Eric Olson

Eric Olson

About

918
Publications
101,292
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
144,469
Citations

Publications

Publications (918)
Article
Full-text available
Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease caused by mutations in the X-linked dystrophin (DMD) gene. Exon deletions flanking exon 51, which disrupt the dystrophin open reading frame (ORF), represent one of the most common types of human DMD mutations. Previously, we used CRISPR-Cas9 gene editing to restore the reading fram...
Article
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma of myoblast origin. RMS tumors are unable to terminally differentiate into syncytial muscle despite elevated expression of the muscle master regulators, MyoD and Myf5. Fusion-positive RMS (FP-RMS) and fusion-negative RMS (FN-RMS) have emerged as the two major RMS subtypes. The pa...
Article
Cardiovascular disease remains the leading cause of morbidity and mortality in the developed world. In recent decades, extraordinary effort has been devoted to defining the molecular and pathophysiological characteristics of the diseased heart and vasculature. Mouse models have been especially powerful in illuminating the complex signaling pathways...
Article
Full-text available
Skeletal muscle fibers contain hundreds of nuclei, which increase the overall transcriptional activity of the tissue and perform specialized functions. Multinucleation occurs through myoblast fusion, mediated by the muscle fusogens Myomaker (MYMK) and Myomixer (MYMX). We describe a human pedigree harboring a recessive truncating variant of the MYMX...
Article
Full-text available
Noncompaction cardiomyopathy is a common congenital cardiac disorder associated with abnormal ventricular cardiomyocyte trabeculation and impaired pump function. The genetic basis and underlying mechanisms of this disorder remain elusive. We show that the genetic deletion of RNA-binding protein with multiple splicing (Rbpms), an uncharacterized RNA...
Article
Full-text available
Duchenne Muscular Dystrophy (DMD) is a lethal muscle disease caused by mutations in the dystrophin gene. CRISPR/Cas9 genome editing has been used to correct DMD mutations in animal models at young ages. However, the longevity and durability of CRISPR/Cas9 editing remained to be determined. To address these issues, we subjected ΔEx44 DMD mice to sys...
Article
Full-text available
Significance Microproteins are a growing class of versatile small proteins previously overlooked by standard gene annotation methods due to their small size. Here we characterize mitolamban as a cardiac-enriched inner mitochondrial membrane–localized microprotein, which interacts with complex III of the electron transport chain and contributes to c...
Article
Cardiomyocyte loss is the underlying basis for a majority of heart diseases. Preventing cardiomyocytes from death (cardioprotection) and replenishing the lost myocardium (regeneration) are the central goals for heart repair. Although cardioprotection and heart regeneration have been traditionally thought to involve separate mechanisms, protection o...
Article
Ischemic heart disease is the leading cause of death worldwide. Direct reprogramming of resident cardiac fibroblasts (CFs) to induced cardiomyocytes (iCLMs) has emerged as a potential therapeutic approach to treat heart failure and ischemic disease. Cardiac reprogramming was first achieved through forced expression of the transcription factors Gata...
Article
Muscular dystrophies are a heterogeneous group of monogenic neuromuscular disorders which lead to progressive muscle loss and degeneration of the musculoskeletal system. The genetic causes of muscular dystrophies are well characterized, but no effective treatments have been developed so far. The discovery and application of the CRISPR/Cas system fo...
Article
Rationale: Absence of dystrophin in Duchenne muscular dystrophy (DMD) results in the degeneration of skeletal and cardiac muscles. Owing to advances in respiratory management of DMD patients, cardiomyopathy has become a significant aspect of the disease. While CRISPR/Cas9 genome editing technology holds great potential as a novel therapeutic avenue...
Article
Significance Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutation in the X-linked dystrophin gene, resulting in skeletal muscle loss and patient premature death. Here, we present an improved protocol for the differentiation of human pluripotent stem cells to the skeletal muscle lineage. Using this protocol for the different...
Article
Ischemic heart disease is the leading cause of morbidity, mortality, and healthcare expenditure worldwide due to an inability of the heart to regenerate following injury. Thus, novel heart failure therapies aimed at promoting cardiomyocyte regeneration are desperately needed. In recent years, direct reprogramming of resident cardiac fibroblasts to...
