21361403), bovine
Trx2 mitochondria (108935910), Rickettsia Trx (15603883), Nostoc Trx (17227548),
Proclorococcus Trx (126696505), spinach Trxm chloroplast (2507458), pea Trxm
chloroplast (1351239), Thermus Trx (46199687), Deinococcus Trx (15805968), Archaea
Aeropyrum Trx (118431868), Hyperthermus Trx (124027987), Sulfolobus Trx (15897303),
Eukaryote Plasmodium falciparum Trx (75024181), poplar Trx h1 (19851972), poplar Trx
h3 (2398305), pea Trx (27466894), Dictyostelium Trx (165988451), bovine Trx
(27806783), human Trx1 (135773).
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Single molecule force-clamp experiments
The details of our custom-made atomic force microscope have been described previously51.
We used silicon nitride cantilever (Veeco) with a typical spring constant of 20 pN nm-1

which was calibrated using the equipartition theorem. The force-clamp mode provides an
extension resolution of ~0.5 nm and a piezoelectric actuator feedback of ~5ms. The buffer
used in all the experiments was: 10 mM HEPES, 150 mM NaCl, 1mM EDTA, 2mM
NADPH at pH 7.2. Before the beginning of the experiment, Trx reductase, bacterial or
eukaryotic depending on the case, was added to a final concentration of 50 nM. The
different Trxs were added to the desired concentration. The reaction mixture and the
substrate were added and allowed to absorb onto a freshly evaporated gold-coverslip before
the experiments. The force-clamp experiment consists of a double-pulse force protocol. The
first pulse was set at 175 pN during 0.3-0.4 s. The second pulse can be set at different forces
and was held long enough to capture all the possible reduction events. The experiments
using metallic Zn were carried out in citrate buffer 100 mM at pH 6. After adding Zn
nanoparticles (Sigma) to a concentration of 10 mM, the solution was sonicated to allow
resuspension. The pH of the buffer was verified during the time of the experiment and no
appreciable changes were observed. In addition, to verify the behavior of the substrate in
citrate buffer, several control experiments in the absence of Zn nanoparticles were carried
out and no reduction events were detected. Data collection and analysis were carried out
using custom written software in IGOR Pro 6.03 (Wavemetrics). The collected traces (15-50
per force) containing the reduction events were summated and averaged. The resulting
averaged traces were fitted with single exponential from which the rate constant can be
obtained. The analysis of the force-dependent reduction kinetics was carried out using the
kinetic model in the supplementary information.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phylogeny of Trx homologs from representative species of the three domains of life
Branch lengths were estimated using maximum likelihood with rate variation modeled
according to a gamma distribution. Scale bar represents amino acid replacements per site per
unit evolutionary time. Posterior probabilities are shown at nodes of the phylogeny when
greater than 50%. The lack of strong node supports deep in the phylogeny results from the
ambiguous placement of mitochondrial sequences, possibly due to long-branch attraction
effects with non-bacterial sequences. In contrast, there is strong support for the grouping of
chloroplast and cyanobacteria (not shown). Boxes highlight the proteins experimentally
studied in this work.
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Figure 2. Single molecule force-clamp detection of disulfide bond reduction events catalyzed by
thioredoxin enzymes
(A) Graphic representation of the force-clamp experiment. A first force pulse rapidly
unfolds the I27 modules of a polyprotein, exposing the buried disulfide bonds to the solvent.
A second force pulse monitors single-disulfide reduction events which are uniquely
identified by the extension of the residues trapped behind the disulfide bond. (B) Trace
showing the unfolding and consequent disulfide reductions of a (I27G32C-A75C)8
polyprotein. In the example shown the unfolding pulse was set at 175 pN for 0.3 s and the
reduction pulse was set to 75 pN for several seconds. (C) Summed and averaged traces of
disulfide bond reductions at different forces (second pulse) for pea Trxm (10 μM) and (D)
for poplar Trxh1 (10 μM). The smooth curves are single-exponential fits from which we
measure the rate of reduction as r = 1/τ, where τ is the time constant measured by the fits at
each given force.
