Eric M Bottos

Eric M Bottos
Thompson Rivers University · Department of Biology

About

49
Publications
16,828
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,302
Citations
Citations since 2016
38 Research Items
2138 Citations
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400

Publications

Publications (49)
Article
Full-text available
Host associated microbial communities play important roles in wildlife health, but these dynamics can be influenced by environmental factors. Urbanization has numerous consequences on wildlife; however, the degree to which wildlife associated bacterial communities and potential bacterial pathogens vary across urban to rural/native habitat gradients...
Article
Full-text available
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia s...
Article
Full-text available
The soil environment is constantly changing due to shifts in soil moisture, nutrient availability and other conditions. To contend with these changes, soil microorganisms have evolved a variety of ways to adapt to environmental perturbations, including regulation of gene expression. However, it is challenging to untangle the complex phenotypic resp...
Article
The Dry Valleys of Antarctica are a unique ecosystem of simple trophic structure, where the abiotic factors that influence soil bacterial communities can be resolved in the absence of extensive biotic interactions. This study evaluated the degree to which aspects of topographic, physicochemical, and spatial variation explain patterns of bacterial r...
Article
Full-text available
Climate change is predicted to result in increased drought extent and intensity in the highly productive, former tallgrass prairie region of the continental United States. These soils store large reserves of carbon. The decrease in soil moisture due to drought has largely unknown consequences on soil carbon cycling and other key biogeochemical cycl...
Article
Full-text available
The cold deserts of the McMurdo Dry Valleys (MDV), Antarctica, host a high level of microbial diversity. Microbial composition and biomass in arid vs. ephemerally wetted regions are distinctly different, with wetted communities representing hot spots of microbial activity that are important zones for biogeochemical cycling. While climatic change is...
Article
Full-text available
Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplin...
Article
Full-text available
Abiotic factors are major determinants of soil animal distributions and their dominant role is pronounced in extreme ecosystems, with biotic interactions seemingly playing a minor role. We modelled co-occurrence and distribution of the three nematode species that dominate the soil food web of the McMurdo Dry Valleys (Antarctica). Abiotic factors, o...
Article
Microbiomes impact nearly all systems on Earth, and despite vast differences among systems, we contend that it is possible and highly beneficial to develop a unified conceptual framework for understanding microbiome dynamics that is applicable across systems. The ability to robustly predict and control environmental and human microbiomes would prov...
Article
24 Understanding drivers of permafrost microbial community composition is 25 critical for understanding permafrost microbiology and predicting ecosystem 26 responses to thaw, however studies describing ecological controls on these 27 communities are lacking. We hypothesize that permafrost communities are uniquely 28 shaped by constraints imposed by...
Article
Understanding drivers of permafrost microbial community composition is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw. We hypothesize that permafrost communities are shaped by physical constraints imposed by prolonged freezing, and exhibit spatial distributions that reflect dispersal limitation and sel...
Article
Full-text available
Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about mi...
Article
Full-text available
Soil microorganisms carry out key processes for life on our planet, including cycling of carbon and other nutrients and supporting growth of plants. However, there is poor molecular-level understanding of their functional roles in ecosystem stability and responses to environmental perturbations. This knowledge gap is largely due to the difficulty i...
Article
Full-text available
We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae , isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium...
Article
Full-text available
We report the 7.4-Mb draft genome sequence of Mesorhizobium sp. strain UFLA 01-765, a Gram-negative bacterium of the Phyllobacteriaceae isolated from Zn-mining soil in Minas Gerais, Brazil. This strain promotes plant growth, efficiently fixes N 2 in symbiosis with Leucaena leucocephala on multicontaminated soil, and has potential for application in...
Article
Full-text available
We report the 4.76-Mb draft genome of Pantoea ananatis GB1, a Gram-negative bacterium of the family Enterobacteriaceae , isolated from the roots of poplars planted for phytoremediation of a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain GB1 promotes plant growth in various hosts and metabolizes hydrocarbons.
Article
Full-text available
We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria , isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacter...
Article
Full-text available
The 3.94-Mb draft genome of Acinetobacter calcoaceticus GK1, a hydrocarbonoclastic plant growth-promoting Gram-negative rhizospheric bacterium, is presented here. Isolated at the Ford Motor Company site in Genk, Belgium, from poplar trees planted on a diesel-contaminated plume, GK1 is useful for enhancing hydrocarbon phytoremediation. Copyright © 2...
Article
Full-text available
The draft genome of Sphingomonas taxi, a strain of the Sphingomonadaceae isolated from Cucurbita pepo root tissue, is presented. This Gram-negative bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacities. An analysis of its 3.9-Mb draft genome will enhance the understanding of DDE...
Article
Full-text available
We announce the draft genome of Methylobacterium radiotolerans, a Gram-negative bacterium isolated from Cucurbita pepo roots. This strain shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacities. Analyses of its 6.8-Mb genome will improve our understanding of DDE-degradation pathways and aid...
Article
Full-text available
We report here the draft genome of Enterobacter aerogenes, a Gram-negative bacterium of the Enterobacteriaceae isolated from Cucurbita pepo root tissue. This bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacity. An analysis of its 4.5-Mb draft genome will enhance the understandin...
Chapter
Full-text available
Antarctica's ice-free environments span diverse habitats, ranging from well developed and nutrient rich soils in the coastal areas, to poorly developed and oligotrophic soils in the continent's deserts and high elevation sites. Though most terrestrial environments in Antarctica are typified by harsh environmental condi-tions, many soils are home to...
Article
Full-text available
Bacteria are assumed to disperse widely via aerosolized transport due to their small size and resilience. The question of microbial endemicity in isolated populations is directly related to the level of airborne exogenous inputs, yet this has proven hard to identify. The ice-free terrestrial ecosystem of Antarctica, a geographically and climaticall...
Article
Gordonia sp. strain NB4-1Y was isolated from vermicompost using bis-(3-pentafluorophenylpropyl)-sulfide as the sole added sulfur source and was found to have a broad capacity for metabolizing organosulfur compounds. NB4-1Y is closely related to G. desulfuricans and was found to metabolize 6:2 fluorotelomer sulfonate (6:2 FTS) to 5:3 fluorotelomer a...
Article
Full-text available
Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeogra...
Article
The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes, Proteobacteria and Actinobac...
Article
Full-text available
We have developed a simple and sensitive method to detect microbial respiration at subzero temperatures. Microbial activity was detected by measuring (14)CO(2) evolved during the microbial-mediated mineralization of [1-(14)C] acetic acid or [2-(14)C] glucose in microcosm assays using modified (14)CO(2) traps. Various (14)CO(2) traps, designed to wi...

Network

Cited By