
Ergys Çokaj- PhD
- Lecturer at Western Balkans University
Ergys Çokaj
- PhD
- Lecturer at Western Balkans University
University Lecturer at the Western Balkan University.
About
10
Publications
1,043
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
23
Citations
Introduction
Current institution
Additional affiliations
October 2024 - present
Western Balkans University
Position
- University Lecturer
Publications
Publications (10)
We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete resu...
Euler's elastica is a classical model of flexible slender structures, relevant in many industrial applications. Static equilibrium equations can be derived via a variational principle. The accurate approximation of solutions of this problem can be challenging due to nonlinearity and constraints. We here present two neural network based approaches f...
We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete resu...
Since their introduction, Lie group integrators have become a method of choice in many application areas. Various formulations of these integrators exist, and in this work we focus on Runge-Kutta-Munthe-Kaas methods. First, we briefly introduce this class of integrators, considering some of the practical aspects of their implementation, such as ada...
Since their introduction, Lie group integrators have become a method of choice in many application areas. Various formulations of these integrators exist, and in this work we focus on Runge--Kutta--Munthe--Kaas methods. First, we briefly introduce this class of integrators, considering some of the practical aspects of their implementation, such as...
Since they were introduced in the 1990s, Lie group integrators have become a method of choice in many application areas. These include multibody dynamics, shape analysis, data science, image registration and biophysical simulations. Two important classes of intrinsic Lie group integrators are the Runge–Kutta–Munthe–Kaas methods and the commutator f...
Since they were introduced in the 1990s, Lie group integrators have become a method of choice in many application areas. These include multibody dynamics, shape analysis, data science, image registration and biophysical simulations. Two important classes of intrinsic Lie group integrators are the Runge--Kutta--Munthe--Kaas methods and the commutato...