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Figure 3. Force-dependency of the rate of disulfide reduction by Trx enzymes from different
species
(A) Bacterial-origin Trxs: human mitochondrial Trx2 (blue), E. coli Trx1 (red), pea
chloroplastic Trxm (black), E. coli Trx2 (brown). While the Michaelis-Menten (low force)
mechanism differs in magnitude among the Trxs, the simple SN2 like reaction observed at
higher forces is very similar in all of them. The inset shows a magnified view of the traces in
the region where they reach a minimum. (B) Eukaryotic-origin Trxs: human Trx1 (blue,
from ref 11), Plasmodium Trx (red), poplar Trxh1 (black), and poplar Trxh3 (brown). The
most noticeable feature is the absence of the SN2 like reaction at high forces in all
eukaryotic Trxs. The inset shows an expansion of the minimum rate of reduction attained at
high forces. In all experiments the concentration of Trx was 10 μM. The smooth lines are
fits of the kinetic model described in the supplementary information. The kinetics
parameters obtained are summarized in Table 1. The error bars are given by the standard
error of the mean obtained with the bootstrap method.
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Figure 4. The three chemical mechanisms of disulfide reduction detected by force-clamp
spectroscopy
A) Force dependency of the rate of reduction of disulfide bonds by different reducing
agents. Human Trx (black squares, from ref 11) shows the characteristic enzymatic
mechanism of reduction, marked by a negative force dependency that reaches a force
independent minimum. L-cysteine (gray circles, from ref 12) shows the characteristic SN2
like mechanism marked by an exponential increase in the rate of reduction with the applied
force. Finally, metallic Zn (red circles) demonstrates a reduction mechanism that appears
force independent. Bacterial thioredoxin enzymes make use of all three mechanisms. B)
Schematic representation of the Michaelis-Menten reduction mechanism present in all Trx
enzymes. The substrate disulfide bond is shown in the binding groove of the enzyme.
Rotation of the substrate disulfide bond against the pulling force is required for the 180°
alignment with the catalytic cysteine, and for reduction to occur. C) We speculate that the
simple SN2-like mechanism observed at high forces results from aligning the substrate
disulfide bond with the catalytic cysteine, without entering the binding groove. This
conformation is favored by a shallow binding groove allowing for the simple SN2-type
lengthening of the substrate disulfide bond at the transition state, which is the origin of the
exponential dependency of the rate of reduction. D) Representation of the single-electron
transfer (SET) mechanism ubiquitous to all Trxs. This mechanism can occur irrespective of
the orientation of the disulfide bond and is more visible in eukaryotic Trxs at high forces.
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Figure 5. Structural analysis and molecular dynamics simulations of the binding groove in
thioredoxin enzymes
(A) Geometric dissection of the hydrophobic binding groove, shaded in green and outlined
in red for human Trx1 (pdb: 3trx). The depth and width of the binding groove in the region
surrounding the catalytic cysteine are indicated by arrows and the active cysteine is colored
in orange. (B) Groove depth for three eukaryotic-origin Trxs (red): human Trx1 (pdb:1mdi);
A. thaliana Trxh1 (pdb:1xfl) and spinach Trxf (pdb:1f9m), and three bacterial-origin Trxs
(blue): human Trx2 (pdb:1uvz); E. coli Trx1 (pdb:2trx) and C. reinhardtii Trxm (pdb:1dby).
It is clear that the eukaryotic binding grooves are deeper than their bacterial counterparts.
(C) Molecular dynamics simulation of the substrate mobility within the binding groove for
different eukaryotic (red) and bacterial (blue) Trxs. Three eukaryotic complexes were used:
human Trx with the substrate REF-1 (pdb:1cqg); human Trx with NF-κB (pdb:1mdi) and
barley Trxh2 with protein BASI (pdb:2iwt). The two bacterial complexes were: E. coli Trx1
with Trx reductase, (pdb:1f6m) and B. subtilis Trx bound to ArsC (pdb:2ipa). The large
RMSD of the bacterial Trxs (blue) indicates a high substrate mobility which may facilitate
collisions orientated so as favoring SN2 reactions. Eukaryotic Trxs (red) are highly restricted
which may explain the different chemical behavior at high forces as compared to bacterial
Trxs (Fig.3). (D) Diatomic distance distribution of the S-S bond in the Trx-substrate mixed
intermediate, using the same structures as in (C). Again we infer higher mobility of the
substrate in bacterial-origin Trxs as indicated by the broader distance distributions of the
bacterial complexes (blue) as compared to those of eukaryotic Trxs (red).
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