Article
Significance Activation of brown adipose tissue offers a strategy for enhancing energy expenditure to counteract obesity and other metabolic disorders. The discovery of novel factors regulating brown adipose tissue function has implications in therapeutic intervention to treat metabolic dysfunction. Here, we discover a previously uncharacterized RN...
Article
Full-text available
Duchenne muscular dystrophy (DMD), caused by mutations in the X-linked dystrophin gene, is a lethal neuromuscular disease. Correction of DMD mutations in animal models has been achieved by CRISPR/Cas9 genome editing using Streptococcus pyogenes Cas9 (SpCas9) delivered by adeno-associated virus (AAV). However, due to the limited viral packaging capa...
Article
Myocardin, a potent coactivator of serum response factor (SRF), competes with ternary complex factor (TCF) proteins for SRF binding to balance opposing mitogenic and myogenic gene programs in cardiac and smooth muscle. Here we identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, which antagonizes SRF-dependent mitogenic gene...
Article
Full-text available
Direct cardiac reprogramming of fibroblasts to cardiomyocytes presents an attractive therapeutic strategy to restore cardiac function following injury. Cardiac reprogramming was initially achieved through overexpression of the transcription factors Gata4, Mef2c and Tbx5; later, Hand2 and Akt1 were found to further enhance this process1–5. Yet, stau...
Article
Full-text available
Lamins and transmembrane proteins within the nuclear envelope regulate nuclear structure and chromatin organization. Nuclear envelope transmembrane protein 39 (Net39) is a muscle nuclear envelope protein whose functions in vivo have not been explored. We show that mice lacking Net39 succumb to severe myopathy and juvenile lethality, with concomitan...
Article
Full-text available
Adverse cardiac remodeling after myocardial infarction (MI) causes structural and functional changes in the heart leading to heart failure. The initial post-MI pro-inflammatory response followed by reparative or anti-inflammatory response is essential for minimizing the myocardial damage, healing, and scar formation. Bone marrow–derived macrophages...
Article
Full-text available
The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Neonatal heart regeneration is orchestrated by multiple cell types intrinsic to the heart, as well as immune cells that infiltrate the heart after injury. To elucidate the transcripti...
Article
Significance Skeletal muscle is composed of multinucleated myofibers that are essential for movement and metabolism. Duchenne muscular dystrophy (DMD) is a devastating disease that is caused by the lack of the dystrophin protein, which maintains the integrity of muscle membranes. The absence of dystrophin results in myofiber degeneration followed b...
Article
Introduction: Emerging evidence suggests that many RNA molecules currently annotated as noncoding contain short open reading frames that code for functional small proteins called microproteins. Microproteins play critical roles in a diverse range of essential biological processes. To identify novel cardiac-expressed microproteins, we used a compara...
Article
Direct cardiac reprogramming of fibroblasts to cardiomyocytes presents an attractive therapeutic strategy to restore cardiac function following injury. Cardiac reprogramming was initially achieved through the overexpression of the transcription factors Gata4, Mef2c, and Tbx5 (GMT), and later, Hand2 (GHMT) and Akt1 (AGHMT) were found to further enha...
Article
Introduction: Left Ventricular Assist Devices (LVAD) decrease cardiac mechanical work and metabolic demand and may decrease cardiomyocyte oxidative stress, followed by cell cycle re-entry and cell regeneration. We tested whether LVAD long-term support is associated with myocardial regeneration. Methods: Viability fluorodeoxyglucose (18FDG) - positr...
Article
Full-text available
CRISPR-Cas9 has emerged as a powerful technology that relies on Cas9/sgRNA ribonucleoprotein complexes (RNPs) to target and edit DNA. However, many therapeutic targets cannot currently be accessed due to the lack of carriers that can deliver RNPs systemically. Here, we report a generalizable methodology that allows engineering of modified lipid nan...
Article
Muscular dystrophies are debilitating disorders that result in progressive weakness and degeneration of skeletal muscle. Although the genetic mutations and clinical abnormalities of a variety of neuromuscular diseases are well known, no curative therapies have been developed to date. The advent of genome editing technology provides new opportunitie...
