Eric Milot

Eric Milot
Université de Montréal | UdeM · Department of Medicine

About

55
Publications
5,662
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,199
Citations

Publications

Publications (55)
Article
Full-text available
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokin...
Article
Full-text available
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the...
Article
Full-text available
Ubiquitination is an important post-translational modification (PTM) that regulates a large spectrum of cellular processes in eukaryotes. Abnormalities in ubiquitin signaling underlie numerous human pathologies including cancer and neurodegeneration. Much progress has been made during the last three decades in understanding how ubiquitin ligases re...
Article
Full-text available
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting, and to prevent the adverse consequences of promiscuous deubiquitination....
Article
Full-text available
Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalia...
Article
Full-text available
The tumor suppressor IKAROS binds and represses multiple NOTCH target genes. For their induction upon NOTCH signaling, IKAROS is removed and replaced by NOTCH Intracellular Domain (NICD)-associated proteins. However, IKAROS remains associated to other NOTCH activated genes upon signaling and induction. Whether IKAROS could participate to the induct...
Article
Full-text available
The Myeloid Nuclear Differentiation Antigen (MNDA) is a stress-induced protein that promotes degradation of the anti-apoptotic factor MCL-1 and apoptosis in myeloid cells. MNDA is also expressed in normal lymphoid cells and in B-cell clones isolated from individuals with Chronic Lymphocytic Leukemia (CLL), a disease characterized by abnormal apopto...
Article
USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has...
Article
Full-text available
Nucleophosmin (NPM1) is frequently mutated or subjected to chromosomal translocation in acute myeloid leukemia (AML). NPM protein is primarily located in the nucleus, but the recurrent NPMc+ mutation, which creates a nuclear export signal, is characterized by cytoplasmic localization and leukemogenic properties. Similarly, the NPM-MLF1 translocatio...
Article
Full-text available
The deubiquitinase (DUB) and tumor suppressor BAP1 catalyzes ubiquitin removal from histone H2A K119 and coordinates cell proliferation, but how BAP1 partners modulate its function remains poorly understood. Here, we report that BAP1 forms two mutually exclusive complexes with the transcriptional regulators ASXL1 and ASXL2, which are necessary for...
Article
Transcription factors are important determinants of lineage specification during hematopoiesis. They favor recruitment of cofactors involved in epigenetic regulation, thereby defining patterns of gene expression in a development- and lineage-specific manner. Additionally, transcription factors can facilitate transcription preinitiation complex (PIC...
Article
Full-text available
IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associat...
Article
Introduction Chronic Phase - Chronic Myeloid Leukemia (CP-CML) is a myeloproliferative disorder characterized by malignant proliferation of the granulocytic lineage without the arrest of cell differentiation. Tyrosine Kinase Inhibitors (TKI) have revolutionized CML treatment but several studies showed that a combination of TKI and Interferon alpha...
Article
Full-text available
Ikaros (Ik) is a critical regulator of hematopoietic gene expression. Here, we established that the Ik interactions with GATA transcription factors and cyclin-dependent kinase 9 (Cdk9), a component of the positive transcription elongation factor b (P-TEFb), are required for transcriptional activation of Ik target genes. A detailed dissection of Ik-...
Article
In stroke and proliferative retinopathy, despite hypoxia driven angiogenesis, delayed revascularization of ischemic tissue aggravates the loss of neuronal function. What hinders vascular regrowth in the ischemic central nervous system remains largely unknown. Using the ischemic retina as a model of neurovascular interaction in the CNS, we provide e...
Article
Full-text available
Sepsis and septic shock are characterized by prolonged inflammation and delayed resolution, which are associated with suppression of neutrophil apoptosis. The role of the intrinsic apoptotic pathway and intracellular factors in regulation of neutrophil apoptosis remain incompletely understood. We previously reported that the nuclear factor MNDA (my...
Article
Full-text available
The transcription factor Hairy Enhancer of Split 1 (HES1), a downstream effector of the Notch signaling pathway, is an important regulator of hematopoiesis. Here, we demonstrate that in primary erythroid cells, Hes1 gene expression is transiently repressed around proerythroblast stage of differentiation. Using mouse erythroleukemia cells, we found...
