Ergys Çokaj

Ergys Çokaj
Norwegian University of Science and Technology | NTNU · Department of Mathematical Sciences

PhD
Ph.D. candidate at NTNU, Trondheim - ESR 5 of the ETN THREAD, (MSCA 860124 - EU Horizon 2020)

About

5
Publications
661
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13
Citations

Publications

Publications (5)
Preprint
Full-text available
We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete resu...
Chapter
Since their introduction, Lie group integrators have become a method of choice in many application areas. Various formulations of these integrators exist, and in this work we focus on Runge-Kutta-Munthe-Kaas methods. First, we briefly introduce this class of integrators, considering some of the practical aspects of their implementation, such as ada...
Preprint
Full-text available
Since their introduction, Lie group integrators have become a method of choice in many application areas. Various formulations of these integrators exist, and in this work we focus on Runge--Kutta--Munthe--Kaas methods. First, we briefly introduce this class of integrators, considering some of the practical aspects of their implementation, such as...
Article
Full-text available
Since they were introduced in the 1990s, Lie group integrators have become a method of choice in many application areas. These include multibody dynamics, shape analysis, data science, image registration and biophysical simulations. Two important classes of intrinsic Lie group integrators are the Runge–Kutta–Munthe–Kaas methods and the commutator f...
Preprint
Full-text available
Since they were introduced in the 1990s, Lie group integrators have become a method of choice in many application areas. These include multibody dynamics, shape analysis, data science, image registration and biophysical simulations. Two important classes of intrinsic Lie group integrators are the Runge--Kutta--Munthe--Kaas methods and the commutato...

Network

Cited By