Article
Full-text available
Murine cardiomyocytes undergo proliferation, multinucleation, and polyploidization during the first 3 weeks of postnatal life, resulting in a mixture of diploid and tetraploid cardiomyocytes in the heart. Understanding the molecular differences between diploid and tetraploid cardiomyocytes from these processes has been limited due to lack of unique...
Article
Full-text available
Duchenne muscular dystrophy (DMD), one of the most common neuromuscular disorders of children, is caused by the absence of dystrophin protein in striated muscle. Deletions of exons 43, 45 and 52 represent mutational “hot spot” regions in the dystrophin gene. We created three new DMD mouse models harboring deletions of exons 43, 45 or 52 to represen...
Article
The adult mammalian heart is incapable of regeneration following injury. In contrast, the neonatal mouse heart can efficiently regenerate during the first week of life. The molecular mechanisms that mediate the regenerative response and its blockade in later life are not understood. Here, by single-nucleus RNA sequencing, we map the dynamic transcr...
Article
Full-text available
Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease caused by mutations in the dystrophin gene ( DMD ). Previously, we applied CRISPR-Cas9–mediated “single-cut” genome editing to correct diverse genetic mutations in animal models of DMD. However, high doses of adeno-associated virus (AAV) are required for efficient in vivo genome ed...
Chapter
Striated muscles are the skeletal and cardiac muscles that have distinct bands when viewed by a microscope. Although skeletal and cardiac muscles appear similar, they originate from different progenitor cells and use different evolutionarily conserved networks of transcription factors and non-coding RNAs to regulate the programs controlling cell di...
Article
Full-text available
Duchenne muscular dystrophy (DMD) is a fatal genetic disorder caused by mutations in the dystrophin gene. To enable the non-invasive analysis of DMD gene correction strategies in vivo, we introduced a luciferase reporter in-frame with the C-terminus of the dystrophin gene in mice. Expression of this reporter mimics endogenous dystrophin expression...
Article
Full-text available
The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. To uncover the molecular mechanisms underlying neonatal heart regeneration, we compared the transcriptomes and epigenomes of regenerative and nonregenerative mouse hearts over a 7-d t...
Article
The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Deciphering the molecular underpinnings of neonatal heart regeneration and the blockade to regeneration in later life may provide novel insights for heart repair. Neonatal heart regen...
Article
Direct cardiac reprogramming of fibroblasts to cardiomyocytes is an attractive therapeutic strategy to restore cardiac function following injury. The cardiac transcription factors Gata4, Mef2c, and Tbx5 are sufficient to directly reprogram fibroblasts to a cardiac fate and their cardiogenic activity is enhanced by the addition of Hand2 and Akt1. Ho...
Article
The adult mammalian heart has a limited capacity to regenerate upon injury, such as myocardial infarction (MI). MI in adult mouse hearts results in a reduced cardiac function, due to extensive loss of cardiomyocytes and formation of scar tissue by activated fibroblasts. In contrast, the newborn postnatal day 1 (P1) mouse heart is able to regenerate...
Article
The recently-discovered single-span transmembrane proteins endoregulin (ELN), dwarf open reading frame (DWORF), myoregulin (MLN), and another-regulin (ALN) are reported to bind to the SERCA calcium pump in a manner similar to that of known regulators of SERCA activity, phospholamban (PLB) and sarcolipin (SLN). To determine how micropeptide assembly...
Article
We previously identified a unique population of interstitial muscle progenitors, marked by expression of the Twist2 transcription factor, which fuses specifically to type IIb/x fast-twitch myofibers. Tw2+ progenitors, distinct from satellite cells, are muscle progenitors that express Pax7 and contribute to all myofiber types. Through RNA sequencing...
Article
Pancreatic ductal adenocarcinoma (PDA) is a major cause of cancer-related death with limited therapeutic options available. This highlights the need for improved understanding of the biology of PDA progression, a highly complex and dynamic process featuring changes in cancer cells and stromal cells. A comprehensive characterization of PDA cancer ce...
Article
Skeletal muscle plays a central role in the control of metabolism and exercise tolerance. Analysis of muscle enhancers activated after exercise in mice revealed the orphan nuclear receptor NURR1/NR4A2 as a prominent component of exercise-responsive enhancers. We show that exercise enhances the expression of NURR1, and transgenic overexpression of N...