Article
Full-text available
Neutrophil granulocytes have the shortest lifespan among leukocytes in the circulation and die via apoptosis. At sites of infection or tissue injury, prolongation of neutrophil lifespan is critical for effective host defense. Apoptosis of inflammatory neutrophils and their clearance are critical control points for termination of the inflammatory re...
Article
Full-text available
Ikaros is associated with both gene transcriptional activation and repression in lymphocytes. Ikaros acts also as repressor of human γ-globin (huγ-) gene transcription in fetal and adult erythroid cells. Whether and eventually, how Ikaros can function as a transcriptional activator in erythroid cells remains poorly understood. Results presented her...
Article
Full-text available
The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assemble...
Article
Suppressed neutrophil apoptosis, a hallmark of sepsis, perpetuates inflammation and delays resolution. Myeloid nuclear differentiation antigen (MNDA) is expressed only in myeloid cells and has been implicated in cell differentiation; however, its function in mature neutrophils is not known. We studied whether MNDA could contribute to regulation of...
Article
Delayed neutrophil apoptosis perpetuates inflammation and delays the resolution of inflammation. We investigated the role of the nuclear protein MNDA (myeloid nuclear differentiation antigen) in progression of apoptosis of human neutrophils. We found that during constitutive apoptosis, MNDA is cleaved by caspase‐3 and relocated from the nucleus to...
Article
Full-text available
Although distal regulatory regions are frequent throughout the genome, the molecular mechanisms by which they act in a promoter-specific manner remain to be elucidated. The human β-globin locus constitutes an extremely well-established multigenic model to investigate this issue. In erythroid cells, the β-globin locus control region (LCR) exerts dis...
Article
Full-text available
During development and erythropoiesis, globin gene expression is finely modulated through an important network of transcription factors and chromatin modifying activities. In this report we provide in vivo evidence that endogenous Ikaros is recruited to the human β-globin locus and targets the histone deacetylase HDAC1 and the chromatin remodeling...
Article
Posttranslational modifications of transcription factors provide alternate protein interaction platforms that lead to varied downstream effects. We have investigated how the acetylation of EKLF plays a role in its ability to alter the β-like globin locus chromatin structure and activate transcription of the adult β-globin gene. By establishing an E...
Chapter
We have used gene competition to study the regulation of the human β-globin locus in transgenic mice as a model system of a multigene locus. The locus is regulated by the locus control region (LCR), which is required for the expression of all the genes. Analysis of the locus at the single-cell level shows that the LCR appears to interact directly w...
Article
Full-text available
Basal expression of lineage-specific transcription factors (TFs) in multipotent hematopoietic progenitor cells (HPCs) plays a pivotal role in normal hematopoiesis. Indeed, the interplay between lineage-specific TFs and chromatin modifying or remodeling complexes allows chromatin modifications at specific hematopoietic loci and promotes transcriptio...
Article
Full-text available
During development, the regulated expression of tissue-specific genes can be preceded by their potentiation, that is, by chromatin activation in progenitor cells. For example, the human beta-like globin genes are potentiated in a gene- and developmental-specific manner in hematopoietic progenitors. Developmental regulation of human beta-gene expres...
Article
Full-text available
Abnormal epigenetic regulation of gene expression contributes significantly to a variety of human pathologies including cancer. Deletion of hypersensitive site 2 (HS2) at the human beta-globin locus control region can lead to abnormal epigenetic regulation of globin genes in transgenic mice. Here, two HS2-deleted transgenic mouse lines were used as...
Article
To study epigenetic regulation of the human beta-globin locus during hematopoiesis, we investigated patterns of histone modification and chromatin accessibility along this locus in hematopoietic progenitor cells (HPCs) derived from both humans and transgenic mice. We demonstrate that the developmentally related activation of human beta-like globin...
Article
Full-text available