Article
Full-text available
e15739 Background: Pancreatic ductal adenocarcinoma (PDA) is a major cause of cancer-related death with limited therapeutic options available. This highlights the need for improved understanding of the biology of PDA progression. The progression of PDA is a highly complex and dynamic process featuring changes in cancer cells and stromal cells; howe...
Article
Full-text available
The cardiogenic transcription factors (TFs) Mef2c, Gata4, and Tbx5 can directly reprogram fibroblasts to induced cardiac-like myocytes (iCLMs), presenting a potential source of cells for cardiac repair. While activity of these TFs is enhanced by Hand2 and Akt1, their genomic targets and interactions during reprogramming are not well studied. We per...
Article
Full-text available
Rhabdomyosarcoma (RMS) is an aggressive pediatric cancer composed of myoblast-like cells. Recently, we discovered a unique muscle progenitor marked by the expression of the Twist2 transcription factor. Genomic analyses of 258 RMS patient tumors uncovered prevalent copy number amplification events and increased expression of TWIST2 in fusion-negativ...
Article
Full-text available
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), which is characterized by lethal degeneration of cardiac and skeletal muscles. Mutations that delete exon 44 of the dystrophin gene represent one of the most common causes of DMD and can be corrected in ~12% of patients by editing surrounding exons, which restores the dystrop...
Article
Full-text available
The formation of new myofibers in vertebrates occurs by myoblast fusion and requires fusogenic activity of the muscle-specific membrane protein myomaker. Here, using in silico (BLAST) genome analyses, we show that the myomaker gene from trout includes 14 minisatellites, indicating that it has an unusual structure compared with those of other animal...
Article
Background & Aims: Pancreatic ductal adenocarcinoma (PDA) is a major cause of cancer-related death with limited therapeutic options available. This highlights the need for improved understanding of the biology of PDA progression. The progression of PDA is a highly complex and dynamic process featuring changes in cancer cells and stromal cells; howe...
Article
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from m...
Article
Full-text available
Embryonic and postnatal life depend on the uninterrupted function of cardiac muscle cells. These cells, termed cardiomyocytes, display many fascinating behaviors, including complex morphogenic movements, interactions with other cell types of the heart, persistent contractility and quiescence after birth. Each of these behaviors depends on complex i...
Article
Full-text available
Left ventricular hypertrophy (LVH) is a major risk factor for cardiovascular morbidity and mortality. Pathological LVH engages transcriptional programs including reactivation of canonical fetal genes and those inducing fibrosis. Histone lysine demethylases (KDMs) are emerging regulators of transcriptional reprogramming in cancer, though their poten...
Article
Full-text available
Calcium (Ca2+) dysregulation is a hallmark of heart failure and is characterized by impaired Ca2+ sequestration into the sarcoplasmic reticulum (SR) by the SR-Ca2+-ATPase (SERCA). We recently discovered a micropeptide named DWORF (DWarf Open Reading Frame) that enhances SERCA activity by displacing phospholamban (PLN), a potent SERCA inhibitor. Her...
Article
Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational “hot spot” in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and ex...
Article
Full-text available
Twist transcription factors function as ancestral regulators of mesodermal cell fates in organisms ranging from Drosophila to mammals. Through lineage tracing of Twist2 (Tw2)-expressing cells with tamoxifen-inducible Tw2-CreERT2 and tdTomato (tdTO) reporter mice, we discovered a unique cell population that progressively contributes to cardiomyocyte...
Article
The adult mammalian heart has very limited capacity to regenerate upon injury. Following myocardial infarction, cardiomyocytes are extensively lost and fibroblasts are activated to form a scar, resulting in compromised cardiac function. In contrast, the heart of a neonatal mouse has full capacity to regenerate after myocardial infarction, although...
Article
Ischaemic heart disease is a leading cause of death worldwide. Injury to the heart is followed by loss of the damaged cardiomyocytes, which are replaced with fibrotic scar tissue. Depletion of cardiomyocytes results in decreased cardiac contraction, which leads to pathological cardiac dilatation, additional cardiomyocyte loss, and mechanical dysfun...