The human β globin locus replicates late in most cell types, but becomes early replicating in erythroid cells. Using FISH to map DNA replication timing around the endogenous β globin locus and by applying a genetic approach in transgenic mice, we have demonstrated that both the late and early replication states are controlled by regulatory elements...
Article
Full-text available
The expression of transgene loci in mammals often occurs in a heterocellular fashion resulting in variegated patterns of expression. We have examined the effect of chromosomal integration site, copy number, and transcriptionally activating sequences on the variegation of a keratin 5-lacZ (K5Z) construct in the stratified epithelia of transgenic mic...
Article
Nature 406, 519 — 524 (2000). In Fig. 2d, GATA-1 tg. BtklacZ/+ females should have been numbered 1 to 3; in Fig. 3a, the last sample should have been marked G4ch no. 14; and in Fig. 4b, the last class of animal should have been tg. female.
Article
Full-text available
Locus control regions (LCRs) alleviate chromatin-mediated transcriptional repression. Incomplete LCRs partially lose this property when integrated in transcriptionally restrictive genomic regions such as centromeres. This frequently results in position effect variegation (PEV), i.e. the suppression of expression in a proportion of the cells. Here w...
Article
Full-text available
GATA-1 is a tissue-specific transcription factor that is essential for the production of red blood cells. Here we show that overexpression of GATA-1 in erythroid cells inhibits their differentiation, leading to a lethal anaemia. Using chromosome-X-inactivation of a GATA-1 transgene and chimaeric animals, we show that this defect is intrinsic to ery...
Article
Full-text available
We have used a kinetic analysis to distinguish possible mechanisms of activation of transcription of the different genes in the human beta globin locus. Based on in situ studies at the single-cell level we have previously suggested a dynamic mechanism of single genes alternately interacting with the locus control region (LCR) to activate transcript...
Article
A bstract : The most important level of regulation of the β‐globin genes is by activation of all of the genes by the Locus Control Region (LCR) and repression of the early genes by an as yet unknown factor acting on sequences flanking the genes. Superimposed on this is a mechanism in which the early genes (ɛ and γ) suppress the late genes (δ and β)...
Article
We have used gene competition to study the regulation of the human beta-globin locus in transgenic mice as a model system of a multigene locus. The locus is regulated by the locus control region (LCR), which is required for the expression of all the genes. Analysis of the locus at the single-cell level shows that the LCR appears to interact directl...
Article
Full-text available
Locus control regions (LCRs) are responsible for initiating and maintaining a stable tissue-specific open chromatin structure of a locus. In transgenic mice, LCRs confer high level expression on linked genes independent of position in the mouse genome. Here we show that an incomplete LCR loses this property when integrated into heterochromatic regi...
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
Article
Full-text available
Studies done in prokaryotes and eukaryotes have indicated that DNA sequence divergence decreases the frequency of homologous recombination. To determine which step(s) of homologous recombination is sensitive to DNA sequence divergence in mammalian cells we have used an assay that does not rely on the recovery of functional products. The assay is ba...
Article
Integration of retroviral genomes is a site-specific process with respect to the virus but not the host genome. Numerous chromosomal sites and various sequences can be used as targets. Nevertheless, preferential regions and integration patterns have been observed. Using a functional assay, we investigated if host structural DNA elements could be as...
Article
Illegitimate recombination is the dominant mechanism of recombination in mammalian somatic cells. It is responsible for most genome rearrangements such as translocations, deletions and integrations. Little is known as yet about the mechanism of illegitimate recombination and the enzymes involved. Recently, it has been shown that intrinsically bent...
Article
Full-text available
Illegitimate recombination is the most frequent mechanism for chromosomal rearrangements in mammalian cells, yet little is known about this process. Most of the studies to date have looked at the sequences present at illegitimate junctions. These revealed the presence of recurrent DNA motifs, none of which was consistently found. We have undertaken...

Network

Cited By